一元一次方程和不等式练习题
(易错题精选)初中数学方程与不等式之一元一次方程经典测试题

(易错题精选)初中数学方程与不等式之一元一次方程经典测试题一、选择题1.足球比赛的记分办法为:胜一场得3分,平一场得1分,负一场得0分.一个队打了14场比赛,负5场,共得19分,那么这个队胜了A .3场B .4场C .5场D .6场【答案】C【解析】【分析】设共胜了x 场,本题的等量关系为:胜的场数×3+平的场数×1+负的场数×0=总得分,解方程即可得出答案.【详解】设共胜了x 场,则平了(14-5-x )场,由题意得:3x+(14-5-x )=19,解得:x=5,即这个队胜了5场.故选C .【点睛】此题考查了一元一次方程的应用,属于基础题,解答本题的关键是要掌握胜的场数×3+平的场数×1+负的场数×0=总得分,难度一般.2.在解分式方程31x -+21x x+-=2时,去分母后变形正确的是( ) A .()()3221x x -+=- B .()3221x x -+=-C .()322x -+=D .()()3221x x ++=- 【答案】A【解析】【分析】本题考查对一个分式确定最简公分母,去分母得能力.观察式子x-1和1-x 互为相反数,可得1-x=-(x-1),所以可得最简公分母为x-1,因为去分母时式子不能漏乘,所以方程中式子每一项都要乘最简公分母.【详解】方程两边都乘以x-1,得:3-(x+2)=2(x-1).故答案选A .【点睛】本题考查了解分式方程,解题的关键是方程两边都乘以最简公分母.3.某书店推出一种优惠卡,每张卡售价为50元,凭卡购书可享受8折优惠,小明同学到该书店购书,他先买购书卡再凭卡付款,结果省了10元。
若此次小明不买卡直接购书,则他需要付款()A.380元B.360元C.340元D.300元【答案】D【解析】【分析】此题的关键描述:“先买优惠卡再凭卡付款,结果节省了10元”,设出未知数,根据题中的关键描述语列出方程求解.【详解】解:设小明同学不买卡直接购书需付款是x元,则有:50+0.8x=x-10解得:x=300即:小明同学不凭卡购书要付款300元.故选:D.【点睛】本题考查一元一次方程的应用,关键在于找出题目中的等量关系,根据等量关系列出方程解答.4.某商品打七折后价格为a元,则原价为()A.a元B.107a元C.30%a元D.710a元【答案】B【解析】【分析】直接利用打折的意义表示出价格即可得出答案.【详解】设该商品原价为x元,∵某商品打七折后价格为a元,∴原价为:0.7x=a,则x=107a(元),故选B.【点睛】本题考查了一元一次方程的应用,弄清题意,找准等量关系列出方程是解题的关键.5.若x=-2是方程ax-b=1的解,则代数式4a+2b-3的值为()A.1 B.3-C.1-D.5-【答案】D【解析】【分析】把x=-2代入ax-b=1得到关于a和b的等式,利用等式的性质,得到整式4a+2b-3的值,即可得到答案.【详解】解:把x=-2代入ax-b=1得:-2a-b=1,等式两边同时乘以-2得:4a+2b=-2,等式两边同时减去3得:4a+2b-3=-2-3=-5,故选:D.【点睛】本题考查了一元一次方程的解和代数式求值,正确掌握代入法和等式的性质是解题的关键.6.已知△ABC的三边长分别为3,5,7,△DEF的三边长分别为3,3x﹣2,2x﹣1,若这两个三角形全等,则x为()A.B.4 C.3 D.不能确定【答案】C【解析】试题分析:根据三角形全等可得:3x-2=5且2x-1=7或3x-2=7且2x-1=5;第一个无解,第二个解得:x=3.考点:三角形全等的性质7.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是()A.2×1000(26﹣x)=800x B.1000(13﹣x)=800xC.1000(26﹣x)=2×800x D.1000(26﹣x)=800x【答案】C【解析】【分析】试题分析:此题等量关系为:2×螺钉总数=螺母总数.据此设未知数列出方程即可【详解】.故选C.解:设安排x名工人生产螺钉,则(26-x)人生产螺母,由题意得1000(26-x)=2×800x,故C答案正确,考点:一元一次方程.8.