数据结构实验图的基本操作
图的基本操作 实验报告

图的基本操作实验报告图的基本操作实验报告引言:图是一种常见的数据结构,广泛应用于计算机科学和其他领域。
本实验报告旨在介绍图的基本操作,包括创建图、添加节点和边、遍历图等,并通过实验验证这些操作的正确性和效率。
实验目的:1. 了解图的基本概念和术语;2. 掌握图的创建和修改操作;3. 熟悉图的遍历算法;4. 分析图的操作的时间复杂度。
实验过程:1. 创建图首先,我们需要创建一个图对象。
图可以用邻接矩阵或邻接表来表示。
在本实验中,我们选择使用邻接表来表示图。
通过遍历输入的节点和边信息,我们可以创建一个包含所有节点和边的图。
2. 添加节点和边在创建图对象后,我们可以通过添加节点和边来构建图的结构。
通过输入节点的标识符和边的起始和结束节点,我们可以在图中添加新的节点和边。
添加节点和边的操作可以通过修改邻接表来实现,将节点和边的信息存储在对应的链表中。
3. 遍历图遍历图是图操作中常用的操作之一。
通过遍历图,我们可以访问图中的所有节点和边。
在本实验中,我们选择使用深度优先搜索(DFS)算法来遍历图。
DFS算法通过递归的方式遍历图中的节点,先访问当前节点,然后再递归地访问与当前节点相邻的节点。
4. 分析时间复杂度在实验过程中,我们记录了图的操作所花费的时间,并分析了它们的时间复杂度。
通过对比不同规模的图的操作时间,我们可以评估图操作的效率和可扩展性。
实验结果:通过实验,我们成功创建了一个图对象,并添加了多个节点和边。
我们还通过DFS算法遍历了图,并记录了遍历的顺序。
实验结果表明,我们的图操作实现正确,并且在不同规模的图上都能够高效地工作。
讨论与结论:本实验报告介绍了图的基本操作,并通过实验验证了这些操作的正确性和效率。
通过实验,我们了解到图是一种重要的数据结构,可以用于解决许多实际问题。
同时,我们还深入分析了图操作的时间复杂度,为后续的图算法设计和优化提供了参考。
总结:通过本次实验,我们对图的基本操作有了更深入的了解。
数据结构实验报告-队列的操作

for(i=0 ; i<10; i++)
{
printf(" %d ",j);
EnQueue(S,j); //元素入队列
j++;
}
printf("\n元素出队列");
for(i=0 ; i<10; i++)
{
DeQueue(S,j); //元素出队列
printf(" %d ",j);
}
}
运行结果截图:
1.
四、分析与讨论
对上机实践结果进行分析,上机的心得体会。
五、教师评语
签名:
日期:
成绩
附源程序清单:
1.#include<iostream>
#include<queue>
using namespace std;
void main()
{
queue<char> cque;
char c;
typedef struct {
QElemType *base; // 动态分配存储空间
int front; // 头指针,若队列不空,指向队列头元素
int rear; // 尾指针,若队列不空, //指向队列尾元素 的下一个位置
}SqQueue;
Status InitQueue (SqQueue &Q) { // 构造一个空队列Q
if ((Q.rear+1) % MAXQSIZE == Q.front)
return ERROR; //队列满
Q.base[Q.rear] = e;
数据结构图的实验报告

数据结构图的实验报告数据结构图的实验报告引言:数据结构图是计算机科学中重要的概念之一。
它是一种用图形表示数据元素之间关系的数据结构,广泛应用于算法设计、程序开发和系统优化等领域。
本实验报告旨在介绍数据结构图的基本原理、实验过程和结果分析。
一、实验目的本次实验的主要目的是掌握数据结构图的基本概念和操作方法,以及通过实验验证其在解决实际问题中的有效性。
具体而言,我们将通过构建一个社交网络关系图,实现对用户关系的管理和分析。
二、实验方法1. 确定数据结构在本次实验中,我们选择了无向图作为数据结构图的基础。
无向图由顶点集和边集组成,每条边连接两个顶点,且没有方向性。
2. 数据输入为了模拟真实的社交网络,我们首先需要输入一组用户的基本信息,如姓名、年龄、性别等。
然后,根据用户之间的关系建立边,表示用户之间的交流和联系。
3. 数据操作基于构建好的数据结构图,我们可以进行多种操作,如添加用户、删除用户、查询用户关系等。
这些操作将通过图的遍历、搜索和排序等算法实现。
三、实验过程1. 数据输入我们首先创建一个空的无向图,并通过用户输入的方式逐步添加用户和用户关系。
例如,我们可以输入用户A和用户B的姓名、年龄和性别,并建立一条边连接这两个用户。
2. 数据操作在构建好数据结构图后,我们可以进行多种操作。
例如,我们可以通过深度优先搜索算法遍历整个图,查找与某个用户具有特定关系的用户。
我们也可以通过广度优先搜索算法计算某个用户的社交网络影响力,即与该用户直接或间接相连的其他用户数量。
3. 结果分析通过实验,我们可以观察到数据结构图在管理和分析用户关系方面的优势。
