几何图形练习题
小学几何图形练习题

小学几何图形练习题1. 直线和曲线题目一画一条直线,然后利用尺子测量它的长度是10厘米。
将它分为4段,每段长度相等。
题目二画一个半径为5厘米的圆。
用尺子测量它的直径。
题目三画一个矩形,长为8厘米,宽为4厘米。
计算矩形的周长和面积。
2. 三角形题目四画一个等边三角形。
测量它的三条边的长度,是否相等。
题目五画一个直角三角形,其中两条边长度分别为3厘米和4厘米。
计算斜边的长度。
题目六画一个等腰三角形,两边长度都为10厘米,底边长度为8厘米。
计算顶角的度数。
3. 四边形题目七画一个平行四边形,对角线长度分别为6厘米和8厘米。
计算四边形的周长和面积。
题目八画一个菱形,对角线长度分别为10厘米和6厘米。
计算菱形的周长和面积。
题目九画一个长方形,长边长度为5厘米,短边长度为3厘米。
计算长方形的周长和面积。
4. 圆形题目十画一个半径为6厘米的圆。
计算圆的周长和面积。
题目十一画一个直径为4厘米的圆。
计算圆的周长和面积。
题目十二画一个半径为3厘米的圆和一个半径为5厘米的圆,使其中一个圆的周长刚好等于另一个圆的面积。
计算两个圆的周长和面积。
以上是小学几何图形的练题,希望同学们能按照题目要求进行作答,并通过实践加深对几何图形的理解和掌握。
---*注意:此文档中的几何图形尺寸仅供练习使用,实际应根据课堂要求和教材规定进行作答。
*。
初三几何图形练习题

初三几何图形练习题1. 直角三角形ABC中,角A=90°,AB=5 cm,AC=12 cm。
求BC的长度。
解析:由于角A为直角,所以三角形ABC是一个直角三角形。
根据勾股定理,直角边的平方之和等于斜边的平方,即AB² + AC² = BC²。
代入已知数据,得5² + 12² = BC²,解得BC² = 169,再开平方根可得BC = 13 cm。
2. 等腰三角形DEF中,DE=DF=8 cm,EF=10 cm。
求角D的大小。
解析:等腰三角形的两边相等,所以DE=DF。
角D对应于边EF,由余弦定理可得cos(D) = (EF² + DE² - DF²) / (2 × EF × DE)。
代入已知数据,得cos(D) = (10² + 8² - 8²) / (2 × 10 × 8),化简计算可得cos(D) = 16 / 8 = 2,由于角D为锐角,所以角D的大小为arccos(2)。
3. 平行四边形PQRS中,边PQ = 8 cm,高h = 5 cm。
求平行四边形的面积。
解析:平行四边形的面积等于底边乘以高,即面积 = PQ × h。
代入已知数据,可得面积 = 8 cm × 5 cm = 40 cm²。
4. 在等边三角形ABC中,线段AD是高线,高线的垂足为D。
若边长为12 cm,求高AD的长度。
解析:等边三角形的高线即为垂直边的高,所以AD是高线。
对于等边三角形,高线也是中线和角平分线,所以AD将等边三角形ABC分成两个相等的等腰三角形。
根据等腰三角形的性质,高线可通过勾股定理求得。
边长为12 cm的等边三角形,可以将高线分成两个相等的线段,设AD = AD',则有D'A² + AD'² = 12²,化简计算可得2AD'² = 144,再开平方根可得AD' = 12 cm/√2,即AD = 12 cm/√2。
初一数学几何图形练习题及答案20题

初一数学几何图形练习题及答案20题1. 填空题:a. 正方形的对角线长度是________(1词)。
b. 两个互相垂直的角的和为________度(1词)。
2. 判断题(正确为T,错误为F):a. 直角三角形的两个直角边可以相等。
()b. 一个平行四边形的对角线相等。
()c. 所有的矩形都是正方形。
()d. 一个凸四边形的内角和为360度。
()3. 简答题:a. 请解释平行四边形的定义及性质。
(至少2句)b. 解释锐角、钝角和直角分别是什么角度范围。
(至少1句)4. 计算题:在下图中,ΔABC是个等边三角形,边长为4cm。
a. 请计算三角形ABC的周长。
(2词)b. 请计算三角形ABC的面积。
(2词)5. 应用题:桌子的形状为长方形,长为120cm,宽为80cm。
在桌子的边上画出一个同样形状的长方形,使得它的宽比原来的桌子短一半,长比原来的桌子长一半。
请计算这个新长方形的面积。
(2词)答案:1. a. 简答题b. 902. a. Fb. Tc. Fd. T3. a. 平行四边形是一个有四个边的四边形,且相对的两边是平行的。
其性质包括:对角线互相平分;相邻角互补;相对角相等。
b. 锐角是指小于90度的角;钝角是指大于90度小于180度的角;直角是指等于90度的角。
4. a. 12cmb. 4√3 cm²5. 1800 cm²通过以上20道初一数学几何图形练习题及答案的训练,可以帮助学生巩固和加深对于几何图形的理解和应用能力。
请同学们认真学习,并通过解答这些问题来提高自己的数学技能。
初二几何练习题及答案