某学校,安排50人打扫校园卫生,20人拉垃圾,后因两边的人手不够,又增派30人去支援,结果打扫卫生的人数是拉垃圾人数的3倍,若设支援打扫卫生的同学有x人,则下列方程正确的是()A.50+x=3×30 B.50+x=3×(20+30-x)C .50+x =3×(20-x)D .50+x =3×20【答案】B【解析】【分析】 可设支援打扫卫生的人数有x 人,则支援拉垃圾的人数有(30﹣x )人,根据题意可得题中存在的等量关系:原来打扫卫生的人数+支援打扫卫生的人数=3×(原来拉垃圾的人数+支援拉垃圾的人数),根据此等量关系列出方程即可.【详解】解:设支援打扫卫生的人数有x 人,则支援拉垃圾的人数有(30﹣x )人,依题意有 50+x =3[20+(30﹣x )],故选:B .【点睛】本题考查了一元一次方程的应用,列方程解应用题的关键是找出题目中的相等关系,有的题目所含的等量关系比较隐蔽,要注意仔细审题,耐心寻找.9.A ,B 两地相距480 km ,一列慢车从A 地出发,每小时行驶60 km ,一列快车从B 地出发,每小时行驶90 km ,快车提前30 min 出发.两车相向而行,慢车行驶了多少小时后,两车相遇.若设慢车行驶了x h 后,两车相遇,则根据题意,下面所列方程正确的是( ) A .60(30)90480x x ++=B .6090(30)480x x ++=C .160()904802x x ++=D .16090()4802x x ++= 【答案】D【解析】【分析】【详解】解:慢车行驶了x 小时后,两车相遇,根据题意得出:16090()4802x x ++=. 故选D .【点睛】本题考查由实际问题抽象出一元一次方程.10.某商店销售一批服装,每件售价150元,可获利25%,求这种服装的成本价.设这种服装的成本价为x 元,则得到方程( )A .0150250x =⨯B .0251500x ⋅= C .0015025x x-= D .0150250x -= 【答案】C【解析】【分析】等量关系为:成本×(1+利润率)=售价,把相关数值代入即可【详解】解:设这种服装的成本价为x 元,那么根据利润=售价-成本价,可得出方程:150-x=25%x ;15025%x x-= 故应选C11.寒假期间,小刚组织同学一起去看科幻电影《流浪地球》,票价每张45元,20张以上(不含20张)打八折,他们一共花了900元,则他们买到的电影票的张数是( ) A .20B .22C .25D .20或25【答案】D【解析】【分析】本题分票价每张45元和票价每张45元的八折两种情况讨论,根据数量=总价÷单价,列式计算即可求解.【详解】①若购买的电影票不超过20张,则其数量为900÷45=20(张);②若购买的电影票超过20张,设购买了x 张电影票,根据题意,得:45×x ×80%=900,解得:x =25;综上,共购买了20张或25张电影票;故选D .【点睛】本题考查了一元一次方程的应用,注意分类思想的实际运用,同时熟练掌握数量,总价和单价之间的关系.12.某公园门票的收费标准如下:有两个家庭分别去该公园游玩,每个家庭都有5名成员,且他们都选择了最省钱的方案购买门票,结果一家比另一家少花40元,则花费较少的一家花了( )元.A .300B .260C .240D .220【答案】B【解析】【分析】 根据题意,分情况讨论:若花费较少的一家的购票方案为5人团购,则另一家花费340元,据此组合验证是否能凑成整数张成人票和儿童票;若花费较少的一家的购票方案是成人票和儿童票分开购买,则可根据题意设未知数,列方程求解并验证.【详解】若花费较少的一家是60×5=300(元),则花费较多的一家为340元,经检验可知,成人和儿童共5张票无法组合成340元.设花费较少的一家花了x 元,则另一家花了40x +元,根据题意得:40=605x +⨯解得:260x =检验可知,该家庭有1个成人,4个儿童,共花费100+40×4=260(元);故选:B .【点睛】本题考查一元一次方程应用,理清题意,找准等量关系,正确列出方程是解题关键.13.