高中数学课件 圆 锥 曲 线23页PPT
合集下载
高中数学人教A版必修2柱、锥、台、球的结构特征精品课件(共45张)

一个数字的世界,我时时需要你. 一个形的世界,我处处离不开你. 一个美丽的世界,我欣赏你的韵律. 一个理想的世界,我探索你的奥秘.
几何学的简洁美却又正是几何学之所以完美的核心所在. ——牛顿
从航空测绘到土木建筑以至家居装潢,——空间图形与我们的生活 息息相关.
高中数学人教A版必修2第1章1.1 柱、锥、台、球的结构特征课件(共45 张PPT )
答:都是棱柱.
理解棱柱的定义
②观察右边的棱柱,共有多 少对平行平面?能作为棱柱 的底面的有几对?
答:四对平行平面;只有一对可以作为棱柱的底面.
理解棱柱的定义
③为什么定义中要说“其余各面都是平行四边形, 并且相邻两个四边形的公共边都互相平行,”而 不简单的只说“其余各面是平行四边形呢”?
答:满足“有两个面互相 平行,其余各面都是平行四边 形的几何体”这样说法的还有 右图情况,如图所示.所以定 义中不能简单描述成“其余各 面都是平行四边形”.
高中数学人教A版必修2第1章1.1 柱、锥、台、球的结构特征课件(共41 柱、锥、台、球的结构特征课件(共45 张PPT )
问题1:观察下面的实物图片, 这些图片中的物 体具有怎样的形状?属于哪种空间几何体?
高中数学人教A版必修2第1章1.1 柱、锥、台、球的结构特征课件(共45 张PPT )
高中数学人教A版必修2第1章1.1 柱、锥、台、球的结构特征课件(共45 张PPT ) 高中数学人教A版必修2第1章1.1 柱、锥、台、球的结构特征课件(共45 张PPT )
高中数学人教A版必修2第1章1.1 柱、锥、台、球的结构特征课件(共45 张PPT )
问题2:观察上述空间几何体,分析它的结构特征,
平面几何研究的对象是平面图形,研究的内容 是平面内的点、线的位置关系,平面图形的画 法,长度、角度、面积等相关的计算及应用.
几何学的简洁美却又正是几何学之所以完美的核心所在. ——牛顿
从航空测绘到土木建筑以至家居装潢,——空间图形与我们的生活 息息相关.
高中数学人教A版必修2第1章1.1 柱、锥、台、球的结构特征课件(共45 张PPT )
答:都是棱柱.
理解棱柱的定义
②观察右边的棱柱,共有多 少对平行平面?能作为棱柱 的底面的有几对?
答:四对平行平面;只有一对可以作为棱柱的底面.
理解棱柱的定义
③为什么定义中要说“其余各面都是平行四边形, 并且相邻两个四边形的公共边都互相平行,”而 不简单的只说“其余各面是平行四边形呢”?
答:满足“有两个面互相 平行,其余各面都是平行四边 形的几何体”这样说法的还有 右图情况,如图所示.所以定 义中不能简单描述成“其余各 面都是平行四边形”.
高中数学人教A版必修2第1章1.1 柱、锥、台、球的结构特征课件(共41 柱、锥、台、球的结构特征课件(共45 张PPT )
问题1:观察下面的实物图片, 这些图片中的物 体具有怎样的形状?属于哪种空间几何体?
高中数学人教A版必修2第1章1.1 柱、锥、台、球的结构特征课件(共45 张PPT )
高中数学人教A版必修2第1章1.1 柱、锥、台、球的结构特征课件(共45 张PPT ) 高中数学人教A版必修2第1章1.1 柱、锥、台、球的结构特征课件(共45 张PPT )
高中数学人教A版必修2第1章1.1 柱、锥、台、球的结构特征课件(共45 张PPT )
问题2:观察上述空间几何体,分析它的结构特征,
平面几何研究的对象是平面图形,研究的内容 是平面内的点、线的位置关系,平面图形的画 法,长度、角度、面积等相关的计算及应用.
