6 连续时间信号的采样

合集下载

连续时间信号采样

连续时间信号采样

1.2 连续时间信号的采样 4. 一个声音信号
x(t) 2Acos(10t) 2Bcos(30t) 2C cos(50t) 2Dcos(60t)
试问:(1)这个信号由哪些频率构成? (2)信号的哪些部分是可以听到的?为什么? (3)如果不加前置滤波器,听到的是什么? (4)如果前置滤波器的截止频率为20kHz,听到的是什么?
X (e j )
L
0 hT 2
2 fh fs 频谱产生混叠
1.2 连续时间信号的采样 二.信号的实际采样
1.实际采样定义
采样脉冲是一定宽度周期脉冲的采样。 2.频谱之间的关系
X
(e
j
)
1 T
k
sin( 2
)
e
j
2
X
(
j
2
k
)
T
2
3.频谱的变化规律
(1)也以2为周期进行延拓,幅度遵循 sin x 变化;
(2)满足fs
2
f
时,频谱不产生混叠。
h
x
1.2 连续时间信号的采样
三.举例
1.设实连续信号中含有频率分别为70Hz和152Hz的正弦
信号,现用 fs 200Hz的抽样率对该信号进行抽样,
并利用DFT近似计算信号的频谱。利用DFT近似计算
出的频谱中,其谱峰将出现在
70,48
Hz.
2004年北京交通大学
前置 x(t) 滤波器 y(t)
H(f )
fs=40kHz y(n) 采样器
D/A
y(t)
1.2 连续时间信号的采样
解:(1)5,15,25,30kHz
(2)5,15kHz可以听到
x1(t) 2Acos(10t) 2Bcos(30t)