它能够快速地找到用户之间的关系,帮助我们了解用户的社交网络结构和影响力。
同时,数据结构图也为我们提供了一种可视化的方式来展示用户之间的关系,使得分析更加直观和易于理解。
四、实验结果通过实验,我们成功构建了一个社交网络关系图,并实现了多种数据操作。
我们可以根据用户的姓名、年龄和性别等信息进行查询,也可以根据用户之间的关系进行遍历和排序。
数据结构试验报告-图的基本操作

中原工学院《数据结构》实验报告学院:计算机学院专业:计算机科学与技术班级:计科112姓名:康岩岩学号:201100814220 指导老师:高艳霞2012-11-22实验五图的基本操作一、实验目的1、使学生可以巩固所学的有关图的基本知识。
2、熟练掌握图的存储结构。
3、熟练掌握图的两种遍历算法。
二、实验内容[问题描述]对给定图,实现图的深度优先遍历和广度优先遍历。
[基本要求]以邻接表为存储结构,实现连通无向图的深度优先和广度优先遍历。
以用户指定的结点为起点,分别输出每种遍历下的结点访问序列。
【测试数据】由学生依据软件工程的测试技术自己确定。
三、实验前的准备工作1、掌握图的相关概念。
2、掌握图的逻辑结构和存储结构。
3、掌握图的两种遍历算法的实现。
四、实验报告要求1、实验报告要按照实验报告格式规范书写。
2、实验上要写出多批测试数据的运行结果。
3、结合运行结果,对程序进行分析。
【设计思路】【代码整理】#include "stdafx.h"#include <iostream>#include <malloc.h>using namespace std;typedef int Status;#define OK 1#define ERROR 0#define OVERFLOW -1#define MAX_SIZE 20typedef enum{DG,DN,UDG,UDN}Kind;typedef struct ArcNode{int adjvex; //顶点位置struct ArcNode *nextarc; //下一条弧int *info; //弧信息};typedef struct{char info[10]; //顶点信息ArcNode *fistarc; //指向第一条弧}VNode,AdjList[MAX_SIZE];typedef struct{AdjList vertices;int vexnum,arcnum; //顶点数,弧数int kind; //图的种类,此为无向图}ALGraph;//这是队列的节点,仅用于广度优先搜索typedef struct Node{int num;struct Node* next;};//队列的头和尾typedef struct{Node * front;Node *rear;}PreBit;int LocateV ex(ALGraph G,char info[]);//定位顶点的位置Status addArcNode(ALGraph &G,int adjvex); //图中加入弧Status CreatGraph(ALGraph&G);//创建图的邻接表Status DFSTraverse(ALGraph G);//深度优先搜索Status BFSTraverse(ALGraph G);//广度优先搜索Status DFS(ALGraph G,int v);//深度优先搜索中的数据读取函数,用于递归bool visited[MAX_SIZE]; // 访问标志数组//初始化队列Status init_q(PreBit&P_B){P_B.front=P_B.rear=(Node*)malloc(sizeof(Node));if(!P_B.front){exit(OVERFLOW);}P_B.front->next=NULL;}//将数据入队Status en_q(PreBit & P_B,int num){Node *p=(Node*)malloc(sizeof(Node));if(!p){exit(OVERFLOW);}p->num=num;p->next=NULL;P_B.rear->next=p;P_B.rear=p;return OK;}//出队Status de_q(PreBit & P_B){if(P_B.front==P_B.rear){return ERROR;}Node* p=P_B.front->next;P_B.front->next=p->next;if(P_B.rear==p){P_B.rear=P_B.front;}free(p);return OK;}Status CreatGraph(ALGraph&G){cout<<"请输入顶点数目和弧数目"<<endl;cin>>G.vexnum>>G.arcnum;//依次输入顶点信息for(int i=0;i<G.vexnum;i++){cout<<"请输入顶点名称"<<endl;cin>>G.vertices[i].info;G.vertices[i].fistarc=NULL;}//依次输入弧信息for(int k=1;k<=G.arcnum;k++){char v1[10],v2[10]; //用于表示顶点名称的字符数组int i,j; //表示两个顶点的位置BACK: //返回点cout<<"请输入第"<<k<<"条弧的两个顶点"<<endl;cin>>v1>>v2;i=LocateV ex(G,v1); //得到顶点v1的位置j=LocateV ex(G,v2); //得到顶点v2的位置if(i==-1||j==-1){ //头信息不存在则返回重输cout<<"不存在该节点!"