初二几何练习题及答案一、选择题1. 下列图形中,边数最多的是:A. 正方形B. 三角形C. 圆形D. 长方形答案:B. 三角形2. 以下哪个选项是一个多边形?A. 圆形B. 长方形C. 椭圆形D. 正方形答案:B. 长方形3. 以下哪个几何图形是三角形的一种?A. 圆B. 梯形C. 正方形D. 椭圆答案:B. 梯形4. 对于一个正方形,边长为a,则它的周长是:A. 2aB. 4aC. a²D. a³答案:B. 4a5. 对于一个圆形,半径为r,则它的周长是:A. 2rB. 4rC. πr²D. 2πr答案:D. 2πr二、填空题1. 一个正方形的边长为5cm,则它的面积是__________。
答案:25cm²2. 一个长方形的长为8cm,宽为4cm,则它的周长是__________。
答案:24cm3. 一个三角形的底边长为7cm,高为4cm,则它的面积是__________。
答案:14cm²4. 一个正方形的周长为12cm,则它的边长是__________。
答案:3cm5. 一个圆形的直径为10cm,则它的半径是__________。
答案:5cm三、解答题1. 如图所示,画出一个正方形,边长为6cm。
(略)2. 如图所示,已知直角三角形的一条直角边长为5cm,斜边长为10cm,求另一条直角边的长度。
解:根据勾股定理,直角三角形的两个直角边的平方和等于斜边的平方。
假设另一条直角边长为a,则有:5² + a² = 10²化简得:25 + a² = 100移项得:a² = 100 - 25计算得:a² = 75开方得:a ≈ 8.66cm答案:约为8.66cm3. 如图所示,计算一个边长为10cm的正方形的面积和周长。
解:面积 = 边长² = 10² = 100cm²周长 = 4 ×边长 = 4 × 10 = 40cm答案:面积为100cm²,周长为40cm4. 如图所示,求一个高为8cm,底边长为6cm的三角形的面积。
高中几何图形试题及答案

高中几何图形试题及答案试题一:三角形的性质1. 已知三角形ABC中,AB=5cm,AC=7cm,BC=6cm,求证三角形ABC是直角三角形。
2. 在三角形ABC中,若角A的正弦值为\( \frac{1}{2} \),求角A 的度数。
试题二:圆的性质1. 已知圆心O到圆上一点P的距离为10cm,求圆的半径。
2. 圆的半径为15cm,圆心角为60°,求弧长。
试题三:多边形的性质1. 一个正六边形的边长为a,求其面积。
2. 已知一个正五边形的外接圆半径为R,求正五边形的边长。
试题四:空间几何体的性质1. 一个正方体的棱长为3cm,求其表面积和体积。
2. 一个圆柱的底面半径为4cm,高为10cm,求其侧面积和体积。
试题五:几何图形的变换1. 已知点A(2,3),求点A关于x轴的对称点。
2. 已知直线y=2x+1,求该直线关于y轴的对称直线的方程。
答案:试题一:1. 根据勾股定理,AB² + BC² = AC²,即5² + 6² = 7²,满足勾股定理,故三角形ABC是直角三角形。
2. 由正弦定理知,sinA = \( \frac{1}{2} \),所以角A的度数为30°。
试题二:1. 圆的半径等于圆心到圆上任意一点的距离,所以圆的半径为10cm。
2. 弧长 = \( \frac{圆心角}{360°} \times 2πr \) =\( \frac{60}{360} \times 2π \times 15 \) = 5π cm。
试题三:1. 正六边形可以分成6个等边三角形,每个三角形的面积为\( \frac{\sqrt{3}}{4}a^2 \),所以正六边形的面积为 \( 6 \times \frac{\sqrt{3}}{4}a^2 = \frac{3\sqrt{3}}{2}a^2 \)。
2. 正五边形的边长a与外接圆半径R的关系为 \( a = R\tan(\frac{180°}{5}) = R \tan(36°) \)。
初一数学几何图形初步几何图形练习题