全国高中数学 青年教师展评课 圆锥曲线的光学性质课件(浙江台州洪家中学)

流
程
群策群力解疑难
口留余香再启智
第三十页,共36页。
口留余香(yú xiānɡ)再启智
第三十一页,共36页。
口留余香(yú xiānɡ)再启智
第三十二页,共36页。
创新 (chuàngxīn)是 一个民族进步的 灵魂,一个国家 兴旺发达不竭的 动力。学生要学 会学习,更要懂 得创新 (chuàngxīn)。 布置课后深层次 思考题,希望能 唤起学生的创新 (chuàngxīn)意 识,激发他们的 创新 (chuàngxīn)潜 能。
读书百遍其义见
教
汇积小流成江河
学
流
程
读有所得 读有所疑
第十四页,共36页。
汇积小流成江河(jiānɡ hé)—— 读有所疑
第十五页,共36页。
汇积小流成江河(jiānɡ hé)— —读有所疑
上课前挑选整理 (zhěnglǐ)学生疑问, 课堂展示疑问,引 发全体学生积极思 考;将疑问分类板 书,明确了任务, 并留给学生更多的 思考时间。
的
这是人教版选修2-1第二章《圆 锥曲线与方程》章末的一份阅 读与思考材料,主要介绍抛物 线、椭圆(tuǒyuán)、双曲线的 光学性质以及它们在生活中的 简单应用,是圆锥曲线知识的 进一步拓展,是数学知识与物 理知识的综合,也是数学知识 在实际生活中应用的典型案例。
第三页,共36页。
应圆 用锥
曲 线 的 光 学
教 学 流 程
第八页,共36页。
读书百遍其义见——课前充分阅读(yuèdú) 思—课前充分阅读 思考
提前布置阅读与 思考任务,将阅 读与思考延伸 (yánshēn)到课 前,学生有充裕 的阅读与思考的 时间和空间,可 以得到更多信息, 产生更多疑问。
高中数学圆柱圆锥圆台和球人教必修PPT课件

·
·
·
·
·
第29页/共34页
例2、如图,四边形ABCD为平行四边形,
EF∥AB,且EF<AB,试说明这个简单组合体 的结构特征.
E
F
E
F
D A
C
D
B
A
C B
第30页/共34页
例1.如图,将直角梯形ABCD绕AB所在的直线
旋转一周,由此生成的几何体是由哪些简单几
何体构成?
D
C
A
B
D
C
A
B
第31页/共34页
练习
D 1、下列命题正确的是( ) A、圆台是直角梯形绕其一边旋转而成的 B、圆锥是直角三角形绕其一边旋转而成的 C、圆柱不是旋转体 D、圆台可以看作是平行于底面的平面截一个圆锥而得到的
第22页/共34页
练习 2. 直角三边长分别为3、4、5,绕着 其中一边旋转得到圆锥,对所有可能
描述不对的是( C ).
圆锥
第12页/共34页
如何定义圆锥的轴、底面、侧面、母线?
轴 母线 底面
顶点 侧面 母线
第13页/共34页
七、圆锥的结构特征
思考:经过圆锥任意两条母线的截面 是什么图形?
思考:经过圆锥的轴的截面称为轴截面,你 能说出圆锥的轴截面有哪些基本特征吗?
第14页/共34页
八、圆台的结构特征
思考:用一个平行于圆锥底面的平面去截 圆锥,截面与底面之间的部分叫做圆台. 圆台可以由什么平面图形旋转而形成?
A.是底面半径3的圆锥 B.是底面半径为4的圆锥 C.是底面半径5的圆锥 D.是母线长为5的圆锥
第23页/共34页
练习
3. 下列命题中正确的是( C ).
