判别式与韦达定理的应用
关于判别式法与韦达定理的论述

关于判别式法与韦达定理论述weiqingsong摘要:判别式法与韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,讨论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。
关键词:判别式法 韦达定理在中学解题中判别式法与韦达定理的应用极其普遍,因此系统的研究一下利用判别式法与韦达定理解题是有必要的。
别式法与韦达定理说明了一元二次方程中根和系数之间的关系。
它们都有着广泛的应用在整个中学阶段。
一、韦达定理的由来法国数学家韦达最早发现代数方程的根与系数之间有这种关系,因此,人们把这个关系称为韦达定理。
历史是有趣的,韦达的16世纪就得出这个定理,证明这个定理要依靠代数基本定理,而代数基本定理却是在1799年才由高斯作出第一个实质性的论性。
判别式法与韦达定理在方程论中有着广泛的应用。
二、对判别式法的介绍及概括一般的关于一元二次方程ax^2+bx+c=0(a 、b 、c 属于R ,a≠0)根的判别,△=b^2-4ac ,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
关于x 的一元二次方程x^2+mx+n=0有两个相等的实数根,求符合条件的一组的实数值。
这是应注意以下问题:如果说方程有实数根,即应当包括方程只有一个实根和有两个不等实根或有两个相等实根三种情况;如果方程不是一般形式,要化为一般形式,再确定a 、b 、c 的值;使用判别式的前提是方程为一元二次方程,即二次项系数a≠0;当二次项系数含字母时,解题时要加以考虑。
判别式的主要应用有:不解方程就可以直接判定方程的根的情况;已知方程根的情况,确定方程中未知系数(或参数)的取值范围;判别或证明一元二次方程的根的性质;判别二次三项式ax^2+bx+c(a≠0)能否在实数范围内分解因式(1) 当△≥0 时,二次三项式在实数范围内能分解因式;(2)当△≤0 时,二次三项式在实数范围内不能分解因式。
初高中衔接教材韦达定理

韦达定理1.一元二次方程:20(0)ax bx c a ++=≠判别式与韦达定理的应用①方程有两个实数根⇔ 240b ac ∆=-≥ ②方程有两根同号⇔ 1200c x x a ∆>⎧⎪⎨=>⎪⎩③方程有两根异号⇔ 1200c x x a ∆>⎧⎪⎨=<⎪⎩④韦达定理及应用:1212,b c x x x x a a +=-= 例1.若关于x 的一元二次方程x 2-x +a -4=0的一根大于零、另一根小于零,求实数a 的取值范围.1.若方程x 2-3x -1=0的两根分别是x 1和x 2,则1211x x += . 2.已知方程x 2-3x -1=0的两根为x 1和x 2,求(x 1-3)( x 2-3)的值为3.方程2x 2-x -4=0的两根为α,β,则α2+β2= .3.如果a ,b 是方程x 2+x -1=0的两个实数根,那么代数式a 3+a 2b +ab 2+b 3的值是 .4.若关于x 的一元二次方程x 2-x +a =0的一根大于1、另一根小于1,求实数a 的取值范围.例3、若x 1和x 2分别是一元二次方程2x 2+5x -3=0的两根.(1)求| x 1-x 2|的值;(2)求221211x x +的值; (3)x 13+x 23.针对训练:1.方程2x 2+2x -1=0的两根为x 1和x 2,则| x 1-x 2|= .2.一元二次方程0201422=-+x x (a ≠0)的两根为x 1和x 2.求:(1)2221x x +; (2)2111x x +; (3))5)(5(21--x x (3)| x 1-x 2|; (4)x 13+x 23.3.关于x 的方程x 2+4x +m =0的两根为x 1,x 2满足| x 1-x 2|=2,求实数m 的值.例4、已知x 1,x 2是关于x 的一元二次方程4kx 2-4kx +k +1=0的两个实数根.(1)是否存在实数k ,使(2x 1-x 2)( x 1-2 x 2)=-32成立?若存在,求出k 的值;若不存在,说明理由; (2)求使1221x x x x +-2的值为整数的实数k 的整数值; (3)若k =-2,12x x λ=,试求λ的值.。
