高数课本_同济六版
高数同济六版课件D127傅里叶级数

,
处收敛于
2.
则它的傅里叶级数在
在
处收敛于 .
提示:
设周期函数在一个周期内的表达式为
3. 设
高数同济六版
又设
求当
的表达式 .
解: 由题设可知应对
作奇延拓:
由周期性:Leabharlann 为周期的正弦级数展开式的和函数,
在
f (x)的定义域
*
4. 写出函数
高数同济六版
定理3
答案:
傅氏级数的和函数 .
*
01
P313 1(1) , (3) ; 2 (1) , (2) ; ; 6 ; 7 (2)
02
作业
备用题 1.
高数同济六版
叶级数展式为
则其中系数
提示:
利用“偶倍奇零”
(1993 考研)
的傅里
*
2. 设
高数同济六版
2. 定义在[0,]上的函数展成正弦级数与余弦级数
周期延拓 F (x)
f (x) 在 [0, ] 上展成
周期延拓 F (x)
余弦级数
奇延拓
偶延拓
正弦级数
f (x) 在 [0, ]上展成
*
例6. 将函数
高数同济六版
分别展成正弦级 数与余弦级数 . 解: 先求正弦级数. 去掉端点, 将 f (x) 作奇周期延拓,
是以 2 为周期的函数 ,
其傅氏系数为
则
的傅氏系数
提示:
令
类似可得
*
傅里叶 (1768 – 1830)
法国数学家.
他的著作《热的解析
理论》(1822) 是数学史上一部经典性
书中系统的运用了三角级数和
高等数学第六版上下册全同济大学出版社

高等数学第六版上下册全同济大学 出版社
目录 上页 下页 返回 结束
例1. 海伦公式
(满射)
例2. 如图所示,
对应阴影部分的面积
则在数集
自身之间定义了一种映射 (满射)
例3. 如图所示, 则有 r
高等数学第六版上下册全同济大学 出版社
(满射)
目录 上页 下页 返回 结束
说明:
映射又称为算子. 在不同数学分支中有不同的惯用
使
பைடு நூலகம்
其中
称此映射 f 1为 f 的反函数 .
习惯上, y f (x), x D 的反函数记成
y f 1(x) , x f (D)
性质:
1) y=f (x) 单调递增 (减) , 其反函数
且也单调递增 (减) .
高等数学第六版上下册全同济大学 出版社
目录 上页 下页 返回 结束
2) 函数
与其反函数
第一章
函数与极限
分析基础
函数 — 研究对象 极限 — 研究方法
— 研究桥梁
第一节 映射与函数
一、集合 二、映射 三、函数
第一章
高等数学第六版上下册全同济大学 出版社
目录 上页 下页 返回 结束
一、 集合
1. 定义及表示法
简称集
定义 1. 具有某种特定性质的事物的总体称为集合.
组成集合的事物称为元素.
左 邻域 :
右 邻域 :
高等数学第六版上下册全同济大学 出版社
目录 上页 下页 返回 结束
2. 集合之间的关系及运算
定义2 . 设有集合 A, B , 若 x A 必有 x B , 则称 A
是 B 的子集 , 或称 B 包含 A , 记作 A B.
高等数学-同济大学第六版--高等数学课件第一章函数与极限

函数与极限
x
4
{x a x b} 称为半开区间, 记作 [a,b)
{x a x b} 称为半开区间, 记作 (a,b]
有限区间
[a,) {x a x} (,b) {x x b}
无限区间
oa
x
ob
x
区间长度的定义:
两端点间的距离(线段的长度)称为区间的长度.
2024/7/17
函数与极限
一、基本概念
1.集合: 具有某种特定性质的事物的总体.
组成这个集合的事物称为该集合的元素.
aM, aM, A {a1 , a2 ,, an }
有限集
M { x x所具有的特征} 无限集
若x A,则必x B,就说A是B的子集. 记作 A B.
2024/7/17
函数与极限
2
数集分类: N----自然数集 Z----整数集
2024/7/17
函数与极限
47
注意:1.不是任何两个函数都可以复合成一个复 合函数的;
例如 y arcsin u, u 2 x2; y arcsin(2 x2 )
(通常说周期函数的周期是指其最小正周期).