长方形的面积:5a· a= a2≈21.65a2,
圆的半径r:r2= =7a2,
r= a≈2.6458a
圆的面积:π·(2.6458a)2≈21.98a2.
∵21.65a2<21.98a2,
∴甲的硬板纸利用高.
(2)画图
考点:1.长方形的面积公式;2.圆的面积公式.
20.见解析
【解析】
(1)长方形(非正方形);
(2)平行四边形;
(3)四边形(非平行四边形).
18.(本题满分10分)(1)由大小相同的小立方块搭成的几何体如左图,请在右图的方格中画出该几何体的俯视图和左视图.
(2)用小立方体搭一几何体,使得它的俯视图和左视图与你在上图方格中所画的图一致,则这样的几何体最少要个小立方块,最多要个小立方块.
故选A.
考点:截一个几何体.
14.B.
【解析】
试题分析:A、左视图与主视图都是正方形,故A不符合题意;
B、左视图与主视图不相同,分别是正方形和长方形,故B符合题意;
C、左视图与主视图都是矩形,故C不符合题意;
D、左视图与主视图都是等腰三角形.故D不符合题意.
故选B.
考点:简单几何体的三视图.
15.A.
①请你帮小明分析一下拼图是否存在问题:若有多余块,则把图中多余部分涂黑;若还缺少,则直接在原图中补全;
②若图中的正方形边长5cm,长方形的长为8cm,宽为5cm,请直接写出修正后所折叠而成的长方体的表面积为cm2.
25.(4分)如图是由几个小立方块所搭几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,请画出这个几何体的主视图和左视图.
故选C.
考点:简单组合体的三视图.
简单几何体练习题

简单几何体练习题一、选择题1. 一个正方体的棱长为a,其表面积是:A. 6a²B. 8a²C. 10a²D. 12a²2. 一个圆柱的底面半径为r,高为h,其体积是:A. πr²hB. 2πrhC. 3πr²hD. πrh²3. 下列几何体中,属于旋转体的是:A. 正方体B. 长方体C. 圆锥D. 球4. 一个圆锥的底面半径为r,高为h,其体积是:A. 1/3πr²hB. 1/2πr²hC. πr²hD. 2πr²h5. 一个球的体积公式是:A. 4/3πr³B. 1/4πr³C. 1/3πr²D. πr³二、填空题6. 一个长方体的长、宽、高分别为l、w、h,其体积为________。
7. 一个正四面体的棱长为a,其表面积为________。
8. 一个圆柱的底面半径为r,高为h,其侧面积为________。
9. 一个圆锥的底面半径为r,高为h,其表面积为________。
10. 一个球的半径为r,其表面积为________。
三、计算题11. 一个正方体的体积为27立方厘米,求其棱长。
12. 一个圆柱的底面半径为3厘米,高为10厘米,求其体积。
13. 一个圆锥的底面半径为4厘米,高为9厘米,求其体积。
14. 一个球的体积为523.6立方厘米,求其半径。
15. 一个长方体的长为5米,宽为3米,高为2米,求其表面积。
四、简答题16. 描述如何使用勾股定理来计算一个直角三角形的斜边长度。
17. 解释什么是正多面体,并列举出所有正多面体的名称。
18. 说明什么是圆柱的母线,并解释它在计算圆柱体积时的作用。
19. 阐述圆锥和圆柱在几何属性上的相似之处和不同之处。
20. 描述球的体积和表面积公式的推导过程。
五、应用题21. 一个无盖的长方体水箱,其长、宽、高分别为4米、3米、2米,如果需要覆盖水箱的顶部,需要多大面积的铁皮?22. 一个工厂需要制造一个直径为2米的球形储水罐,求其能够容纳的最大水量。
几何图形专项练习题及答案解析