<<endl;goto BACK; //跳到BACK 返回点}addArcNode(G,i); //将弧的顶点信息插入表中addArcNode(G,j);}return OK;}//倒序插入弧的顶点信息Status addArcNode(ALGraph &G,int adjvex){ArcNode *p; //弧节点指针p=(ArcNode*)malloc(sizeof(ArcNode));p->adjvex=adjvex;p->nextarc=G.vertices[adjvex].fistarc;//指向头结点的第一条弧G.vertices[adjvex].fistarc=p; //头结点的第一条弧指向p,即将p作为头结点的第一条弧return OK;}//定位顶点的位置int LocateV ex(ALGraph G,char info[]){for(int i=0;i<G.vexnum;i++){if(strcmp(G.vertices[i].info,info)==0){ //头结点名称与传入的信息相等,证明该头节点存在return i; //此时返回位置}}return -1;}//深度优先搜索Status DFSTraverse(ALGraph G){for(int v=0;v<G.vexnum;v++){visited[v]=false;}char v1[10];int i;BACK:cout<<"请输入首先访问的顶点"<<endl;cin>>v1;i=LocateV ex(G,v1);if(i==-1){cout<<"不存在该节点!"<<endl;goto BACK;}DFS(G,i);return OK;}//深度优先搜索递归访问图Status DFS(ALGraph G,int v){visited[v]=true;cout<<G.vertices[v].info<<" ";//输出信息ArcNode *p;p=G.vertices[v].fistarc; //向头节点第一条while(p) //当弧存在{if(!visited[p->adjvex]){DFS(G,p->adjvex); //递归读取}p=p->nextarc;}return OK;}//广度优先搜索Status BFSTraverse(ALGraph G){for(int v=0;v<G.vexnum;v++){visited[v]=false;}char v1[10];int v;BACK:cout<<"请输入首先访问的顶点"<<endl;cin>>v1;v=LocateV ex(G,v1);if(v==-1){cout<<"不存在该节点!"<<endl;goto BACK;}PreBit P_B;init_q(P_B);ArcNode *p;visited[v]=true;cout<<G.vertices[v].info<<" ";//输出信息en_q(P_B,v); //将头位置v入队while(P_B.front!=P_B.rear){//当队列不为空时,对其进行访问int w=P_B.front->next->num;//读出顶点位置de_q(P_B);//顶点已经访问过,将其出队列p=G.vertices[w].fistarc;//得到与顶点相关的第一条弧while(p){if(!visited[p->adjvex]){en_q(P_B,p->adjvex);//将弧入队,但不读取,只是将其放在队尾}p=p->nextarc;}}return OK;}int _tmain(int argc, _TCHAR* argv[]){ALGraph G;CreatGraph(G);cout<<"深度优先搜索图:"<<endl;DFSTraverse(G);cout<<endl;cout<<"广度优先搜索图:"<<endl;BFSTraverse(G);cout<<endl;system("pause");return 0;}。
(完整版)数据结构实验教学手册

《数据结构》课程实验教学手册姓名:王俊东学号:1101120216专业:计算机科学与技术班级:2012 级 2 班任课教师:王爽时间:2013-2014 年度第1 学期综合成绩:许昌学院计算机科学与技术学院《数据结构》课程实验教学手册计算机科学与技术学院《数据结构》课程组实验手册使用及要求实验操作是教学过程中理论联系实际的重要环节,而实验报告的撰写又是知识系统化的吸收和升华过程,因此,实验报告应该体现完整性、规范性、正确性、有效性。