2、判别式与韦达定理的应用

第二讲判别式及韦达定理的应用常见题型(1)一元二次方程根的情况:①当时,方程有两个不相等的实数根;②当时,方程有两个相等的实数根;③当时,方程无实数根.(2)确定字母的值或取值范围。
(3)与一元二次方程根有关的证明题。
(4) 判定二次三项式为完全平方式题型一、判断一元二次方程根的情况例1、已知方程x2-2x-m=0没有实数根,其中m是实数,试判断方程x2+2mx+m(m+1)=0有无实数根例2、已知关于x的方程x2+2mx+m2-1=0.(1)不解方程,判别方程根的情况;(2)若方程有一个根为3,求m的值.题型二、确定字母的值或取值范围例3、已知关于x的方程x2+(2m-1)x+4=0有两个相等的实数根,求m-1(2m-1)2+2m的值.题型三、与一元二次方程根有关的证明题例5、已知关于x的一元二次方程mx2-(m+2)x+2=0,(1)证明:不论m为何值,方程总有实数根;(2)m为何整数时,方程有两个不相等的正整数根.例6、已知关于的一元二次方程,求证:不论为任何实数,方程总有两个不相等的实数根.题型四、判定二次三项式为完全平方式例7、若x2-2(k+1)x+k2+5是完全平方式,求k的值。
例8、当m为何值时,代数式(5m-1)x2-(5m+2)x+3m-2是完全平方式。
变式练习A. B. C. D.2.一元二次方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根3.关于的方程有实数解,那么的取值范围是()A. B. C. D.且4.关于的方程有实数根,则的取值范围是()A. B.且 C. D.且5.若,则关于的一元二次方程根的情况是________.6.关于的一元二次方程有两个相等的实数根,则________.7.若关于的一元二次方程有实数根,则的取值范围是________.8.关于的方程有实数根,则的取值范围是________.9.若,则关于的一元二次方程的根的情况是________.10.关于的方程有实数根,的取值范围________.11.已知:关于的方程有两个不相等的实数根.求实数的取值范围.取一个的负整数值,且求出这个一元二次方程的根.12.已知关于的一元二次方程若方程有两个相等的实数根时,求的值.当方程没有实数根时,求出的最小正整数的值.常见题型(2)求与方程的根有关的代数式的值;(3) 利用根与系数的关系求字母的值或取值范围;(4)确定根的符号:( 是方程两根);题型一、已知一根求另一根及未知系数例9、已知:关于x 的方程226350x x m m -+--=的一个根是-1,求方程的另一个根及m 的值。
巧用韦达定理和判别式解题

利 用 韦达 定理 和 判 别 式 解 高 中数 学 中 常 见题 型
二 . 证 明不等 式
例1 .己知
寄
关键词
最 值 ; 等 式 ;参 数 ;判 别 式 ;韦达 定理 不
: ,求证 : , 24。 h 一 -
求函数的最值 、 不等式的证 明、求字 母的取值范 围等问题 是高 中数学 常 丌的题 型 , 九 这儿种类 型的问题 , 任往 从正面 人手 解决起来 比较 困难 ,而且难 度较 大 ,运算繁杂 ,学生理 解也较
专。 一l: +l:七 l : 6 }
则 : 一 b 为方程 : j 一 0 | 2 l 1 一 x = 的两正实跟
土={ 一{ 2 0 哥>0 6 惫 且 0 曼‘
删 xj 为方程f 一 _ =0 々 : ,- 自两实根
,
=
l 掰 20 一;
H =三 f 三
.
即√ ;一 : 一 ÷/ 、
例 3 谩 。 为 震上 . 。 , {c的三边, 一 c:9: 0,
了 =
的 为; 最I 、 、 值
末证 + 兰 压 , §
证 明 : 。 ‘ ‘ ‘ 。 0—6 ’ 一 :c 争 0 =w
( 此题可用点到直线的距离t 市解) 倒 2 如果实数 j 茜 l {一l = 。 ;是 一:: : 耶幺 自最 值为: 勺
-… l } ・
Ii 、‘ =‘ = 一 ‘ - ' 一: : 1 … - 0 } ‘十 x
1 2
,试证明置 。 …
贝 J I 显然有 ! … . : ,由 ㈦ 有 .2 三 I 一… a
. 。
≥
3 .