高中数学必修模块(1-5)ppt(全部课件集柱、锥、台、球的结构特征等164个) 人教课标版

立体几何
柱、锥、台、球的结构特征
棱柱:有两个面互相平行,其余各面都是四边 形,并且每相邻两个四边形的公共边都互相平 行,由这些面所围成的几何体叫做棱柱。
顶点
侧面 底面
侧棱
用表示底面各顶点表示棱柱。
棱锥:有一个面是多边形,其余各面都是有 一个公共顶点的三角形,由这些面所围成的 几何体叫做棱锥。
顶点 侧面 D S 侧棱
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
读一本好书,就是和许多高尚的人谈话。 ---歌德 书籍是人类知识的总结。书籍是全世界的营养品。 ---莎士比亚 书籍是巨大的力量。 ---列宁 好的书籍是最贵重的珍宝。 ---别林斯基 任何时候我也不会满足,越是多读书,就越是深刻地感到不满足,越感到自己知识贫乏。 ---马克思 书籍便是这种改造灵魂的工具。人类所需要的,是富有启发性的养料。而阅读,则正是这种养料。 ---雨果 喜欢读书,就等于把生活中寂寞的辰光换成巨大享受的时刻。 ---孟德斯鸠 如果我阅读得和别人一样多,我就知道得和别人一样少。 ---霍伯斯[英国作家] 读书有三种方法:一种是读而不懂,另一种是既读也懂,还有一种是读而懂得书上所没有的东西。 ---克尼雅日宁[俄国剧作家・诗人] 要学会读书,必须首先读的非常慢,直到最后值得你精读的一本书,还是应该很慢地读。 ---法奇(法国科学家) 了解一页书,胜于匆促地阅读一卷书。 ---麦考利[英国作家] 读书而不回想,犹如食物而不消化。 ---伯克[美国想思家] 读书而不能运用,则所读书等于废纸。 ---华盛顿(美国政治家) 书籍使一些人博学多识,但也使一些食而不化的人疯疯颠颠。 ---彼特拉克[意大利诗人] 生活在我们这个世界里,不读书就完全不可能了解人。 ---高尔基 读书越多,越感到腹中空虚。 ---雪莱(英国诗人) 读书是我唯一的娱乐。我不把时间浪费于酒店、赌博或任何一种恶劣的游戏;而我对于事业的勤劳,仍是按照必要,不倦不厌。 ---富兰克林 书读的越多而不加思索,你就会觉得你知道得很多;但当你读书而思考越多的时候,你就会清楚地看到你知道得很少。 ---伏尔泰(法国哲学家、文学家) 读书破万卷,下笔如有神。---杜甫 读万卷书,行万里路。 ---顾炎武 读书之法无他,惟是笃志虚心,反复详玩,为有功耳。 ---朱熹 读书无嗜好,就能尽其多。不先泛览群书,则会无所适从或失之偏好,广然后深,博然后专。 ---鲁迅 读书之法,在循序渐进,熟读而精思。 ---朱煮 读书务在循序渐进;一书已熟,方读一书,勿得卤莽躐等,虽多无益。 ---胡居仁[明] 读书是学习,摘抄是整理,写作是创造。 ---吴晗 看书不能信仰而无思考,要大胆地提出问题,勤于摘录资料,分析资料,找出其中的相互关系,是做学问的一种方法。---顾颉刚 书犹药也,善读之可以医愚。 ---刘向 读书破万卷,胸中无适主,便如暴富儿,颇为用钱苦。 ---郑板桥 知古不知今,谓之落沉。知今不知古,谓之盲瞽。 ---王充 举一纲而万目张,解一卷而众篇明。 ---郑玄
柱、锥、台、球的结构特征
棱柱:有两个面互相平行,其余各面都是四边 形,并且每相邻两个四边形的公共边都互相平 行,由这些面所围成的几何体叫做棱柱。
顶点
侧面 底面
侧棱
用表示底面各顶点表示棱柱。
棱锥:有一个面是多边形,其余各面都是有 一个公共顶点的三角形,由这些面所围成的 几何体叫做棱锥。
顶点 侧面 D S 侧棱