现将实验报告撰写的有关内容说明如下:1、实验预习报告必须在实验前完成。
2、实验时带好实验手册方可进行实验。
3、实验时按实验预习报告内容进行实验。
并如实填写实验过程及实验小结。
4、实验结束后填写通过后的源程序。
通过后的源程序可以手写也可以打印粘贴。
实验情况一览表实验一实验名称顺序表及其应用实验性质验证性实验学时数2学时printf("请选择正确的操作!\n");break;}}while(choice!=0);printf("谢谢使用!\n");return 0;}四实验小结初步了解线性表的顺序存储结构,及其定义格式。
掌握在顺序表上进行插入、删除等操作的算法。
但在顺序表的操作上不是十分熟练。
五成绩实验二实验名称单链表及其应用实验性质综合性实验学时数4学时四实验小结初步了解线性表的链式存储结构,及其定义格式。
掌握了在链表上进行插入、删除等操作的算法。
对链表的了解不是很深入,在其使用上往往会犯一些错误比如在链表中进行插入插不到指定位置,删除时位置错误等。
五成绩实验三实验名称线性表综合练习实验性质设计性实验学时数6学时四实验小结对链式表有了进一步的了解,能够利用链式表解决一些实际问题。
了解了链式表的优势,他不会造成空间的浪费,对于插入和删除操作上链式表比顺序表有明显的优势。
五成绩实验四实验名称栈和队列及其应用实验性质设计性实验学时数4学时四实验总结对栈和队列有了初步的了解,他们都是一种特殊的操作受限制线性表,栈的特点是先进后出而队列的是先进先出。
数据结构实验一顺序表

数据结构实验一1、实验目的∙掌握线性表的逻辑特征∙掌握线性表顺序存储结构的特点,熟练掌握顺序表的基本运算2、实验内容:建立顺序表,完成顺序表的基本操作:初始化、插入、删除、逆转、输出、销毁, 置空表、求表长、查找元素、判线性表是否为空;1.问题描述:利用顺序表,设计一组输入数据(假定为一组整数),能够对顺序表进行如下操作:∙创建一个新的顺序表,实现动态空间分配的初始化;∙根据顺序表结点的位置插入一个新结点(位置插入),也可以根据给定的值进行插入(值插入),形成有序顺序表;∙根据顺序表结点的位置删除一个结点(位置删除),也可以根据给定的值删除对应的第一个结点,或者删除指定值的所有结点(值删除);∙利用最少的空间实现顺序表元素的逆转;∙实现顺序表的各个元素的输出;∙彻底销毁顺序线性表,回收所分配的空间;∙对顺序线性表的所有元素删除,置为空表;∙返回其数据元素个数;∙按序号查找,根据顺序表的特点,可以随机存取,直接可以定位于第i 个结点,查找该元素的值,对查找结果进行返回;∙按值查找,根据给定数据元素的值,只能顺序比较,查找该元素的位置,对查找结果进行返回;∙判断顺序表中是否有元素存在,对判断结果进行返回;.编写主程序,实现对各不同的算法调用。
2.实现要求:∙“初始化算法”的操作结果:构造一个空的顺序线性表。
对顺序表的空间进行动态管理,实现动态分配、回收和增加存储空间;∙“位置插入算法”的初始条件:顺序线性表L 已存在,给定的元素位置为i,且1≤i≤ListLength(L)+1 ;操作结果:在L 中第i 个位置之前插入新的数据元素e,L 的长度加1;∙“位置删除算法”的初始条件:顺序线性表L 已存在,1≤i≤ListLength(L) ;操作结果:删除L 的第i 个数据元素,并用e 返回其值,L 的长度减1 ;∙“逆转算法”的初始条件:顺序线性表L 已存在;操作结果:依次对L 的每个数据元素进行交换,为了使用最少的额外空间,对顺序表的元素进行交换;∙“输出算法”的初始条件:顺序线性表L 已存在;操作结果:依次对L 的每个数据元素进行输出;∙“销毁算法”初始条件:顺序线性表L 已存在;操作结果:销毁顺序线性表L;∙“置空表算法”初始条件:顺序线性表L 已存在;操作结果:将L 重置为空表;∙“求表长算法”初始条件:顺序线性表L 已存在;操作结果:返回L 中数据元素个数;∙“按序号查找算法”初始条件:顺序线性表L 已存在,元素位置为i,且1≤i≤ListLength(L)操作结果:返回L 中第i 个数据元素的值∙“按值查找算法”初始条件:顺序线性表L 已存在,元素值为e;操作结果:返回L 中数据元素值为e 的元素位置;∙“判表空算法”初始条件:顺序线性表L 已存在;操作结果:若L 为空表,则返回TRUE,否则返回FALSE;分析: 修改输入数据,预期输出并验证输出的结果,加深对有关算法的理解。
《数据结构》实验1实验报告

南京工程学院实验报告<班级>_<学号>_<实验X>.RAR文件形式交付指导老师。
一、实验目的1.熟悉上机环境,进一步掌握语言的结构特点。
2.掌握线性表的顺序存储结构的定义及实现。
3.掌握线性表的链式存储结构——单链表的定义及实现。
4.掌握线性表在顺序存储结构即顺序表中的各种基本操作。
5.掌握线性表在链式存储结构——单链表中的各种基本操作。
二、实验内容1.顺序线性表的建立、插入及删除。
2.链式线性表的建立、插入及删除。
三、实验步骤1.建立含n个数据元素的顺序表并输出该表中各元素的值及顺序表的长度。