。 {
都不是负数,也不能大干 ; . 证明:由 i 导 j 一 洱 :x = :
三次函数的根的判别式和韦达定理

三次函数,即形如f(x) = ax^3 + bx^2 + cx + d的函数,其中a, b, c, d 为实数,且a不为0。
这种函数在数学中有着重要的应用价值。
对于三次函数,其根的判别式和韦达定理是两个重要的数学工具,用于研究函数的性质。
首先,我们来了解一下根的判别式。
对于一元二次方程,根的判别式是b^2 - 4ac,而对于三次函数,我们可以通过对其进行求导,然后观察导函数的零点来找到极值点。
三次函数的导函数为f'(x) = 3ax^2 + 2bx + c,对其求导后,再求出导函数的零点,即令f'(x) = 0,解出x的值,这些x的值就是三次函数的极值点。
接下来,我们来看看韦达定理。
韦达定理是用于求解一元二次方程的根的一种方法,但对于三次方程,我们可以通过观察其根的分布情况来找到三次函数的极值点。
如果三次方程有三个不同的实根,那么这三个实根就是三次函数的三个极值点。
如果三次方程有两个相同的实根,那么这两个相同的实根就是三次函数的拐点。
在实际应用中,我们可以利用韦达定理来判断三次函数的单调性。
如果三次函数在某个区间内单调递增,那么这个区间内一定存在一个或多个极小值点;反之,如果三次函数在某个区间内单调递减,那么这个区间内一定存在一个或多个极大值点。
此外,我们还可以利用韦达定理来判断三次函数的图像的形状。
如果三次函数的图像是一个连续的曲线,那么这个曲线一定是由多个单调递增或递减的区间段组成的;如果三次函数的图像是一个折线图,那么这个折线图一定是由多个单调递增或递减的区间段组成的。
综上所述,根的判别式和韦达定理是两个重要的数学工具,用于研究三次函数的性质。
利用这两个工具,我们可以更好地理解三次函数的图像和性质,从而更好地解决相关的数学问题。
一元二次方程的判别式、韦达定理应用举例

一元二次方程的判别式、韦达定理应用举例抛物线
1. 判别式:
判别式是用来判别一元二次方程的根(解)是实根、重根还是无解的
一个实用公式,它是欧拉定理的重要应用。
判别式的表达式为:D=b²-4ac。
其中a、b、c分别为一元二次方程中的系数:ax²+bx+c=0。
2. 韦达定理应用举例:
韦达定理是欧几里得几何中的重要定理,可以用来证明几何图形的线
段关系。
举例说明:
假设有ABC三角形,设三点的坐标分别为A(2,3),B(-1,-4),C(1,-1),根据韦达定理可得:
d(AB)² + d(BC)² =d(AC)²
即求出d(AB)² + d(BC)² 与d(AC)²的值,如果相等,证明该三角形
是等腰的。
3. 抛物线:
抛物线是第二次多项式函数的一类,表达式为:y=ax²+bx+c,其中a、b、c分别为常数,x为变量。
抛物线的性质:当a>0时,抛物线是一条开
口向上的“U”形线,当a<0时,抛物线是一条开口向下的“∩”形线。
根的判别式与韦达定理

一元二次方程根与系数的关系应用例析及训练对于一元二次方程)0(02≠=++a c bx ax ,当判别式042≥-=∆ac b 时,其求根公式为:aacb b x 24221-±-=、;当0≥∆时,设一元二次方程的两根为21x x 、,有:abx x -=+21,a c x x =⋅21;根与系数的这种关系又称为韦达定理;它的逆定理也是成立的,即当ab x x -=+21,ac x x =⋅21时,那么21x x 、则是方程)0(02≠=++a c bx ax 的两根。
一元二次方程的根与系数的关系,综合性强,应用极为广泛,在中学数学中占有极重要的地位,也是数学学习中的重点。
学习中,除了要求熟记一元二次方程)0(02≠=++a c bx ax 根的判别式ac b 42-=∆存在的三种情况外,还常常要求应用韦达定理解答一些变式题目,以及应用求根公式求出方程)0(02≠=++a c bx ax 的两个根21x x 、,进而分解因式,即))((212x x x x a c bx ax --=++。
下面就对韦达定理的应用可能出现的问题举例做些分析,希望能带来小小的帮助。