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
读一本好书,就是和许多高尚的人谈话。 ---歌德 书籍是人类知识的总结。书籍是全世界的营养品。 ---莎士比亚 书籍是巨大的力量。 ---列宁 好的书籍是最贵重的珍宝。 ---别林斯基 任何时候我也不会满足,越是多读书,就越是深刻地感到不满足,越感到自己知识贫乏。 ---马克思 书籍便是这种改造灵魂的工具。人类所需要的,是富有启发性的养料。而阅读,则正是这种养料。 ---雨果 喜欢读书,就等于把生活中寂寞的辰光换成巨大享受的时刻。 ---孟德斯鸠 如果我阅读得和别人一样多,我就知道得和别人一样少。 ---霍伯斯[英国作家] 读书有三种方法:一种是读而不懂,另一种是既读也懂,还有一种是读而懂得书上所没有的东西。 ---克尼雅日宁[俄国剧作家・诗人] 要学会读书,必须首先读的非常慢,直到最后值得你精读的一本书,还是应该很慢地读。 ---法奇(法国科学家) 了解一页书,胜于匆促地阅读一卷书。 ---麦考利[英国作家] 读书而不回想,犹如食物而不消化。 ---伯克[美国想思家] 读书而不能运用,则所读书等于废纸。 ---华盛顿(美国政治家) 书籍使一些人博学多识,但也使一些食而不化的人疯疯颠颠。 ---彼特拉克[意大利诗人] 生活在我们这个世界里,不读书就完全不可能了解人。 ---高尔基 读书越多,越感到腹中空虚。 ---雪莱(英国诗人) 读书是我唯一的娱乐。我不把时间浪费于酒店、赌博或任何一种恶劣的游戏;而我对于事业的勤劳,仍是按照必要,不倦不厌。 ---富兰克林 书读的越多而不加思索,你就会觉得你知道得很多;但当你读书而思考越多的时候,你就会清楚地看到你知道得很少。 ---伏尔泰(法国哲学家、文学家) 读书破万卷,下笔如有神。---杜甫 读万卷书,行万里路。 ---顾炎武 读书之法无他,惟是笃志虚心,反复详玩,为有功耳。 ---朱熹 读书无嗜好,就能尽其多。不先泛览群书,则会无所适从或失之偏好,广然后深,博然后专。 ---鲁迅 读书之法,在循序渐进,熟读而精思。 ---朱煮 读书务在循序渐进;一书已熟,方读一书,勿得卤莽躐等,虽多无益。 ---胡居仁[明] 读书是学习,摘抄是整理,写作是创造。 ---吴晗 看书不能信仰而无思考,要大胆地提出问题,勤于摘录资料,分析资料,找出其中的相互关系,是做学问的一种方法。---顾颉刚 书犹药也,善读之可以医愚。 ---刘向 读书破万卷,胸中无适主,便如暴富儿,颇为用钱苦。 ---郑板桥 知古不知今,谓之落沉。知今不知古,谓之盲瞽。 ---王充 举一纲而万目张,解一卷而众篇明。 ---郑玄
圆锥曲线PPT课件

则 P 点的轨迹形状为_双__曲_线__的_一__支_____.
本
解析 由动点P满足PA-PB=3<4=AB,
课 栏
结合双曲线的定义及右图可知:点P的轨
目 开
迹是以A、B为焦点的双曲线的一支.
关
第14页/共24页
研一研·问题探究、课堂更高效
§ 2.1
填一填 研一研 练一练
探究点三 抛物线的定义
问题 1 用平面去截圆锥面,怎样得到一条抛物线?
答案 设圆锥面的母线与轴所成的角为θ,不过圆锥 面的顶点的截面与轴所成的角为α,当0<α<π2时,截线
本
的形状是椭圆.(如图阴影部分)
课
栏
目
开
关
第5页/共24页
研一研·问题探究、课堂更高效
§ 2.1
填一填 研一研 练一练
问题 4 给你两个图钉、一根无弹性的细绳、一张纸板, 能画出椭圆吗?
答案 固定两个图钉,绳长大于图钉间的距离是画出
目
开 4. 椭圆、双曲线、抛物线统称为__圆_锥__曲_线______.