3l
l
2
2
l 2
3l 2
2024/7/17
函数与极限
25
四、反函数
y 反函数y ( x)
Q(b, a )
直接函数y f ( x)
o
P(a, b)
x
直接函数与反函数的图形关于直线 y x对称.
2024/7/17
函数与极限
26
五、小结
基本概念 集合, 区间, 邻域, 常量与变量, 绝对值. 函数的概念 函数的特性 有界性,单调性,奇偶性,周期性. 反函数
高等数学同济第六版教材pdf

高等数学同济第六版教材pdf 高等数学是大学理工科专业中必修的重要课程之一,对于培养学生的逻辑思维和分析问题的能力具有重要意义。
而同济大学的《高等数学》第六版教材在教学界具有很高的声誉和影响力。
对于学习这门课程的学生来说,拥有一本全面且详细的教材十分重要。
在这里,我将介绍并推荐同济第六版教材的PDF版本,帮助大家更好地学习高等数学。
第一部分:教材简介同济大学的《高等数学》第六版教材由同济大学出版社出版,作者为王立平等。
这本教材共分为上下两册,内容涵盖了高等数学的基础知识以及一些较为深入的内容。
教材的编写风格通俗易懂,逻辑清晰,注重理论与实践相结合。
并且,该教材还融入了一些生活中的实际问题,帮助学生将数学理论应用于实际情境中。
第二部分:教材内容概览《高等数学》第六版教材共包含十章内容,分别是函数与极限、微分学、微分中值定理与导数的应用、不定积分、定积分与柯西公式、定积分应用、微分方程、无穷级数、向量代数与空间解析几何、多元函数微分学与多元函数积分学。
每章内容都有详细的讲解和大量的习题,帮助学生巩固知识并提高解题能力。
第三部分:PDF版本介绍同济大学的《高等数学》第六版教材的PDF版本是在线阅读和下载的电子书籍。
相比于纸质版教材,PDF版本有以下几个优点:1. 方便携带:由于PDF版本可以保存在电子设备中,学生可以随时随地进行学习,解决了携带纸质教材的不便。
2. 搜索功能:PDF版本具有搜索功能,可以快速定位特定的知识点或者习题,提高学习效率。
3. 多媒体支持:PDF版本可以嵌入图片、音频和视频等多媒体元素,使学习过程更加生动有趣。
4. 环保节约:PDF版本无需印刷和运输,节约了纸张资源,符合现代社会的可持续发展理念。
第四部分:获取PDF版本方法要获取同济大学《高等数学》第六版教材的PDF版本,可以通过以下途径进行:1. 在线教育平台:许多在线教育平台提供免费或付费的电子教材下载服务,学生可以登录平台并搜索《高等数学》第六版教材进行获取。
《高等数学》电子课件(同济第六版)01第一章 第1节 函数

一、集合
二、函数概念 三、映射 四、函数的特性 五、反函数
六、基本初等函数 七、复合函数 初等函数
1
第一节 映射与函数
一.集合:
1、集合
M {x x具有特定性质}
有限集 如 M {0,1,2, ,9}
无限集 如 M2 {( x, y) x2 y2 1}
2、集合间的关系:
(1) 子 集 ;(2) 集 合 相 等 ;(3) 空 集 ;
2
故定义域为
D
[
0
,
1 2
)
12
3、几个特殊的函数举例
(1) 符号函数
1 当x 0
y
sgn
x
0
当x 0
1 当x 0
定义域 D (, ), 值域 W {1,0,1}
图形:
y
1
o
x
-1
x sgn x x 13
(2) 取整函数: y=[x] [x]表示不超过 x 的最大整数
如 [3] 0, [ 3] 1, [8] 8, [3.8] 4.
x, x 1
f
(x)
min{ x , x2}
x
2
,
1 x 1
三、映射(自学)x, x 1
19
四、函数的特性
1.函数的有界性:
若X D,M 0,x X,有 f (x) M 成立,
则称函数f ( x)在X上有界.否则称无界.