一、根据判别式,讨论一元二次方程的根。
例1:已知关于x 的方程(1)03)21(22=-+--a x a x 有两个不相等的实数根,且关于x 的方程(2)01222=-+-a x x 没有实数根,问a 取什么整数时,方程(1)有整数解?分析:在同时满足方程(1),(2)条件的a 的取值范围中筛选符合条件的a 的整数值。
解:说明:熟悉一元二次方程实数根存在条件是解答此题的基础,正确确定a 的取值范围,并依靠熟练的解不等式的基本技能和一定的逻辑推理,从而筛选出a ,这是解答本题的基本技巧。
二、判别一元二次方程两根的符号。
例2:不解方程,判别方程07322=-+x x 两根的符号。
判别根的符号,需要把“根的判别式”和“根与系数的关系”结合起来进行确定,倘若由题中021<⋅x x ,所以可判定方程的根为一正一负;倘若021>⋅x x ,仍需考虑21x x +的正负,倘若021>+x x ,则方程有两个正数根;倘若021<+x x ,则方程有两个负数根。
判别式与韦达定理(竞赛辅导)

判别式与韦达定理根的判别式和韦达定理是实系数一元二次方程的重要基础知识,利用它们可进一步研究根的性质,也可以将一些表面上看不是一元二次方程的问题转化为一元二次方程来讨论.1.判别式的应用例1已知实数a、b、c、R、P满足条件PR>1,Pc+2b+Ra=0.求证:一元二次方程ax2+2bx+c=0必有实根.证明: △=(2b)2-4ac.①若一元二次方程有实根,必须证△≥0.由已知条件有2b=-(Pc+Ra),代入①,得△=(Pc+Ra)2-4ac=(Pc)2+2PcRa+(Ra)2-4ac=(Pc-Ra)2+4ac(PR-1).∵(Pc-Ra)2≥0,又PR>1,a≠0,(1)当ac≥0时,有△≥0;(2)当ac<0时,有△=(2b)2-4ac>0.(1)、(2)证明了△≥0,故方程ax2+2bx+c=0必有实数根.例2k是实数,O是数轴的原点,A是数轴上的点,它的坐标是正数a.P是数轴上另一点,坐标是x,x<a,且OP2=k·PA·OA.(1)k为何值时,x有两个解x1,x2(设x1<x2);(2)若k>1,把x1,x2,0,a按从小到大的顺序排列,并用不等号“<”连接.解(1)由已知可得x2=k·(a-x)·a,即x2+kax-ka2=0,当判别式△>0时有两解,这时△=k2a2+4ka2=a2k(k+4)>0.∵a>0,∴k(k+4)>0,故k<-4或k>0.(2)x1<0<x2<a.例3证明不可能分解为两个一次因式之积.分析若视原式为关于x的二次三项式,则可利用判别式求解.证明:将此式看作关于x的二次三项式,则判别式△=显然△不是一个完全平方式,故原式不能分解为两个一次因式之积. 例3 已知x,y,z是实数,且x+y+z=a……①x2+y2+z2=12a……②求证:0≤x≤23a, 0≤y≤23a, 0≤z≤23a.分析: 将①代入②可消去一个字母,如消去z,然后整理成关于y的二次方程讨论. 证明: 由①得z=a-x-y,代入②整理得此式可看作关于y的实系数一元二次方程,据已知此方程有实根,故有△ =16(x-a)2-16(4x2-4ax+a2)≥0≥0≤x≤23a同理可证:0≤y≤23a ,0≤z≤23a .例5 设a 1,a 2,a 3,b 是满足不等式(a 1+a 2+a 3)2≥2()+4b 的实数.求证:a 1a 2+a 2a 3+a 3a 1≥3b. 证明: 由已知可得≤0.设则∵a 3是实数, 故△≥0,即有 (a 1+a 2)2≥()-2a 1a 2+4b+r≥2()-(a 1+a 2)2+4b.于是(a 1+a 2)2≥()+2b ,∴a 1a 2≥b.同理有a 2a 3≥b,a 3a 1≥b.三式相加即得 a 1a 2+a 2a 3+a 3a 1≥3b.例6 设a 、b 、c 为实数,方程组2y xy ax bx c=⎧⎨=++⎩与2y xy ax bx c=-⎧⎨=++⎩均无实数根.求证:对于一切实数x都有21 4ax bx ca++>.证明:由已知条件可以推出a≠0,因为若a=0,则方程组y xy bx c=⎧⎨=+⎩,y xy bx c=-⎧⎨=+⎩至少有一个有实数解.