关
第3页/共24页
研一研·问题探究、课堂更高效
§ 2.1
填一填 研一研 练一练
探究点一 椭圆的定义
问题 1 什么是圆锥面?
本
课 栏
答案 圆锥面可看成一条直线绕着与它相交的另一条直
目 开
线(两条直线不互相垂直)旋转一周所形成的曲面.
能力.
第1页/共24页
填一填·知识要点、记下疑难点
§ 2.1
填一填 研一研 练一练
1. 椭圆的定义
平面内到_两__个__定_点__F_1,__F_2的__距__离_的__和________等于常数(大于
高中数学人教A版必修二.1柱、锥、台、球的结构特征课件-(24张PPT)

几何体的分类
柱体
锥体
台体
球
高中数学人教A版必修二.1柱、锥、台 、球的 结构特 征课件 -(24 张PPT)
多面体
旋转体
定义:由若干个平面多边形围成的几何 体叫做多面体 .
围成多面体的各个多边形叫做多面体的 ( 面),相邻两个面的公共边叫做多面体
的 ( 棱 ) ,棱与棱的公共点叫做多面体 的顶点( 顶点)
侧面
母线
底面
生活中的圆柱
知识探究(六):圆锥的结构特征
定义:以直角三角形的一条直角边所在 直线为旋转轴,其余两边旋转形成的面 所围成的旋转体叫做圆锥
母线
顶点
S
轴
侧面
A
O
B
底面
知识探究(七):圆台的结构特征
定义:用一个平行于圆锥底面的平面去截 圆锥,截面与底面之间的部分叫做圆台. 圆台可以由什么平面图形旋转而形成?
顶点
面
棱
高中数学人教A版必修二.1柱、锥、台 、球的 结构特 征课件 -(24 张PPT)
知识探究(二):棱柱的结构特征
有两个面互相平行,其余各面都是四 边形,每相邻两个四边形的公共边都 互相平行,由这些面围成的多面体叫 做棱柱.
高中数学人教A版必修二.1柱、锥、台 、球的 结构特 征课件 -(24 张PPT)
练习1:下列多面体都是棱柱吗?如何在
名称上区分这些棱柱??
(1)
高中数学人教A版必修二.1柱、锥、台 、球的 结构特 征课件 -(24 张PPT)
(2)
高中数学人教A版必修二.1柱、锥、台 、球的 结构特 征课件 -(24 张PPT)
练习2: 如图,截面BCEF将长方体分 割成两部分,这两部分是否为棱柱?
柱体
锥体
台体
球
高中数学人教A版必修二.1柱、锥、台 、球的 结构特 征课件 -(24 张PPT)
多面体
旋转体
定义:由若干个平面多边形围成的几何 体叫做多面体 .
围成多面体的各个多边形叫做多面体的 ( 面),相邻两个面的公共边叫做多面体
的 ( 棱 ) ,棱与棱的公共点叫做多面体 的顶点( 顶点)
侧面
母线
底面
生活中的圆柱
知识探究(六):圆锥的结构特征
定义:以直角三角形的一条直角边所在 直线为旋转轴,其余两边旋转形成的面 所围成的旋转体叫做圆锥
母线
顶点
S
轴
侧面
A
O
B
底面
知识探究(七):圆台的结构特征
定义:用一个平行于圆锥底面的平面去截 圆锥,截面与底面之间的部分叫做圆台. 圆台可以由什么平面图形旋转而形成?
顶点
面
棱
高中数学人教A版必修二.1柱、锥、台 、球的 结构特 征课件 -(24 张PPT)
知识探究(二):棱柱的结构特征
有两个面互相平行,其余各面都是四 边形,每相邻两个四边形的公共边都 互相平行,由这些面围成的多面体叫 做棱柱.
高中数学人教A版必修二.1柱、锥、台 、球的 结构特 征课件 -(24 张PPT)
练习1:下列多面体都是棱柱吗?如何在
名称上区分这些棱柱??