连续时间信号的采样培训

连续时间信号的采样培训

连续时间信号的采样培训一、采样的定义和原理采样是指将连续时间信号在时间上进行离散化,即在一定时间间隔内对信号进行采集。

采样的目的是将连续时间信号转化为离散时间信号,使得信号能够通过计算机等数字设备进行处理和传输。

采样的原理是利用采样定理,即尼奎斯特采样定理,它规定了一个信号必须以至少两倍于信号最高频率的样本率进行采样,才能完全恢复原始信号。

具体而言,如果信号的最高频率为fmax,则采样频率fs必须满足fs≥2fmax。

二、常用的采样方法1. 理想采样理想采样是最简单且最理想的一种采样方法,它假设采样过程中不引入任何失真。

理想采样的原理是在采样时将连续时间信号直接抽取出特定时间点的信号值,并保持不变。

然而,在实际应用中,由于采样器的限制,无法完全遵循理想采样,会引入采样误差。

2. 均匀采样均匀采样是常见的一种采样方法,它使用固定的时间间隔对信号进行采样。

均匀采样能够简化处理过程,适用于需要周期性采样的信号。

然而,如果采样频率不符合尼奎斯特采样定理,会出现采样失真和混叠等问题。

3. 非均匀采样非均匀采样是根据信号的特点选择合适的采样点进行采样,不固定时间间隔进行采样。

非均匀采样能够有效提高采样效率和质量,适用于信号变化很快的情况。

但是,非均匀采样需要更复杂的处理过程,并且对系统时钟要求较高。

三、采样频率的选择采样频率的选择是采样过程中非常重要的一步,它直接影响到信号的重建质量。

通常来说,采样频率应大于信号的最高频率,以避免混叠现象发生。

而为了获得更好的重建结果,采样频率的选择应大于2倍信号最高频率,即要满足尼奎斯特采样定理。

当采样频率与信号频率非常接近时,会出现赫讲限制现象,即信号的高频部分出现大量高频噪声。

因此,采样频率的选择应远大于信号频率,以确保采样的准确性和信号的完整性。

四、采样的相关技术在采样过程中,除了以上讨论的采样方法和采样频率的选择外,还需要考虑一些相关技术,以保证采样的准确性和有效性。

第数字信号处理讲义--3章_连续时间信号的采样

第数字信号处理讲义--3章_连续时间信号的采样
四舍五入量化方式如图3-9所示。当采样/保持电路输出的电压uS介于两个量化电平之间时,采用四舍五入的方式将其归并为最相近那个量化电平。例如,若uS = 5.49 V,就将其归并为5 V的量化电平,输 出的编码为101;若uS = 5.50 V,就将其归并为6 V的量化电平,输出的编码为110。可见,采用四舍五入量化方式,最大量化误差εmax只有量化单位的一半(Δ/2),比只舍不入量化方式的最大量化误差小。所以,目前大多数的A/D转换器都采用这种量化方式。
图3-6采样内插恢复
3.4连续时间信号的离散时间处理
随着信号传输和处理手段的数字化发展,越来越有必要将连续信号转化为离散信号处理。
一、C/D转换
C/D转换
时域分析频域分析
二、D/C转换
D/C转换
D/C变换整个是C/D变换的逆过程
三、连续时间信号的离散化处理
即:
例1:数字微分器
带限微分
例2:半抽样间隔延时
设带限于,要求
3.6利用离散时间信号处理改变采样频率
3.6.1脉冲串采样
3.5离散时间信号的连续时间处理
离散时间信号的连续时间处理
从时域角度看:
从频域角度看:
3.6.2离散信号抽取与内插
抽取——从序列中提取每第N个点上样本的过程。

2.内插
抽取又称为减抽样,内插又称为增抽样。
减抽样使信号的频带扩展,但提高了数据的传输率。
在采样前加一低通滤波器,以滤除高于2倍采样频率成分,以避免高频成分的干扰。
3.7.2 A/D转换中的量化误差
数字信号不仅在时间上是离散的,而且在取值上也不连续,即数字信号的取值必须为某个规定的最小数量单位的整数倍。
因此,为了将模拟信号转换成数字信号,还必须将采样/保持电路输出的采样值按照某种近似方式归并到相应的离散电平上,也就是将模拟信号在取值上离散化,我们把这个过程称为量化。将量化后的结果(离散电平)用数字代码来表示,称为编码。于单极性模拟信号,一般采用自然二进制编码;对于双极性模拟信号,则通常采用二进制补码。经过编码后得到的代码就是A/D转换器输出的数字量。

数字信号处理复习题带答案

数字信号处理复习题带答案

1.若一模拟信号为带限信号,且对其抽样满足奈奎斯特条件,则只要将抽样信号通过_____A____即可完全不失真恢复原信号。

A、理想低通滤波器B、理想高通滤波器C、理想带通滤波器D、理想带阻滤波器2.下列哪一个单位抽样响应所表示的系统不是因果系统___D__A、.h(n)=δ(n)+δ(n-10)B、h(n)=u(n)C、h(n)=u(n)-u(n-1)D、 h(n)=u(n)-u(n+1)3.若序列的长度为M,要能够由频域抽样信号X(k)恢复原序列,而不发生时域混叠现象,则频域抽样点数N需满足的条件是_____A_____。

≥M ≤M≤2M ≥2M4.以下对双线性变换的描述中不正确的是__D_________。

A.双线性变换是一种非线性变换B.双线性变换可以用来进行数字频率与模拟频率间的变换C.双线性变换把s平面的左半平面单值映射到z平面的单位圆内D.以上说法都不对5、信号3(n)Acos(n)78xππ=-是否为周期信号,若是周期信号,周期为多少?A、周期N=37πB、无法判断C、非周期信号D、周期N=146、用窗函数设计FIR滤波器时,下列说法正确的是___a____。

A、加大窗函数的长度不能改变主瓣与旁瓣的相对比例。

B、加大窗函数的长度可以增加主瓣与旁瓣的比例。

C、加大窗函数的长度可以减少主瓣与旁瓣的比例。

D、以上说法都不对。

7.令||()nx n a=,01,a n<<-∞≤≤∞,()[()]X Z Z x n=,则()X Z的收敛域为__________。

A 、1||a z a -<<B 、1||a z a -<<C 、||a z <D 、1||z a -< 。

点FFT 所需乘法(复数乘法)次数为____D___。

A 、2N log NB 、NC 、2ND 、2log 2NN 9、δ(n)的z 变换是AA. 1B.δ(w)C. 2πδ(w)D. 2π 10、下列系统(其中y(n)是输出序列,x(n)是输入序列)中__ C___属于线性系统。