如 y cos x 在( , )上有界, 2 x2
y
1 x2
作业
习题11 P21
4(1)(3)(5)(7)(9),5(2)(3),6,7(1),10,11, 12(1)(3)(5),14(1)(3)(5),16,17,18
《高等数学》第六版上册同济大学出版社课件PPT

1 x
0
1
1
1 t4
1 t2
d
t
t 2 0 1t4
d
t
ห้องสมุดไป่ตู้
0
1
d
x x4
1 2
0 1
d
x x4
x2
0 1 x4
d
x
1
2
1 01
x2 x4
d
x
17
目录 上页 下页 返回 结束
1
2
0
1 x2
1
1 x2
二无界函数的反常积分第四节常义积分积分限有限被积函数有界推广一无穷限的反常积分反常积分广义积分反常积分第五章1一无穷限的反常积分引例
第四节 反常积分
第五章
积分限有限 常义积分 被积函数有界
推广
反常积分 (广义积分)
一、无穷限的反常积分
二、无界函数的反常积分
1
目录 上页 下页 返回 结束
一、无穷限的反常积分
F (b)
F(c )
F(c ) F(a)
可相消吗?
12
目录 上页 下页 返回 结束
例4. 计算反常积分
解: 显然瑕点为 a , 所以
原式
arcsin x a
a 0
arcsin1
π 2
例5. 讨论反常积分
的收敛性 .
解所下:以述1反1解dx常x2法积是分0否1dx1x正x2 确11:0发1dxx散21.11x2 ,0∴1 积 分 1x收敛01
x2
高等数学同济教材第六版

高等数学同济教材第六版高等数学是大学数学重要的一门课程,对于理工科学生来说是必修内容。
同济大学出版社出版的高等数学同济教材第六版是一本经典教材,被广大学生和教师广泛使用。
本文将对该教材进行全面分析和评价。
一、教材概述高等数学同济教材第六版于20xx年出版,是在前五版的基础上进行了更新和修订的版本。
该教材内容全面、系统,逻辑清晰,覆盖了大部分高等数学的主要内容,包括数列与极限、连续函数与导数、定积分与反常积分等。
该教材的编写团队由同济大学数学系的教授和专家组成,他们在教学和研究领域积累了丰富的经验。
因此,该教材不仅准确地反映了高等数学的理论与实践,而且融入了许多实例和习题,以帮助学生巩固所学知识。
二、教材特点1. 知识点详细全面:高等数学同济教材第六版在每个章节中详细介绍了各个知识点,并结合实例进行讲解。
每个知识点都给出了定义、必要条件和相关定理,能够满足学生对于理论知识的要求。
2. 题目丰富多样:该教材提供了大量的习题和例题,在不同难度层次上进行了分级,从基础到提高,充分满足了学生的不同需求。
习题形式多样,有选择题、填空题、计算题等,可以培养学生的各种解题能力。
3. 理论与实践结合:高等数学同济教材第六版注重将理论与实践相结合,通过例题和习题的设计,引导学生将所学的知识应用到实际问题中。
这有助于学生更好地理解和掌握知识,并提升解决实际问题的能力。
三、教材优势1. 难度适中:高等数学同济教材第六版的难度设置适中,能够满足大多数理工科学生的学习需求。
教材章节之间难度递进,有利于学生渐进地学习和掌握知识。
2. 理论严谨性:教材中的理论推导和证明过程准确严谨,能够帮助学生建立起扎实的数学基础和严密的逻辑思维能力。
3. 重点突出:高等数学同济教材第六版对于重点知识点进行了重点突出,以加深学生对于重要概念和定理的理解。
同时,在对应关键知识点下辅以大量的习题,以帮助学生加深对该知识点的掌握。
四、教材不足1. 缺乏应用示例:尽管教材在理论与实践结合方面有很大的优势,但有时缺乏具体的实际应用示例,这对于一些学生来说可能不够直观。
高等数学同济大学第六版1-01-函数课件

x cos y
y arccos x
反正弦函数 y arcsin x
证明 x 1,1 , arcsin x arccos x
y arcsin x
2
记 arcsin x [ , ], 2 2 arccos x [0, ],
x [1,1], y arcsin x [
0, x a H ( x) 1, x a
1
o a x
Heaviside 是一位英国的电子工程师,他 用 Heaviside 函数来描述事物由量变到质 变的一个过程与状态。
在自变量的不同变化范围中, 对应法则用不同的
式子来表示的函数,称为分段函数.