进一步可知,方程ax2+bx+c=±x无实根,因此判别式△=(b1)2-4ac<0,于是(b-1)2+(b+1)-8ac<0.即 4ac-b2>1.∴2222424b ac bax bx c a xa a⎡⎤-⎛⎫++=-+⎢⎥⎪⎝⎭⎢⎥⎣⎦>21144aaa•=.2.韦达定理的应用例7 假设x1、x2是方程x2-(a+d)x+ad-bc=0的根.证明这时x13、x23是方程的根.证明:由已知条件得∴=a3+d3+3abc+3bcd,由韦达定理逆定理可知,、是方程的根.例8 已知两个系数都是正数的方程a1x2+b1x+c1=0…… ①a2x2+b2x+c2=0……②都有两个实数根,求证:(1)这两个实数根都是负值;(2)方程a1a2x2+b1b2x+c1c2=0…… ③也有两个负根.证明:∵方程①有两个实数根,∴>0. ④同理>0. ⑤又a1、b1、c1都是正数,∴>0,<0.由此可知方程①的两根是负值.同样可证方程②的两根也是负值. 显然a1c1<4a1c1代入④,得>0,⑥由>0,得>⑦∴△=≥=>0,∴方程③也有两个实数根.又a1a2>0,b1b2>0,c1c2>0,∴>0,<0.由此可知方程③的两个根也是负值.例9对自然数n,作x的二次方程x2+(2n+1)x+n2=0,使它的根为αn和βn.求下式的值:+解:由韦达定理得=而 =(n≥3),∴原式=+=例10首项不相等的两个二次方程(a-1)x2-(a2+2)x+(a2+2a)=0 ①及(b-1)x2-(b2+2)x+(b2+2b)=0 ②(其中a,b为正整数)有一公共根,求的值.解:由题得知,a,b为大于1的整数,且a≠b.设x0是方程①②的公共根,则x0≠1,否则将x=1代入①得a=1,矛盾.得x0代入原方程,并经变形得③及④所以a,b是关于t的方程相异的两根,因此于是 ab-(a+b)=2,即(a-1)(b-1)=3.由a-1=1b-1=3⎧⎨⎩或a-1=3b-1=1⎧⎨⎩,解得a=2b=4⎧⎨⎩或a=4b=2⎧⎨⎩∴例11设实数a,b,c满足求证:1≤a≤9.证明:由(1)得bc=a2-8a+7.(1)-(2)得 b+c=所以实数b,c可看成一元二次方程的两根,则有△≥0,即≥0,即(a-1)(a-9)≤0,∴1≤a≤9.例12 求证:对任一矩形A ,总存在一个矩形B ,使得矩形A 和矩形B 的周长和面积比都等于常数k (k≥1). 分析 设矩形A 及B 的长度分别是a ,b 及x ,y ,为证明满足条件的矩形B 存在,只须证明方程组(x y k a b xy kab ⎧⎨⎩+=+= (k ,a ,b 为已知数)有正整数解即可. 再由韦达定理,其解x ,y 可以看作是二次方程 z 2-k (a+b )z+kab=0的两根. ∵k≥1,故判别式△ =k 2(a+b )2-4kab≥k 2(a+b )2-4k 2ab=k 2(a-b )2≥0, ∴上述二次方程有两实根z 1,z 2. 又z 1+z 2=k (a+b )>0,z 1z 2=kab >0,从而,z 1>0,z 2>0,即方程组恒有x >0,y >0的解,所以矩形B 总是存在的. 练习 1.填空题(1) 设方程x-1x =1987的两根为m ,n (m >n ),则代数式311n m n ⎛⎫⎪ ⎪⎝⎭--的值是_______; (2)若r 和s 是方程x 2-px+q=0的两非零根,则以r 2+21s 和s 2+21r 为根的方程是______________________;(3)已知方程x 2-8x+15=0的两根可以写成a 2+b 2与a-b,其中a 与b 是方程x 2+px+q=0的两根,那么|p|-q=__________. 2.选择题(1)若p,q 都是自然数,方程px 2-qx+1985=0的两根都是质数,则12p 2+q 的值等于( ).