2.利用前面的实验先建立一个顺序表L={21,23,14,5,56,17,31},然后在第i个位置插入元素68。
3.建立一个带头结点的单链表,结点的值域为整型数据。
要求将用户输入的数据按尾插入法来建立相应单链表。
四、程序主要语句及作用程序1的主要代码(附简要注释)public struct sequenlist{public const int MAXSIZE=1024; /*最大值为1024*/public elemtype[] vec;public int len; /* 顺序表的长度 */public sequenlist( int n){vec=new elemtype[MAXSIZE ];len = n;}};class Program{static void Main(string[] args){sequenlist list1 = new sequenlist(5);for (int i = 0; i < 5; i++){list1.vec[i] = i;}for (int i = 0; i < 5; i++){Console.Write("{0}---", list1.vec[i]) ;}Console.WriteLine("\n");Console.WriteLine("表长:{0}\n",list1.len );Console.ReadKey();}}程序2的主要代码(附简要注释)public void insertlist(int i, int x){if (len >= MAXSIZE)throw new Exception("上溢"); /*长度大于最大值则抛出异常*/if (i < 1 || i > len + 1)throw new Exception("位置");/插入位置小于1或大于len+1则抛出插入位置错误的异常for (int j = len; j >= i; j--)vec[j] = vec[j - 1]; //注意第j个元素存在数组下标为j-1处vec[i - 1] = x;len++;}};class Program{static void Main(string[] args){sequenlist list2 = new sequenlist(7);list2.vec[0] = 21;list2.vec[1] = 23;list2.vec[2] = 14;list2.vec[3] = 5;list2.vec[4] = 56;list2.vec[5] = 17;list2.vec[6] = 31;Console.Write("请输入第i个位置插入元素:");int loc =Convert.ToInt32( Console.ReadLine());Console.Write("请输入第{0}个位置插入的元素:", loc);int ele = Convert.ToInt32(Console.ReadLine());Console.WriteLine("插入前的线性表:");for (int i = 0; i < list2.len ; i++){Console.Write("{0}---", list2.vec[i]);}Console.WriteLine("\n");list2.insertlist(loc, ele);Console.WriteLine("插入后的线性表:");for (int i = 0; i < list2.len ; i++){Console.Write("{0}---", list2.vec[i]);}Console.WriteLine("\n");Console.ReadKey();}}程序3的主要代码(附简要注释)class Node{private int num;public int Num{set { num = value; }/输入值get { return num; }/获得值}private Node next;public Node Next{set { next = value; }get { return next; }}}class Pp{static void Main(string[] args){Node head;Node tempNode, tempNode1;int i;head = new Node();Console.WriteLine("输入六项数据:\n");Console.Write("输入第1项数据:");head.Num = Convert.ToInt32(Console.ReadLine());head.Next = null;tempNode = head;for (i = 1; i < 6; i++){tempNode1 = new Node();Console.Write("输入第{0}项数据:",i+1);tempNode1.Num = Convert.ToInt32(Console.ReadLine());/插入项转换为整形数值 tempNode1.Next = null;tempNode.Next = tempNode1;tempNode = tempNode.Next;}Console.WriteLine("线性表:");tempNode = head;for (i = 0; i < 6; i++){Console.Write("{0}", tempNode.Num);if (i < 5){Console.Write("--");}tempNode = tempNode.Next;}Console.ReadKey();}}五、程序运行结果截图程序1程序2程序3六、收获,体会及问题(写得越详细、越个性化、越真实越好,否则我不知道你做这个实验的心路历程,也就无法充分地判断你是否是独立完成的这个实验、你是否在做这个实验时进行了认真仔细地思考、通过这个实验你是否在实践能力上得到了提高)这次试验刚开始做时完全不知道从哪下手,才刚上了几节课,对于线性表、链式表都不是理解的很透彻,不知道用哪个软件编写程序。
数据结构实验报告

数据结构实验报告一、实验目的数据结构是计算机科学中重要的基础课程,通过本次实验,旨在深入理解和掌握常见数据结构的基本概念、操作方法以及在实际问题中的应用。
具体目的包括:1、熟练掌握线性表(如顺序表、链表)的基本操作,如插入、删除、查找等。
2、理解栈和队列的特性,并能够实现其基本操作。
3、掌握树(二叉树、二叉搜索树)的遍历算法和基本操作。
4、学会使用图的数据结构,并实现图的遍历和相关算法。
二、实验环境本次实验使用的编程环境为具体编程环境名称,编程语言为具体编程语言名称。
三、实验内容及步骤(一)线性表的实现与操作1、顺序表的实现定义顺序表的数据结构,包括数组和表的长度等。
实现顺序表的初始化、插入、删除和查找操作。
2、链表的实现定义链表的节点结构,包含数据域和指针域。
实现链表的创建、插入、删除和查找操作。
(二)栈和队列的实现1、栈的实现使用数组或链表实现栈的数据结构。
实现栈的入栈、出栈和栈顶元素获取操作。
2、队列的实现采用循环队列的方式实现队列的数据结构。
完成队列的入队、出队和队头队尾元素获取操作。
(三)树的实现与遍历1、二叉树的创建以递归或迭代的方式创建二叉树。
2、二叉树的遍历实现前序遍历、中序遍历和后序遍历算法。
3、二叉搜索树的操作实现二叉搜索树的插入、删除和查找操作。
(四)图的实现与遍历1、图的表示使用邻接矩阵或邻接表来表示图的数据结构。
2、图的遍历实现深度优先遍历和广度优先遍历算法。
四、实验结果与分析(一)线性表1、顺序表插入操作在表尾进行时效率较高,在表头或中间位置插入时需要移动大量元素,时间复杂度较高。
删除操作同理,在表尾删除效率高,在表头或中间删除需要移动元素。
2、链表插入和删除操作只需修改指针,时间复杂度较低,但查找操作需要遍历链表,效率相对较低。
(二)栈和队列1、栈栈的特点是先进后出,适用于函数调用、表达式求值等场景。
入栈和出栈操作的时间复杂度均为 O(1)。
2、队列队列的特点是先进先出,常用于排队、任务调度等场景。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙江大学城市学院实验报告课程名称数据结构实验项目名称实验十三/十四图的基本操作学生姓名专业班级学号实验成绩指导老师(签名)日期2014/06/09一.实验目的和要求1、掌握图的主要存储结构。
2、学会对几种常见的图的存储结构进行基本操作。
二.实验内容1、图的邻接矩阵定义及实现:建立头文件test13_AdjM.h,在该文件中定义图的邻接矩阵存储结构,并编写图的初始化、建立图、输出图、输出图的每个顶点的度等基本操作实现函数。
同时建立一个验证操作实现的主函数文件test13.cpp(以下图为例),编译并调试程序,直到正确运行。
2、图的邻接表的定义及实现:建立头文件test13_AdjL.h,在该文件中定义图的邻接表存储结构,并编写图的初始化、建立图、输出图、输出图的每个顶点的度等基本操作实现函数。
同时在主函数文件test13.cpp中调用这些函数进行验证(以下图为例)。
3、填写实验报告,实验报告文件取名为report13.doc。
4、上传实验报告文件report13.doc到BB。
注: 下载p256_GraphMatrix.cpp(邻接矩阵)和p258_GraphAdjoin.cpp(邻接表)源程序,读懂程序完成空缺部分代码。
三. 函数的功能说明及算法思路(包括每个函数的功能说明,及一些重要函数的算法实现思路)四. 实验结果与分析(包括运行结果截图、结果分析等)五.心得体会程序比较难写,但是可以通过之前的一些程序来找到一些规律(记录实验感受、上机过程中遇到的困难及解决办法、遗留的问题、意见和建议等。
)【附录----源程序】256://p-255 图的存储结构以数组邻接矩阵表示, 构造图的算法。