例如,
Байду номын сангаас
2 x 1, f ( x) 2 x 1,
, ] cos 2 2
1 sin 2 1 x 2 ,
sin 1 cos 2 1 x 2 , x 2 1 x 2 1,
反余弦函数 y arccos x
sin( ) sin cos cos sin
函 数
微积分研究的是客观世界的数量反映
——函数的性质、取值规律和函数值的 变化情况。
微积分研究的是客观世界的数量反映
——函数的性质、取值规律和函数值的 变化情况。 微积分的研究是以极限的思想为基 本思想,以极限的方法为基本方法—— 极限是基本工具。 但根本上,微积分这一学说的诞生 的基础是——笛卡儿的解析几何。
2 2
y x2 1
x0 x0
y 2x 1
函数的几何特性
1.函数的有界性:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章函数与极限(考研必考章节,其中求极限是本章最重要的内容,要掌握求极限的集中方法)第一节映射与函数(一般章节)一、集合(不用看)二、映射(不用看)三、函数(了解)注:P1--5 集合部分只需简单了解P5--7不用看P7--17 重点看一下函数的四大性态:单调、奇偶、周期、有界P17--20 不用看P21 习题1.11、2、3大题均不用做4大题只需做(3)(5)(7)(8)5--9 均做10大题只需做(4)(5)(6)11大题只需做(3)(4)(5)12大题只需做(2)(4)(6)13做14不用做15、16重点做17--20应用题均不用做第二节数列的极限(一般章节本章用极限定义证的题目考纲不作要求,可不看)一、数列极限的定义(了解)二、收敛极限的性质(了解)P26--28 例1、2、3均不用证p28--29 定理1、2、3的证明不用自己证但要会理解P30 定理4不用看P30--31 习题1-21大题只需做(4)(6)(8)2--6均不用做第三节(一般章节)(标题不再写了对应同济六版教材标题)一、(了解)二、(了解)P33--34 例1、2、3、4、5只需大概了解即可P35 例6 要会做例7 不用做P36--37 定理2、3证明不用看定理3’4”完全不用看p37习题1--31--4 均做5--12 均不用做第四节(重要)一、无穷小(重要)二、无穷大(了解)p40 例2不用做 p41 定理2不用证p42习题1--41做 2--5 不全做 6 做 7--8 不用做第五节(注意运算法则的前提条件是各自存在)p43 定理1、2的证明要理解p44推论1、2、3的证明不用看p48 定理6的证明不用看p49 习题1--51题只需做(3)(6)(7)(8)(10)(11)(13)(14)2、3要做4、5重点做6不做第六节极限存在准则(重要) 两个重要极限(重要两个重要极限要会证明p50 准则1的证明要理解p51 重要极限一定要会独立证明(经典重要极限)p53另一个重要极限的证明可以不用看p55--56柯西极限存在准则不用看p56习题1--71大题只做(1)(4)(6)2全做3不用做4全做,其中(2)(3)(5)重点做第七节(重要)p58--59 定理1、2的证明要理解p59 习题1--7 全做第八节(基本必考小题)p60--64 要重点看第八节基本必出考题p64 习题1--81、2、3、4、5要做其中4、5要重点做6--8不用做第九节(了解)p66--67 定理3、4的证明均不用看p69 习题1--91、2要做3大题只做(3)——(6)4大题只做(4)——(6)5、6均要重点做第十节(重要,不单独考大题,但考大题会用到)一、(重要)二、(重要)p72三、一致连续性(不用看)p74习题1--101、2、3、5要做,要会用5的结论。
4、6、7不用做p74 总习题一除了7、8、9(1)(3)(4)之外均要做其中要重点做的是3(1)(2)、5、11、14第二章 (小题必考章节)第一节(重要)一、引例(数三可只看切线问题举例)二、导数的定义(重难点,考的频率很高)三、导数的几何意义(重要)另:【数一数二要知道导数的物理意义,数三要知道导数的经济意义(边际与弹性)四、函数的可导性与连续性关系(要会证明,重要)p79 导数的定义要重点掌握,基本必出考题p81--82 例1--例6 认真做以便真正掌握导数的定义p85 可导性与连续性的关系要会证明)p86 习题2--1不用做的是1、2、9(1)--(6)、10、12、13、14其余都要做其中重点做的是6、7、8 、16、18、19第二章第二节(考小题)四、基本求导法则与求导公式(要非常熟)p88--89 (1)(2)(3)的证明均不用看p89 例1 不用做p90 定理2的证明要理解p91--92 例6--8重点做p92 定理3证明不用看p96 例7不用做p97 习题2--22题(1)(5)(7)(10)、3(1)、4、12均不用做其余全做其中13、14要重点做第二章第三节(重要,考的可能性大)p100 例3不用做p103 习题2--35、6、7、11均不用做,其余全做!