(A)404 (B)1998 (C)414 (D)1996(2)方程(1984x)2-1983·1985x -1=0的较大根为r,x 2+1983x-1984=0的较小根为s,则r-s 等于( ). (A)11985 (B)1985 (C)19841985 (D)-19831984(3)x 2+px+q 2=0(p≠0)的两个根为相等的实数,则x 2-qx+p 2=0的两个根必为( ). (A) 非实数 (B)相等两实数 (C)非实数或相等两实数 (D)实数(4)如果关于方程mx 2-2(m+2)x+m+5=0没有实数根,那么关于x 的方程(m-5)x 2-2(m+2)x+m=0的实根个数为 (A)2 (B)1 (C)0 (D)不确定3. 设a 1≠0,方程a 1x 2+b 2x+c 1=0的两个根是1-a 1和1+a 1;a 1x 2+b 1x+c 2=0的两个根是12a -1和1-11a ;a 1x 2+b 1x+c 1=0的两根相等,求a 1,b 1,c 1,b 2,c 2的值. 4.常数a 是满足1≤a≤50的自然数.若关于x 的二次方程(x-2)2+(x-a)2=x 2的两根都是自然数,试求a 的值. 5.设x 2、x 2为正系数方程ax 2+bx+c=0的两根,x 1+x 2=m ,x 1·x 2=n 2,且m ,n.求证: (1) 如果m <n ,那么方程有不等的实数根; (2) 如果m >n ,那么方程没有实数根.6.求作一个以两正数α,β为根的二次方程,并设α,β满足 7. 当a ,b 为何值时,方程x 2+(1+a )x+(3a 2+4ab+4b 2+2)=0有实根? 8. 试证:1986不能等于任何一个整系数二次方程ax 2+bx+c=0的判别式的值. 9. 方程x 2+ax+1=b 的根是自然数,证明a 2+b 2是合数. 10. 不用辅助工具解答:(1)证满足的根在和197.…间;(2)同(1)证<1..练习答案:1.(1)(2)(3)3.2. C B A.3.4.x=a+2±由于x为自然数,可知a为完全平方数即a=1,4,9,16,25,36,49.5. 略6. 3x2-7x+2=0.7. 因为方程有实根,所以判别式8. 设1986=4k+2(其中k是自然数).令△=b2-4ac=4k+2,这时b2能被2整除,因而b也能被2整除.取b=2t,这时b2=4t2,且4t2-4ac=4k+2.这时等式左边的数能被4整除,而右边的数不能被4整除,得出矛盾,故命题得证.文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【学习课题】 九上 补充内容 综合应用根的判别式和韦达定理
龙泉二中 范积慧
【学习目标】 1、掌握一元二次方程根与系数的符号关系
2、利用韦达定理并结合判别式,求参数的值
【学习重点】一元二次方程根与系数的符号关系
【学习难点】利用韦达定理并结合判别式,求参数的值
【学习过程】
学习准备:(1)一元二次方程ax 2+bx+c=0 (a ≠0) 的判别式△=__________
△>0⇔__________△=0 ⇔_____________△<0 ⇔__________
(2)一元二次方程ax 2+bx+c=0 (a ≠0)的两根分别为x 1和x 2
x 1+x 2=____________, x 1x 2=_____________
解读教材:由根的判别式及韦达定理可得如下结论:
(1)若a 、c 异号 ⇒ ax 2+bx+c=0 (a ≠0)必有两个不相等的实数根;
(2)有一个根为1 ⇔ a+b+c=0 ;
(3) 有一个根为—1 ⇔ a —b+c=0;
(4)有一个根为0 ⇔ c=0
(5)有两个正根 ⇔⎪⎩⎪⎨⎧+≥0210210>>△x x x x (6)有两个负根 ⇔
⎪⎩
⎪⎨⎧+≥0210210><△x x x x (7) 有一正根一负根 ⇔⎩⎨⎧0021<△>x x (8)两根同号 ⇔⎩⎨⎧≥002
1>△x x (9)两根互为相反数⇔⎩⎨⎧=⇒=+0
0021b x x △> (10)两根互为倒数⇔⎩⎨⎧=≥102
1x x △ (11)一根为正,一根为0 ⇔⎪⎩⎪⎨⎧=⇒=+00002
121c x x x x >△>
(12)一根为负,一根为0 ⇔⎪⎩⎪⎨⎧=⇒=+00002
121c x x x x <△>
(13)两根均为0⇔b=c=0
(14) 一根比a 大,一根比a 小⇔⎩⎨⎧--0))(021