我国古代名著《九章算术》中有一题“今有凫起南海,七日至北海;雁起北海,九日至南海.今凫雁俱起,问何日相逢?”(凫:野鸭)设野鸭大雁与从北海和南海同时起飞,经过x 天相遇,可列方程为( )A .179x x -= B .179x x += C .7x+9x=1 D .9x-7x=1 【答案】B【解析】【分析】 直接根据题意得出野鸭和大雁的飞行速度,进而利用它们相向而行何时相逢进而得出等式.【详解】 解:野鸭大雁与从北海和南海同时起飞,经过x 天相遇,可列方程为:11179x ⎛⎫+= ⎪⎝⎭,即179x x +=, 故选B.【点睛】此题主要考查了由实际问题抽象出一元一次方程,正确表示出每天飞行的距离是解题关键.14.若代数式x +2的值为1,则x 等于( )A .1B .-1C .3D .-3【答案】B【解析】【分析】列方程求解.【详解】解:由题意可知x+2=1,解得x=-1,故选B.【点睛】本题考查解一元一次方程,题目简单.15.下列等式变形错误的是( )A.若x=y,则x-5=y-5 B.若-3x=-3y,则x=yC.若xa=ya,则x=y D.若mx=my,则x=y【答案】D【解析】【分析】等式两边同时加上或减去同一个数,等式依然成立;等式两边同时乘以或除以同一个不为0的数,等式依然成立;据此对各选项进行分析判断即可.【详解】A:等式两边同时减去了5,等式依然成立;B:等式两边同时除以3-,等式依然成立;C:等式两边同时乘以a,等式依然成立;D:当0m=时,x不一定等于y,等式不成立;故选:D.【点睛】本题主要考查了等式的性质,熟练掌握相关概念是解题关键.16.若12xy=⎧⎨=-⎩是关于x和y的二元一次方程1ax y+=的解,则a的值等于()A.3 B.1 C.1-D.3-【答案】A【解析】【分析】将方程的解代入所给方程,再解关于a的一元一次方程即可.【详解】解:将12xy=⎧⎨=-⎩代入1ax y+=得,21a-=,解得:3a =.故选:A .【点睛】本题考查的知识点是二元一次方程的解以及解一元一次方程,比较基础,难度不大.17.我国古代名著《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四,问人数几何?原文意思是:现在有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?如果假设共有x 人,则可列方程为( )A .8374x x +=+B .8374x x -=+C .8374x x +=-D .8374x x -=-【答案】B【解析】【分析】根据这个物品的价格不变,列出一元一次方程进行求解即可.【详解】解:设共有x 人,可列方程为:8x-3=7x+4.故选:B【点睛】本题考查了一元一次方程的应用,解题的关键是明确题意,找出合适的等量关系,列出相应的方程.18.今年学校举行足球联赛,共赛17轮(即每队均需参赛17场),记分办法是:胜1场得3分,平1场得1分,负1场得0分.在这次足球比赛中,小虎足球队得16分,且踢平场数是所负场数的整数倍,则小虎足球队所负场数的情况有( )A .2种B .3种C .4种D .5种【答案】B【解析】【分析】设小虎足球队踢平场数是所负场数的k 倍,依题意建立方程组,解方程组从而得到用k 表示的负场数,因为负场数和k 均为整数,据此求得满足k 为整数的负场数情况.【详解】解:设小虎足球队胜了x 场,平了y 场,负了z 场,依题意得 17316x y z x y y kz ++=⎧⎪+=⎨⎪=⎩①②③,把③代入①②得(1)17316x k z x kz ++=⎧⎨+=⎩,解得z=3523k +(k 为整数). 又∵z 为正整数,∴当k=1时,z=7;当k=2时,z=5;当k=16时,z=1. 综上所述,小虎足球队所负场数的情况有3种情况.故选B .【点睛】本题考查了二元一次方程组的应用.解答方程组是个难点,用了换元法.19.如果关于x 的方程()32019a x -=有解,那么实数a 的取值范围是( ) A .3a <B .3a =C .3a >D .3a ≠ 【答案】D【解析】【分析】根据方程有解确定出a 的范围即可.