连续时间信号采样实验报告

连续时间信号采样实验报告

实验一 连续时间信号的采样一、实验目的进一步加深对采样定理和连续信号傅立叶变换的理解。

二、实验原理采样定理如果采样频率sF 大于有限带宽信号)(t x a 带宽0F 的两倍,即2F F s >则该信号可以由它的采样值)()(s a nT x n x =重构。

否则就会在)(n x 中产生混叠。

该有限带宽模拟信号的02F 被称为乃魁斯特频率。

熟悉如何用MATLAB 语言实现模拟信号表示严格地说,除了用符号处理工具箱(Symbolics)外,不可能用MATLAB 来分析模拟信号。

然而如果用时间增量足够小的很密的网格对)(t x a 采样,就可得到一根平滑的曲线和足够长的最大时间来显示所有的模态。

这样就可以进行近似分析。

令t∆是栅网的间隔且sT t <<∆,则)()(t m x m x a G ∆=∆可以用一个数组来仿真一个模拟信号。

不要混淆采样周期s T 和栅网间隔t ∆,因为后者是MATLAB 中严格地用来表示模拟信号的。

类似地,付利叶变换关系也可根据(2)近似为:∑∑Ω-∆Ω-∆=∆≈Ωmj G mtm j G a em x t t em x j X )()()(现在,如果)(t x a (也就是)(m x G )是有限长度的。

则公式(3)与离散付利叶变换关系相似,因而可以用同样的方式以MATLAB 来实现,以便分析采样现象。

三、实验内容 A 、100021()ta X t e-=的采样:1、 以10000s F =样本/秒采样1()a X t 得到1()X n 。

Dt=0.00005; t=-0.005:Dt:0.005; xa=exp(-1000*abs(2*t));Ts=0.0001;n=-50:1:50;x=exp(-1000*abs(n*2*Ts)); K=500; k=0:1:K; w=pi*k/K; X=x*exp(-j*n'*w); X=real(X);w=[-fliplr(w),w(2:K+1)]; X=[fliplr(X),X(2:K+1)]; subplot(1,1,1)subplot(2,1,1);plot(t*1000,xa); xlabel('t 毫秒'); ylabel('x1(n)');title('离散信号');hold onstem(n*Ts*1000,x);gtext('Ts=0.1毫秒');hold off subplot(2,1,2); plot(w/pi,X);xlabel('以pi 为单位的频率'); ylabel('X1(w)');title('连续时间傅立叶变换');上面的图中,把离散信号)(1n x 和1()a X t 叠合在一起以强调采样。

信号与系统PPT 第五章 连续时间信号的抽样与量化

信号与系统PPT   第五章 连续时间信号的抽样与量化

pt
他抽样方式,如零阶抽样
1
保持。
O Ts
t
M1
fs0 t
f t
M2
fs0 t
1
O Ts
t
p1 t
1.零阶抽样信号的频谱
设零阶抽样信号fs0t Fs0
fs t f t t nTs
n
Fs
1 Ts
n
F
ns
此线性系统必须 具有如下的单位 冲激响应
fs (t) 保 持得到fso (t).
f (t)
F
1
0 f (t)
t
s 2m
m m
1 Fs
Ts
0
TS f (t)
t
s m
m
s
s 2m
1 Fs
Ts
0
t
s m m s
TS
采样频率不同时的频谱
5.2.2 时域抽样定理 (1)时域抽样定理
一个频带受限的信号f (t),若频谱只占据 m ~ m
的范围,则信号f t可用等间隔的抽样值来惟一地表示。
即: fs (t) f (t) p(t)
设连续信号 抽样脉冲信号 抽样后信号
f t F (m m)
pt P , fst Fs
复习
周期信号的傅里叶变换
令周期信号f(t)的周期为T1,角频率为1=2f1
f t F 2π Fn1 n1
n
其中:
F n1
1 T1
T1
2 T1
F (
s
)
S a0F ( )
S a
s
2
F (
s
)
设: 1,
Ts 2
s