#include <iostream.h>#include <stdio.h>#include <stdlib.h>#include <string.h>typedef char VertexType; //顶点的名称为字符const int MaxVertexNum=10; //图的最大顶点数const int MaxEdgeNum=100; //边数的最大值typedef int WeightType; //权值的类型const WeightType MaxValue=32767; //权值的无穷大表示typedef VertexType Vexlist[MaxVertexNum]; //顶点信息,定点名称typedef WeightType AdjMatrix[MaxVertexNum][MaxVertexNum]; //邻接矩阵typedef enum{DG,DN,AG,AN} GraphKind; //有向图,有向网,无向图,无向网typedef struct{Vexlist vexs; // 顶点数据元素AdjMatrix arcs; // 二维数组作邻接矩阵int vexnum, arcnum; // 图的当前顶点数和弧数GraphKind kind; // 图的种类标志} MGraph;void CreateGraph(MGraph &G, GraphKind kd)// 采用数组邻接矩阵表示法,构造图G{//构造有向网Gint i,j,k,q;char v, w;G.kind=kd; //图的种类printf("输入要构造的图的顶点数和弧数:\n");scanf("%d,%d",&G.vexnum,&G.arcnum);getchar();//过滤回车printf("依次输入图的顶点名称ABCD...等等:\n");for (i=0; i<G.vexnum; i++) scanf("%c",&G.vexs[i]);//构造顶点数据getchar();//过滤回车for (i=0; i<G.vexnum; i++) //邻接矩阵初始化for (j=0; j<G.vexnum; j++)if(kd==DN||kd==AN)G.arcs[i][j]=MaxValue; //网,初始值为无穷大elseG.arcs[i][j]=0; //图,初始为0if(kd==DN||kd==AN)printf("按照:尾顶点名->头顶点名,权值输入数据:如A->B,23 \n");elseprintf("按照:尾顶点名->头顶点名输入数据:A->B\n");for (k=0; k<G.arcnum; k++){ //构造邻接矩阵if(kd==DN||kd==AN)scanf("%c->%c,%d",&v,&w,&q); //输入弧的两个定点及该弧的权重elsescanf("%c->%c",&v,&w);getchar();for(i=0;i<G.vexnum; i++)if(G.vexs[i]==v) break;//查找出v在vexs[]中的位置iif(i==G.vexnum) {cerr<<"vertex ERROR!";exit(1);}for(j=0;j<G.vexnum; j++)if(G.vexs[j]==w) break;//查找出v在vexs[]中的位置jif(j==G.vexnum) {cerr<<"vertex ERROR!";exit(1);}if(kd==AN)//无向网{G.arcs[i][j]=q; //邻接矩阵对应位置置权值G.arcs[j][i]=q; //无向图为对称矩阵}else if(kd==DN)//有向网G.arcs[i][j]=q;else if(kd==AG)//无向图{G.arcs[i][j]=1; //对称矩阵G.arcs[j][i]=1;}else //有向图G.arcs[i][j]=1;// getchar();}}//CreateGraph/* 注意输入格式,按以下方式输入构造有向网输入要构造的网的顶点数和弧数:4,5依次输入网的顶点名称ABCD...等等:abcd按照:尾顶点名->头顶点名,权值输入数据:如A->B,23a->b,5a->c,8c->b,7a->d,4d->c,3输出邻接矩阵∞| 5 | 8 | 4 |∞| ∞| ∞| ∞|∞| 7 | ∞| ∞|∞| ∞| 3 | ∞|Press any key to continue*/void PrintMGraph(MGraph &G){int i,j;switch(G.kind){case DG:for (i=0; i<G.vexnum; i++){for (j=0; j<G.vexnum; j++)printf(" %2.d | ",G.arcs[i][j]);printf("\n");}break;case DN:for (i=0; i<G.vexnum; i++){for (j=0; j<G.vexnum; j++){if(G.arcs[i][j]!=MaxValue) printf(" %2.d | ",G.arcs[i][j]);else printf(" ∞| ");}printf("\n");}break;case AG:for (i=0; i<G.vexnum; i++){for (j=0; j<G.vexnum; j++){printf(" %2.d | ",G.arcs[i][j]);}printf("\n");}break;case AN: //********完成构造无向网****************/* 请模仿编写无向网*/for (i=0; i<G.vexnum; i++){for (j=0; j<G.vexnum; j++){if(G.arcs[i][j]!