几何图形专项练习题及答案解析一、选择题1、下列图形中,哪一个是正方体的展开图()A.B.C.D.2、观察点阵图的规律,第10个图的小黑点的个数应该是()A.41 B.40 C.51 D.503、如图,它需再添一个面,折叠后才能围成一个正方体,下图中的黑色小正方形分别由四位同学补画,其中正确的是()A. B. C. D.4、由几个大小相同的立方体组成的几何体从上面看到的形状图所示,则这个几何体可能是()A.B.C. D.5、如图,在一密闭的圆柱形玻璃杯中装一半的水,水平放置时,水面的形状是()A.圆B.长方形C.椭圆D.平行四边形6、下列四个图形中是如图展形图的立体图的是()7、A.B.C.D.7、某几何体的三视图如图所示,则这个几何体是()A.圆柱B.正方形C.球D.圆锥8、在下列的四个几何体中,其主视图与俯视图相同的是()A. B. C. D.圆柱圆锥三棱柱球9、如图是一个正方体展开图,把展开图折叠成正方体后,“你”字一面相对面上的字是()A.我B.中C.国D.梦10、如图中的几何体的主视图是()A.B.C.D.二、填空题11、当n等于1,2,3…时,由白色小正方形和黑色小正方形组成的图形分别如图所示,则第n 个图形中白色小正方形和黑色小正方形的个数总和等于.(用n表示,n是正整数)12、如图,要使图中平面展开图按虚线折叠成正方体后,相对面上两个数之和为0,则x﹣2y=.13、如图,两个图形分别是某个几何体的主视图和俯视图,则该几何体可能是.14、如图是一个正方体展开图,把展开图折叠成正方体后,“我”字一面的相对面上的字是 .15、如图,这是一个长方体的主视图与俯视图,由图示数据(单位:cm)可以得出该长方体的体积_______________16、如果将棱长相等的小正方体按如图的方式摆放,从上到下依次为第一层,第二层,第三层,……,那么第10层的小正方体的个数是_________________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几何图形练习题(一)
(运用平移、翻折与旋转不、割补等法求面积类)1、下图ABC是等腰直角三角形,求阴影部分的面积。
(单位:厘米)
2、求出下图中阴影部分的面积。
(单位:厘米)
3、求出下图中阴影部分的面积。
(单位:厘米)
4、求出下图中阴影部分的面积。
(单位:厘米)
5、在半径为10厘米,圆心角为90°的扇形中,分别以两条半径的中点E和F为圆心,以
扇形半径之半为半径,画两个半圆交于D。
求图中阴影部分的面积(如下图)。
6、求出下图阴影部分的面积。
(单位:厘米)
7、求出下图阴影部分的面积。
(单位:厘米)
8、下图,直径AB=20厘米,阴影Ⅰ的面积比阴影Ⅱ的面积大7平方厘米,求BC的长。
9、如下图,四个圆的直径均为4厘米,求阴影部分面积。
(单位:厘米)
10、下图中各小圆的半径为1,求该图中阴影部分的面积。
11、已知右图中两个正方形的边长分别是3厘米和6厘米,求阴影部分的面积。
12、下图的中的正方形的边长是2厘米,以圆弧为分界线的Ⅰ、Ⅱ两部的面积的差是多少平
方厘米?( =3.14)
12、如下图,已知直角三角形的面积是12平方厘米,求阴影部分的面积。
13、如下图,O为圆心CO垂直于AB,三角形ABC的面积是45平方厘米,以C为圆
心,CA为半径画弧将圆分成两部分,求阴影部分的面积。
14、如下图扇形的半径OA=OB=6厘米。
角AOB等于45°,AC垂直OB于C点,那么
图中阴影部分面积是多少平方厘米?(π=3.14)
15、下图中,图①是一个直径为3厘米的半圆,AB是直径,让A点不动,整个半圆逆
时针旋转60°角,此时B 点移动到B′(如图②)。
那么,图中阴影部分的面积是多少平方厘米?(π=3.14)
16、求下列图形的阴影部分。
19、如下图,半圆的直径是10厘米,阴影部分甲比乙的面积少1.25平方厘米,求三角形△ABC的边OA的长。
20、如下图,已知直角三角形ABC中,AB边上的高是4.8厘米,求阴影部分的面积。
21、如下图,把一个圆剪成一个近似的长方形,已知长方形的周长是33.12厘米,求阴影部分面积。
22、如下图,求阴影部分面积。
(单位:厘米)
23、求下列各图的阴影部分面积。
(单位:厘米)
28、如下图所示,两圆半径都是1厘米,且图中两个阴影部分部分的面积相等。
求长方形
O的面积。
ABO
1
32、如果,一个酒瓶里面深24厘米,底面内径是16厘米,瓶里酒深15厘米。
把酒瓶塞紧靠后,使其瓶口向下倒立,这时酒深19厘米,酒瓶容积是多少毫升?
33、一个瓶子,它的瓶身呈圆柱形(不计瓶颈),如图,已知瓶内装有1.6升的水,当瓶子正放时瓶内水面高为12厘米,当瓶子倒立时瓶内空余部分高3厘米,求瓶子的容积。
34、一个饮料瓶,它的瓶身呈圆柱形(不计瓶颈),如下图所示,已知它的容积为1200立方厘米,当瓶子正放时瓶内水面高为18厘米,倒放时瓶内空余部分高6厘米,瓶内装有多少立方厘米的饮料?
35、如果图,将10毫升的水装入一个圆锥形容器中,水深正好占容器深的21。
请问:再添入多少毫升水,可装满此容器?
36、下图中三角形ABC 的高是5厘米,三角形的面积是30平方厘米,求阴影部分的面积。