连续时间信号的抽样

连续时间信号的抽样
由于这一正弦信号频谱为在 处0 的函数,因而对它
的抽样,就会遇到一些特殊问题。
cos
0t
1 2
e e j0t
j0t
( 0 ) ( 0 )
sin
0t
1 2j
e e j0t
j0t
j ( 0 ) ( 0 )
( )
( )
0
0
余弦
( j )
0
正弦
0
( j )
奈奎斯特定理应用于正弦信号
采样周期T
理想重构系统
xa (t)
3 实际抽样
• 用宽度为 的矩形周期脉冲 p(t代) 替冲激串
p(t)
C e jkst k
k
Ck
1 T
0
e jkst dt
T
sin( ks
2
ks
)
j ks
e 2
2
p(t)
A 1
T
T
t
xT (t) X (n1) xT (t t0 ) X (n1)e jn1t0
抽样定理应用于正弦信号时要求: 抽样频率大于信号最高频率的两倍,而不
是大于或等于两倍。
例子
• 对于两不同频率的正弦信号x1(t),x2(t),如果用同 一抽样频率对其抽样,抽样出的序列可能是一 样的,则我们无法判断它是来源于x1(t)还是x2(t)。
• 例:
x1 (t) cos(2 40t), f1 40Hz x2 (t) cos(2 140t), f2 140Hz
A 1
T
T
t
实际抽样
xa (t)
p(t)
xs (t)
冲激串到序列的转 换
x(n) xa (nT )

连续时间信号的采样与重构及其实现

连续时间信号的采样与重构及其实现

连续时间信号的采样与重构及其实现
信号处理是现代通信系统中至关重要的一环,其中采样与重构是
一种基本的信号处理技术。

在连续时间信号处理中,采样的作用是将
信号从连续时间域转换为离散时间域。

而重构的作用则是将离散时间
域信号重新转换为连续时间信号,以便于信号的处理和传输。

在采样的过程中,需要将连续时间信号按照一定的时间间隔进行
取样,得到一个离散时间序列。

采样过程中最关键的参数是采样频率,也就是每秒采用的样本数,通常用赫兹(Hz)表示。

采样频率越高,
离散时间序列的准确性就越高,但同时也会增加采样处理的复杂度。

重构的过程则是将离散时间信号恢复成连续时间信号。

由于采样
本身会将连续时间信号进行离散化处理,因此需要进行一定的插值和
滤波处理才能够准确地重构信号。

常见的重构算法包括插值算法、直
接复制算法和最小均方误差算法等。

在实现上,采样和重构的算法都需要借助于一定的数学模型和计
算机技术。

在现代通信系统中,基于数字信号处理技术的采样和重构
算法广泛应用于音频信号、视频信号、图像信号等多种信号处理领域。

数学模型包括傅里叶变换、拉普拉斯变换、小波变换等等。

总之,采样和重构是现代通信系统中非常重要的信号处理技术,
对于准确传输和处理信号具有至关重要的作用。

采用数字信号处理技
术可以实现高效的采样和重构,为现代通信系统的发展提供重要的支撑。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

NCEPUBD
2.3
理想抽样信号的频谱
2 X a ( j jk ) T k

X a ( j)
^
1 ˆ X a ( j ) T
X a ( j)
F (0)
原频谱周期重复
F (0) / T
2 s 周期为 T
周期延拓
-W s
W s
NCEPUBD
2.4
理想抽样的恢复
0
t
NCEPUBD
抽样方式:实际抽样与理想抽样
理想抽样:
f (t )
D Ts
0
t 两信号相乘
0
t
fT s (t )
t
NCEPUBD
1.3
研究内容
• 信号被采样后的变化
• 如何恢复原来的信号
NCEPUBD
2
理想抽样
• 理想抽样的定义 • 理想抽样信号的频谱 • 理想抽样的恢复 • 奈奎斯特抽样定理
3
实际抽样
取样定理仍有效
ˆa j 的幅度有所改变 x
NCEPUBD
W h
W s
W h
VW= (W s - 2W h)
要不混叠,必须
VW= (W s - 2W h) ? 0
W s 砏2
h
NCEPUBD
2.5
抽 样 定 理
奈奎斯特抽样定理
要保证从信号抽样后的离散时间信号无失真 地恢复原始时间连续信号,必须满足: (1)信号是频带受限的; (2)采样率至少是信号最高频率的两倍。
NCEPUBD
2.1