=MaxValue) printf(" %2.d | ",G.arcs[i][j]);else printf(" ∞| ");}printf("\n");}break;}}//*****************完成函数********************************** void countdig(MGraph G) //请完成计算图的入度或初度{if(G.kind==DG||G.kind==DN){//计算有向图或网的各个顶点的入度与出度int outD,inD;int i,j;for(i=0;i<G.vexnum;i++){outD=inD=0;for(j=0;j<G.vexnum;j++){if(G.arcs[i][j]!=0&&G.arcs[i][j]!=MaxValue)outD++;}for(j=0;j<G.vexnum;j++){if(G.arcs[j][i]!=0&&G.arcs[j][i]!=MaxValue)inD++;}printf("%c:出度是%d,入度是%d\n",G.vexs[i],outD,inD);}}else{// 计算无向图或网的度int i,j;int Du;for(i=0;i<G.vexnum;i++){Du=0;for(j=0;j<G.vexnum;j++){if(G.arcs[i][j]!=0&&G.arcs[i][j]!=MaxValue)Du++;}printf("%c的度是%d\n",G.vexs,Du);}}}//************参照p265设计深度有限搜索***********void DFSMatrix(MGraph G,int i,int n,bool*visited){cout<<G.vexs[i]<<' ';visited[i]=true;for(int j=0;j<n;j++)if(G.arcs[i][j]!=0&&G.arcs[i][j]!=MaxValue&& !visited[j])DFSMatrix(G,j,n,visited);}//************参照p268设计广度有限搜索***********void BFSMatrix(MGraph G,int i, int n , bool*visited){const int MaxSize=30;int q[MaxSize]={0};int front=0,rear=0;cout<<G.vexs[i]<<' ';visited[i]=true;q[++rear]=i;while(front!=rear){front=(front+1)%MaxSize;int k=q[front];for(int j=0;j<n;j++){if(G.arcs[i][j]!=0&&G.arcs[i][j]!=MaxValue&& !visited[j]){cout<<G.vexs[j]<<' ';visited[j]=true;rear=(rear+1)%MaxSize;q[rear=j];}}}}void main(){MGraph G;int k;printf("请选择图的种类:0:有向图,1:有向网,2:无向图,3:无向网. 请选择:");scanf("%d",&k);switch(k) { //DG,DN,AG,ANcase 0:printf("构造有向图\n");CreateGraph(G,DG); // 采用数组邻接矩阵表示法,构造有向图break;case 1:printf("构造有向网\n");CreateGraph(G,DN); // 采用数组邻接矩阵表示法,构造有向网AGGbreak;case 2:printf("构造无向图\n");CreateGraph(G,AG); // 采用数组邻接矩阵表示法,构造无向图AGGbreak;case 3:printf("构造无向网\n");CreateGraph(G,AN); // 采用数组邻接矩阵表示法,构造无向网AGGbreak;}PrintMGraph(G); //打印图的邻接矩阵bool*visited=new bool[G.vexnum];int i;cout<<"按图的邻接矩阵得到的深度优先遍历序列"<<endl;for(i=0;i<G.vexnum;i++) visited[i]=false;DFSMatrix(G,0,G.vexnum,visited);cout<<"按图的邻接矩阵得到的广度优先遍历序列"<<endl;for(i=0;i<G.vexnum;i++) visited[i]=false;BFSMatrix(G,0,G.vexnum,visited);cout<<"度:"<<endl;countdig(G);}258://p-258 图的存储结构以邻接表表示, 构造图的算法。