(1)
高中数学人教A版必修二.1柱、锥、台 、球的 结构特 征课件 -(24 张PPT)
(2)
高中数学人教A版必修二.1柱、锥、台 、球的 结构特 征课件 -(24 张PPT)
练习2: 如图,截面BCEF将长方体分 割成两部分,这两部分是否为棱柱?
基本立体图形圆柱、圆锥、圆台、球、简单组合体(课件)-高一数学(人教A版2019必修第二册)

以直角梯形的直角腰所在直线为旋转轴,其余三边旋转形成的面所围成 的旋转体叫做圆台.
上底面
侧面
母线
下底面
圆柱、圆锥、圆台的性质
1、底面都是圆 并且平行于底面的截面都是 圆
2、圆柱、圆锥、圆台过轴的截面(轴截面) 分别是矩形、等腰三角形、等腰梯形
7.球
如图8.1-13,半圆以它的直径所在直线为旋转轴,旋转一周形成的曲面叫做球 面,球面所围成的旋转体叫做球体(solid sphere),简称球.半圆的圆心叫 做球的球心;连接球心和球面上任意一点的线段叫做球的半径;连接球面上 两点并且经过球心的线段叫做球的直径.球常用表示球心的字母来表示,如 图8.1-13中的球记作球O.
(2)错误,反例如图
A
B
C
D
8.如图,长方体ABCD ABCD中被截去一部分,其中EH //AD.剩下的 几何体是什么? 截去的几何体是什么? 你能说出它们的名称吗?
剩下的几何体是棱柱,截去 的几何体也是棱柱;他们分 别是五棱柱和三棱柱。
D
H
C
A
E
B G
D
FC
A
B
9.如图,以平行四边形ABCD的一边AB所在直线为轴,其他三边旋转一周 形成的面围成一个几何体.画出这个几何体的图形,并说出其中的简单几何 体及有关的结构特征.
O 图8.1-13
半径 直径 球心
棱柱、棱锥、棱台、圆柱、圆锥、圆台和球是常见的简单几何体.其中棱柱 与圆柱统称为柱体,棱锥与圆锥统称为椎体,棱台和圆台统称为台体.
圆柱与棱柱统 称为柱体。
圆台与棱台统 称为台体。
圆锥与棱锥统 称为锥体。
探究 棱柱、棱锥与棱台都是多面体,它们在结构上有哪些相同点和不同点?当底 面发生变化时,它们能否互相转化?圆柱、圆锥与圆台呢?
上底面
侧面
母线
下底面
圆柱、圆锥、圆台的性质
1、底面都是圆 并且平行于底面的截面都是 圆
2、圆柱、圆锥、圆台过轴的截面(轴截面) 分别是矩形、等腰三角形、等腰梯形
7.球
如图8.1-13,半圆以它的直径所在直线为旋转轴,旋转一周形成的曲面叫做球 面,球面所围成的旋转体叫做球体(solid sphere),简称球.半圆的圆心叫 做球的球心;连接球心和球面上任意一点的线段叫做球的半径;连接球面上 两点并且经过球心的线段叫做球的直径.球常用表示球心的字母来表示,如 图8.1-13中的球记作球O.
(2)错误,反例如图
A
B
C
D
8.如图,长方体ABCD ABCD中被截去一部分,其中EH //AD.剩下的 几何体是什么? 截去的几何体是什么? 你能说出它们的名称吗?
剩下的几何体是棱柱,截去 的几何体也是棱柱;他们分 别是五棱柱和三棱柱。
D
H
C
A
E
B G
D
FC
A
B
9.如图,以平行四边形ABCD的一边AB所在直线为轴,其他三边旋转一周 形成的面围成一个几何体.画出这个几何体的图形,并说出其中的简单几何 体及有关的结构特征.
O 图8.1-13
半径 直径 球心
棱柱、棱锥、棱台、圆柱、圆锥、圆台和球是常见的简单几何体.其中棱柱 与圆柱统称为柱体,棱锥与圆锥统称为椎体,棱台和圆台统称为台体.