其中4、12要重点做第二章第四节(考小题)p107--110 由参数方程所确定的函数的导数数三不用看p111三、相关变化率(不用看)p111 习题2--41大题(1)(4)、3(1)(2)、9--12均不用做数三5--8也不用做其中4重点做第二章第五节(考小题)p119四、微分在近似计算中的应用(不用看,基本上只要有近似两个字,考纲均不作要求)习题2--55--12均不用做其他的全做p125 总习题二4、10、15--18均不用做,其余全做!其中2、3、6、7、14要重点做!数三不用做12、13第三章(考大题难题经典章节,绝对重点章节)第一节(最重要,与中值定理应用有关的证明题)一、罗尔定理(要会证)二、拉格朗日中值定理(要会证)三、(柯西中值定理(要会证)另外,要会证明费马定理p128--133 费马定理罗尔定理拉格朗日中值定理柯西中值定理一定要会独立证明,极其重要p134 习题3--1除13、15不用做,其余全部【重点】做第三章第二节(重要,基本必然要考)p134--135 洛必达法则要会证明习题3--2习题全做其中1、(1)(5)(10)(12)(15)(16)、3、4要重点做第三章第三节(掌握其应用,可以不用证明公式其本身)p140--141 泰勒公式的证明不用看p145 习题3--38、9不用做,其余全做,其中,10 (1)(2)(3)要重点做第三章第四节(考小题)p152 习题3--43(1)(2)(5)、5(1)(2)、8(1)(2)、9(1)(3)(5)、10(2)不用做,其余全做,重点做3(3)(6)(8)、4、5(3)(5)、6、13、15第三章第五节(考小题为主)p160 例5不用做p161 例6不用做p162 例7不用做p162 习题3--51(2)(3)(6)(9)、8--16均不用做,其余全做第三章第六节(重要基础章节)p169 习题3--61 不用做2--5都要做第三章第七节(了解,只有数一数二考,数三不用看)一、弧微分(不用看)二、(了解)三、(了解)p175四、(不用看)p177 习题3--7数三均不用做数一数二只需做1--6第三章第八节(只要有近似,考研不考,不用看)p182 总习题三数一、数二全做数三可不用做(这个楼主有点疑问,楼主数一,所以数三考生有异议请私信)其中,2(2)、3、7、8、9、10(3)(4)、11(3)、12、17、18、20要重点做第三章第八节(只要有近似,考研不考,不用看)p182 总习题三数一、数二全做数三15不用做其中,2(2)、3、7、8、9、10(3)(4)、11(3)、12、17、18、20要重点做第四章(重要、相对于数一、数三,数二考大题的可能性更大)第一节(重要)一、(理解)二、(会背,且熟练准确)三、(理解)p186 例4不用做p188--189 基本积分表一定要记得熟练、准确p192 习题4--12(1)--(4)(6)(7)(9)(10)(11)(16)、3、4、6均不用做其余全做第四章第二节(重要,其中第二类换元法更加重要)p207 习题4--21、2(1)(2)(3)(8)(9)(10)(13)(25)均不用做,其余全做第四章第三节(考研必考)p212 习题4--3 全做(分部积分法极其重要)第四节(重要)p218 习题4--4 全做第五节(不用看)p221 总习题四全做第五章(重要,考研必考)第一节(理解)一、定积分问题举例(了解,其中变速直线运动的路程,数三不用看)二、定积分定义(理解)p228 三、定积分的近似计算(不用看)p231--234 四、定积分的性质(理解)性质1--7要理解,且能熟练应用,其中性质7最重要,要会独立证明p234 习题5--11、2、3、6、8、9、10均不用做,其余全部做,且重点做5、11、12第五章第二节(重要)一、变速直线运动中的位置……的联系(了解,数三不用看)二、积分上限的函数极其导数(极其重要,要会证明)三、牛顿--莱布尼茨公式(重要、要会证明)p237 