【详解】∵关于x 的方程(a-3)x=2019有解,∴a-3≠0,即a≠3,故选:D .【点睛】此题考查了一元一次方程的解,弄清方程有解的条件是解本题的关键.20.方程834x ax -=-的解是3x =,则a 的值是( ).A .1B .1-C .3-D .3【答案】A【解析】【分析】把3x =代入方程834x ax -=-,得出一个关于a 的方程,求出方程的解即可.【详解】把3x =代入方程834x ax -=-得:8-9=3a-4解得:a=1故选:A .【点睛】本题考查了解一元一次方程和一元二次方程的解,能够得出关于a 的一元一次方程是解此题的关键.。
北师大版八年级下册数学第二章一元一次不等式与一元一次不等式组测试题

7.公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m,另一边减少了2m,剩余空地的面积为18m2,求原正方形空地的边长.设原正方形的空地的边长为xm,则可列方程为( )
A.(x+1)(x+2)=18B. x2﹣3x+16=0C.(x﹣1)(x﹣2)=18D. x2+3x+16=0
②购买多少本书法练习本时,两种方案所花费的钱是一样多?
③购买多少本书法练习本时,按方案二付款更省钱?
18、为了打造区域中心城市,实现攀枝花跨越式发展,我市花城新区建设正按投资计划有序推进.花城新区建设工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方540m3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如下表所示:
故答案为:5x+200,4.5x+225;
②依题意可得,5x+200=4.5x+225,
解得:x=50.
答:购买50本书法练习本时,两种方案所花费的钱是一样多;
③依题意可得,5x+200>4.5x+225,
解得:x>50.
答:购买超过50本书法练习本时,按方案二付款更省钱
18、解:(1)设甲、乙两种型号的挖掘机各需x台、y台.
(3)若商店要使销售该商品每天获得的利润不低于800元,则每天的销售量最少应为多少件?
24.△ABC中,AC=BC,∠ACB=α,点D是平面内不与点A和点B重合 一点,连接DB,将线段DB绕点D顺时针旋转α得到线段DE,连接AE、BE、CD.
(1)如图①,点D与点A在直线BC 两侧,α=60°时, 的值是;直线AE与直线CD相交所成的锐角的度数是度;
比较简单的方程练习题

比较简单的方程练习题一、一元一次方程1. 解方程:3x 7 = 112. 解方程:5 2x = 13. 解方程:4x + 8 = 244. 解方程:9 3x = 05. 解方程:7x 14 = 0二、一元二次方程1. 解方程:x^2 5x + 6 = 02. 解方程:x^2 + 3x 4 = 03. 解方程:2x^2 4x = 04. 解方程:x^2 9 = 05. 解方程:x^2 6x + 9 = 0三、二元一次方程组1. 解方程组:\[\begin{cases}2x + 3y = 8 \\x y = 1\end{cases}\]2. 解方程组:\[3x 4y = 7 \\ 2x + y = 5\end{cases}\]3. 解方程组:\[\begin{cases} x + 4y = 12 \\ 5x 2y = 7\end{cases}\]4. 解方程组:\[\begin{cases} 2x + 5y = 9 \\ 3x y = 2\end{cases}\]5. 解方程组:\[\begin{cases} 4x 3y = 11 \\ x + 2y = 6\]四、分式方程1. 解方程:\(\frac{2}{x+3} + \frac{1}{x2} = 1\)2. 解方程:\(\frac{3}{x1} \frac{2}{x+4} = 2\)3. 解方程:\(\frac{4}{x+5} + \frac{1}{x3} = \frac{1}{2}\)4. 解方程:\(\frac{5}{x2} \frac{3}{x+1} = \frac{2}{3}\)5. 解方程:\(\frac{6}{x+7} + \frac{2}{x4} = \frac{3}{4}\)五、不等式1. 解不等式:3x 4 > 72. 解不等式:2x + 5 < 93. 解不等式:4x 6 ≥ 124. 解不等式:5x + 3 ≤ 75. 解不等式:6x 8 < 2x + 4六、应用题1. 某数的3倍减去7等于20,求这个数。