圆柱与棱柱统 称为柱体。
圆台与棱台统 称为台体。
圆锥与棱锥统 称为锥体。
探究 棱柱、棱锥与棱台都是多面体,它们在结构上有哪些相同点和不同点?当底 面发生变化时,它们能否互相转化?圆柱、圆锥与圆台呢?
高中数学立体几何PPT课件

目录
旋转 体
(1)圆柱可以由____矩__形____绕其任一边所在直线旋 转得到. (2)圆锥可以由直角三角形绕其____直__角__边____所在 直线旋转得到. (3)圆台可以由直角梯形绕___直__角__腰___所在直线或 等腰梯形绕_上__、__下__底__中__点__连__线___旋转得到,也可 由___平__行__于__底__面____的平面截圆锥得到. (4)球可以由半圆或圆绕__地,它的水平放置的平面图形的斜二测直 观图是直角梯形(如图),∠ABC=45°,AB=AD=1,DC⊥ BC,则这块菜地的面积为________.
答案:2+
2 2
目录
5.(2011·高考北京卷改编)某四面体的三视图如图所示,该四 面体四个面的面积中最大的是________.
目录
3.(教材习题改编)有下列四个命题:
①底面是矩形的平行六面体是长方体;
②棱长相等的直四棱柱是正方体;
③有两条侧棱都垂直于底面一边的平行六面体是直平行六面体;
④对角线相等的平行六面体是直平行六面体.
其中真命题的个数是( )
A.1
B.2
C.3
D.4
目录
解析:选A.命题①不是真命题,因为底面是矩形,但侧棱不 垂直于底面的平行六面体不是长方体; 命题②不是真命题, 因为底面是菱形(非正方形),底面边长与侧棱长相等的直四棱 柱不是正方体;命题③也不是真命题,因为有两条侧棱都垂 直于底面一边不能推出侧棱与底面垂直;命题④是真命题, 由对角线相等,可知平行六面体的对角面是矩形,从而推得 侧棱与底面垂直,故平行六面体是直平行六面体.
目录
解析:
将三视图还原成几何体的直观图如图所示. 它的四个面的面积分别为 8,6,10,6 2,故面积最大的应为 10.
旋转 体
(1)圆柱可以由____矩__形____绕其任一边所在直线旋 转得到. (2)圆锥可以由直角三角形绕其____直__角__边____所在 直线旋转得到. (3)圆台可以由直角梯形绕___直__角__腰___所在直线或 等腰梯形绕_上__、__下__底__中__点__连__线___旋转得到,也可 由___平__行__于__底__面____的平面截圆锥得到. (4)球可以由半圆或圆绕__地,它的水平放置的平面图形的斜二测直 观图是直角梯形(如图),∠ABC=45°,AB=AD=1,DC⊥ BC,则这块菜地的面积为________.
答案:2+
2 2
目录
5.(2011·高考北京卷改编)某四面体的三视图如图所示,该四 面体四个面的面积中最大的是________.
目录
3.(教材习题改编)有下列四个命题:
①底面是矩形的平行六面体是长方体;
②棱长相等的直四棱柱是正方体;
③有两条侧棱都垂直于底面一边的平行六面体是直平行六面体;
④对角线相等的平行六面体是直平行六面体.
其中真命题的个数是( )
A.1
B.2
C.3
D.4
目录
解析:选A.命题①不是真命题,因为底面是矩形,但侧棱不 垂直于底面的平行六面体不是长方体; 命题②不是真命题, 因为底面是菱形(非正方形),底面边长与侧棱长相等的直四棱 柱不是正方体;命题③也不是真命题,因为有两条侧棱都垂 直于底面一边不能推出侧棱与底面垂直;命题④是真命题, 由对角线相等,可知平行六面体的对角面是矩形,从而推得 侧棱与底面垂直,故平行六面体是直平行六面体.
目录
解析:
将三视图还原成几何体的直观图如图所示. 它的四个面的面积分别为 8,6,10,6 2,故面积最大的应为 10.