定理1 ,要求会独立证明,极其重要p239 定理3 要求会独立证明p241 例5不用做例6 经典例题,极其重要,记住结论p243 习题5--26(1)(2)(4)--(7)(9)、7、8均不用做,其余全做,其中【数三】2不用做需要重点做的为9(2)、10--13第五章第三节(重要,分部积分法更重要)p247--249 例5、6、7经典例题,重点做,并记住其相应结论p252 例12 经典例题,记住结论p253 习题5--31(1)(2)(3)(6)(12)(14)(15)(16)(21)(22)、7(1)(3)(8)(9)不用做,其余全部做,且重点做1(4)(7)(17)(18)(25)(26)、2、6、7(7)(10)(12)(13)第五章第四节(考小题)p260 习题5--4全做,重点做1(4)、3 。
3题为经典公式,一定发要熟记第五节(不用看)【注】考纲不做要求,最好记住F(伽马,打不出来那个)函数的部分性质,可能给解题带来方便,可参考汤家凤视频)p268 总习题五1(3)、2(3)(4)(5)、15、16均不用做其余全部做其中,重点做的是3、5、7、8、9、10(1)(2)(3)(8)(9)(10)、13、14、17第六章(考小题)第一节(理解)第二节(面积最重要)一、平面图形的面积p276--277 极坐标情形只有数一数二看数三不用看二、体积(数三只看旋转体的体积)p280--281 平行截面面积为已知的立体体积只有数一数二看三、平面曲线的弧长(数三不用看,数一数二记住公式即可)习题6--2数一全做数二21--30 不用做数三5、6、7、8、15(4)、17、18、21--30 不用做第三节(数三不用看,数一数二了解)p291--292 习题6.3只有数一数二做数三不用做p292--293 总习题六数一全做数二6 不做数三只需做3、4、5第七章(本章对于数二相对最重要)第一节(了解)p294 例2数三不用看p298 习题7--1只需做1(3)(4)、2(2)(4)、3(2)、4(2)(3)、5 第七章第二节(理解)p301--304 例2、3、4只有数一数二看,数三不用看p304 习题7--2只做1、2第七章第三节(理解)二、可化为齐次的方程(不用看)p306 例2--p309 均不用看p309 习题7--31只做(1)(5)(6)2只做(2)3、4不用做第七章第四节(重要,熟记公式)p312 例2 不用看p314伯努利方程只有数一看p315 习题7--41只做(3)(5)(8)(10)、2只做(2)(3)、3做4--7均不用做、8只有数一做第七章第五节(只有数一数二考,理解)p317 例2 不用看p319 例4 不用做p321 例6不用做p316--p323 数三均不用看p323 习题7--5(数三不用做)数一数二只做1(3)(4)(5)(10)、2(1)(2)(6)3、4不用做第七章第六节(理解)一、(不用看)二、(重要)三、(不用看)p323--324 二阶线性微分方程举例不用看p325--328 定理1、2、3、4重点看p328--330 常数变易法不用看p331 习题7--6只做1(3)(4)(6)(7)(10)、3、4(1)(5)(6)第七章第七节、第八节(最重要,考大题备选章节)p335 例4不用做p336--338 例5不用做习题7--7只做1(1)(4)(7)(9)(10)、2(1)(2)(4)p346 例5不用看p347 习题7--8只做1(2)(4)(5)(6)(9)(10)、2(3)(4)、6其中6重点做第七章第九节(只有数一考,理解)p348--349 欧拉方程只有数一看p349 习题7--9数一只做(5)(8)第十节(不用看)p353 总习题七数一做1(1)(2)(4)、2(2)、3(1)(3)(5)(7)(8)、4(3)(4)、5、7、8、10数二做1(1)(2)(4)、2(2)、3(1)(3)(5)(7)(8)、4(3)(4)、5、7数三做1(1)(2)(4)、2(2)、3(1)(3)(5)(7)(8)、4(3)(4)、5、7第八章(只有数一考,考小题,了解)(本章只有数一考,单独命题以考小题为主,但数一特有的绝对重要考点,曲线曲面积分要以本章为基础,建议数一同学好好复习本章)本章需要数一多加注意的考点有:曲面方程与空间曲线方程。