方程练习题混合运算练习题

方程练习题一、一元一次方程1. 解方程:3x 7 = 112. 解方程:5 2x = 3x + 13. 解方程:4(x 3) = 84. 解方程:7 3(x + 2) = 4 2x5. 解方程:2(3x 1) + 5 = 7x + 3二、一元二次方程1. 解方程:x^2 5x + 6 = 02. 解方程:x^2 4x 12 = 03. 解方程:2x^2 3x 2 = 04. 解方程:x^2 + 6x + 9 = 05. 解方程:4x^2 12x + 9 = 0三、二元一次方程组1. 解方程组:\[\begin{cases}2x + 3y = 8 \\x y = 1\end{cases}\]2. 解方程组:\[3x 2y = 7 \\ 5x + y = 11\end{cases}\]3. 解方程组:\[\begin{cases} 4x + 5y = 12 \\ 2x 3y = 9\end{cases}\]4. 解方程组:\[\begin{cases} x + 6y = 15 \\ 2x 3y = 4\end{cases}\]5. 解方程组:\[\begin{cases} 5x + 3y = 26 \\ 2x y = 8\]混合运算练习题一、分数四则混合运算1. 计算:$\frac{2}{3} + \frac{1}{4} \frac{3}{8}$2. 计算:$\frac{5}{6} \times \frac{3}{4} \div\frac{2}{3}$3. 计算:$\frac{7}{8} + \frac{1}{2} \times \frac{3}{4}$4. 计算:$\frac{4}{9} \frac{2}{3} \div \frac{1}{4}$5. 计算:$\frac{3}{5} \times (\frac{2}{3} \frac{1}{6})$二、小数四则混合运算1. 计算:2.5 + 1.3 0.752. 计算:3.6 × 2.4 ÷ 1.23. 计算:4.8 + 2.5 × 0.64. 计算:5.2 3.4 ÷ 1.75. 计算:6.3 × (2.1 1.2)三、整数四则混合运算1. 计算:18 + 24 ÷ 6 52. 计算:7 × (9 4) + 83. 计算:45 ÷ (5 + 3) × 24. 计算:64 32 ÷ 4 + 75. 计算:100 25 × 2 ÷ 5四、方程与不等式混合运算1. 解不等式:3(2x 1) > 4x + 22. 解不等式:5 2(x 3) ≤ 3x + 13. 解不等式组:\[\begin{cases}2x 3 > 7 \\x + 4 < 2x + 1\end{cases}\]4. 解不等式组:\[\begin{cases}3x + 2y ≥ 6 \\x y < 3\end{cases}\]5. 解不等式组:\[\begin{cases}4x 5 > 2x + 3 \\2x + 3y ≤ 12\end{cases}\]五、几何问题中的方程应用1. 已知直角三角形的两条直角边分别为3cm和4cm,求斜边的长度。
6.6一次函数、一元一次方程和一元一次不等式同步练习附答案