<(△>a x a x 例1 已知方程(k+1)x 2—4kx+3k —1=0 的两个实数根均为正,求k 的值。
思路点拨:因为原方程两个实数根均为正,有上述结论(5)可得不等式组,解这个不
等式组即可求出k 的值。
解:由题意得:⎪⎩⎪⎨⎧+≥0210210>>△x x x x ⎪⎩⎪⎨⎧⇒ ⎪⎩
⎪⎨⎧⇒ ⇒
即时练习:
K 为何值时,方程4x 2—(k —1)x+k —7=0 的两个根具有下列关系:
(1)两根互为相反数 (2)两根互为倒数 (3)有一根为0
挖掘教材:
应用韦达定理的前提条件是一元二次方程有实数根,即应首先满足△≥0这一条件。
例2、已知方程x 2+kx+k=0有两个实数根,且两根的平方和为3,求k 的值。
解:由题意得:⎪⎪⎩⎪⎪⎨⎧=+=-=+≥302221
2121x x k
x x k x x △⇒=-+⇒32)(21221x x x x =⇒1k _______,=2k ______
当K1=_____时,△______;当K2=_____时,△______
故K 的值为______
归纳小结:二次项系数a ≠0和△≥0是实系数一元二次方程根与系数关系的前提。
因此,
在做题时,应优先考虑这两点。
即二次项系数与△优先的原则。
即时练习:
若方程2x 2-mx-4=0的两个实数根x 1,x 2满足11x +2
1x =2,求m 的值。
例2、已知关于x 的方程x 2-(2k-3)+k 2+1=0的两个实数根x1、x2满足:321=+x x ,求k 的值。
解:∵原方程有两个实数根,则△≥0
即[-(2k-3)]2-4(k 2+1)≥0 解之得:k______ ①
又∵x 1x 2=k 2+1>0,∴x 1与x 2同号;由:321=+x x 可得:x1+x2=±3 即 2k-3=±3 ,解之得:k1=_____,k2=______ ②
由①②可得:K=________
即时练习:
已知方程x 2-4x+6k=0两个实数根的平方差为8,求k 的值。
反思拓展:
1、 韦达定理:充满活力,它与代数、几何中许多知识可有机结合,生成丰富多彩的数学问题,而解这类问题常用到对称分析、构造等数学思想方法。
2、应用韦达定理的前提条件是这个方程是一元二次方程且有两个实数根,即应用韦达定理解题时,须首先满足二次项系数a ≠0和判别式△≥0这两个条件,转化是一种重要的数学思想方法,但要注意转化前后问题的等价性。
3、应用韦达定理求根的代数式的值,一般是关于x 1,x 2的对称式,这类问题可通过变形X 1+x 2和x 1x 2表示求解,而非对称式的求值常用到以下技巧:
(1)恰当组合 (2)根据根的定义降次 (3)构造对称式
【达标检测】
1、(广州)关于x 的一元二次方程x 2-x+a(1-a)=0有两个不相等的正根,则a 可取的值为____ (只要填写一个可能的值即可)
2、(2005年.淮安)已知关于x 的一元二次方程x 2+4x+a=0有两个实数根,且2x 1-x 2=7,则a=____
3、(2005年.荆州)若α、β是方程x 2+2x-2005=0的两个实数根,则α2+3α+β的值为_____
4、在等腰三角形ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,已知a=3,b 和c 是关于x 的方程x 2+mx+2-2
1m=0的两个实数根,求△ABC 的周长。
5、(盐城) 已知关于x 的方程x 2+2(2-m )x+3-6m=0
(1) 求证:无论m 取什么实数,方程总有实数根。
(2)如果方程的两实数根分别为x 1、x 2,满足x 1=3x 2,求实数m 的值。
6、(2005年.南通)已知关于x 的方程x 2-kx+k 2+n=0有两个不相等的实数根x 1、x 2,且 (2x 1+x 2)2-8 (2x 1+x 2)+15=0 求证:(1)n<0 (2)试用k 的代数式表示x 1
(3)当n= - 3 时,求k 的值。
7、(2005年.天津))已知关于x 的方程x 2+2px+1=0的两个实数根一个小于1,另一个大于1,求实数p 的取值范围。