T (t )
m
t mT

NCEPUBD
2.2
预备知识
• 冲激信号及其采样特性 (t ) 0, t 0

, ,

(t )dt 1

f (t ) (t )dt f (0)



f (t ) (t t0 )dt f (t0 )
xa (t )连续时间信号
ˆa (t )抽样信号 x
抽样周期
相邻采样点间的时间间隔。
抽样频率
1 fs T
NCEPUBD
抽样方式:实际抽样与理想抽样
实际(自然)抽样:
1
G t (t )
1
P0 (t )
- 0.5t 0.5t
- 0.5t 0.5t
Ts
2T s
与原信号相乘
fs (t )
起伏顺其自然,故名
连续时间信号 的抽样
NCEPUBD
连续时间信号的抽样
• 引言 • 理想采样 • 实际采样
NCEPUBD
1
• 为什么要抽样?


• 什么是抽样?
• 抽样的研究内容
NCEPUBD
1.1
为什么要抽样
实际信号是时间连续的,但数字处
理设备却有局限……
连续时间信号必须在送给计算机前处理成数字形式
NCEPUBD
Sa
1

T
(t mT )
S a (t T ) T
S a (t 3T ) T
(m-1)T
(m+1)T
(m-2)T
mT
(m+2)T
T
2T
3T
NCEPUBD
2
几 个 概 念
抽样周期 抽样频率 抽样角频率 奈奎斯特率 奈奎斯特间隔 奈奎斯特区间 奈奎斯特频率
理想抽样
Ts
小结
进行理想抽样的冲激串的周期
f s 1 / Ts
s 2 / Ts
无失真恢复原信号条件允许的最小抽样率
f s(min) 2 f c
1 2 fc
允许的最大抽样周期 Ts
(max)

f s / 2, f s / 2
fs / 2
奈奎斯特频率是信号频率的上限
NCEPUBD
X a ( j) F xa (t ),
T ( j) F [T (t )],
ˆ j F x X a ˆa t
2.2
预备知识
• 冲激函数序列的傅氏变换 2 T ( j) ( k s ) s ( k s ) T k k


理论上

m
x mT S T t mT
a a


工程上 将抽样信号通过截止频率为 、 c
放大倍数为T的低通滤波器。
NCEPUBD
2.6从抽样信号恢复原始信号的方法
内插函数 S a
T
(t mT )
的特性:
在抽样点mT上,其值为1;其余抽样 点上,其值为0。 xa (t )
• 频域卷积定理 ˆa t xa (t ) T (t ), x
ˆ ( j) F x (t ) (t ) X a a T 1 X a ( j ) T ( j ) 2 1 X a j T ( j )d 2 NCEPUBD
1.2
• 抽样
什么是抽样?
利用周期性采样脉冲p(t)从连续信号xa(t) 中“抽取”一系列的离散样值。
NCEPUBD
抽样器与抽样
电子开关 xa (t )
ˆa (t ) x
1 fs T

p(t)
脉冲调幅
ˆa (t ) xa (t ) p(t ) x
xa (t )
T
ˆa (t ) x
时间信号
-W h s - W
时间信号的恢复
W h
W s
注意倍数关系
-
W s
W s 2
NCEPUBD
2.5
混叠现象
奈奎斯特抽样定理
S 2h
X a ( j)
0
s
2 s

NCEPUBD
2.6从抽样信号恢复原始信号的方法
sin[ (t mT )] T xa (t ) xa (mT ) m (t mT ) T
如何将抽样信号还原--恢复原始信号?
f (t )
傅里叶变换对
F( jቤተ መጻሕፍቲ ባይዱ )
F (0)
0
Fs ( j W )
F (0) / T
t
-W s
W s
NCEPUBD
2.5
奈奎斯特抽样定理
- wh : wh
如何保证恢复还原不会失真?
设信号的频带宽度为
则抽样后的离散时间信号的频谱为:
F (0) / T
-W h s - W
相关文档
最新文档