6.6 一次函数、一元一次方程和一元一次不等式1.当自变量x_______时,函数y=5x+4的值大于0;当x_______时,函数的值小于0.2.已知函数y1=x-2,y2=2x-4,当_______时,y1-y2<3._______.3.如图,直线l是一次函数y=kx+b的图像,观察图像,可知:(1)b=_______,k=_______;(2)当y>2时.x_______.4.如图,已知函数y=x+b和y=ax+3的图像交点为P,则不等式x+b>ax+3的解集为_______.5.甲骑自行车、乙骑摩托车沿相同路线由A地到B地,行驶过程中路程与时间的函数关系的图像如图.根据图像回答下列问题:(1)_______先出发,先出发_______;_______先到达终点,先到_______;(2)甲、乙两人的行驶速度分别为_______、________;(3)在什么时间段内,两人均行驶在途中(不包括起点和终点)?在这一时间段内,请你根据下列情形,分别列出关于行驶时间x(m1n)的方程或不等式(不化简,也不求解):①甲在乙的前面____________________________;②甲与乙相遇____________________________;③甲在乙的后面____________________________.6.已知函数y=-2x+4.(1)画出它的图像;(2)当x 为何值时,y<-4?(3)当y 为何值时,-12≤x<32?7.折线ABC 是某人乘出租车所付的费用y (元)与乘车的里程数x(km)之间的函数关系的图像.(1)乘车3 km 和6 km 各需付乘车费多少元?(2)当x ≥3时,求乘车费用y (元)与乘车的里程数x(km)之间的关系式;(3)某乘客所付车费在14元~18元之间,求他乘车路程的范围.8.为了鼓励居民节约用水,我市某地水费按下表规定收取:(1)若某户用水量为x 吨,需付水费y 元,则水费y (元)与用水量x (吨)之间的函数关系式是:y =()_______(010)_______10x x ≤≤⎧⎪⎨>⎪⎩(2)若小华家四月份付水费17元,则他家四月份用水多少吨?(3)已知某住宅小区100户居民五月份交水费共1682元,且该月每户用水量均不超过15吨(含15吨),求该月用水量不超过10吨的居民最多有多少户?9.某校准备在暑假期间组织在这学年中受表彰的部分学生去旅游,甲旅行社收费标准为:除两名带队教师,其余学生可享受半价优惠;乙旅行社收费标准为:两名带队教师和所有学生均按六折优惠,这两个旅行社的全票价均为200元.(1)若共有20名学生,选择哪一家旅行社较优惠?(2)若有x名学生,选择哪一家旅行社较优惠与学生的人数有没有关系?试说明理由.10.如图,直线y=kx+b经过点A(-1,-2)和点B(-2,0),直线y=2x过点A,则不等式2x<kx+b<0的解集为( ).A.x<-2 B.-2<x<-1C.-2<x<0 D.-1<x<011.南宁市狮山公园计划在健身区铺设广场砖,现有甲、乙两个工程队参加竞标,甲工程队铺设广场砖的造价y甲(元)与铺设面积x(m2)的函数关系如图所示;乙工程队铺设广场砖的造价y乙(元)与铺设面积x(m2)满足函数关系式为y乙=kx.(1)根据图写出甲工程队铺设广场砖的造价y甲(元)与铺设面积x(m2)的函数关系式;(2)如果狮山公园铺设广场砖的面积为1600 m2,那么公园选择哪个工程队施工更合算?12.一次函数y=kx+b的图像如图所示,则方程kx+b=0的解为( ).A.x=2 B.y=2C.x=-1 D.y=-113.根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2012年5月1日起对居民生活用电试行“阶梯电价”收费,具体收费标准见下表:2012年5月份,该市居民甲用电100千瓦时,交电费60元;居民乙用电200千瓦时,交电费122.5元,该市一户居民在2012年5月以后,某月用电x千瓦时,当月交电费y元.(1)上表中,a=_______;b=_______;(2)请直接写出y与x之间的函数关系式;(3)试行“阶梯电价”收费以后,该市一户居民月用电多少千瓦时时,其当月的平均电价每千瓦时不超过0.62元?参考答案1.>-45<-452.x>-13.(1)3-k (2)x<14.x>15.(1)甲10min 乙5min (2)12 km/h 24 km/h(3)①甲在乙的前面:15x>25x-4;②甲与乙相遇:15x=25x-4;③甲在乙后面:15x<25x-4;6.(1)略(2)当x>4时,y<-4(3)当1<y≤5时,-12≤x<327.(1)10元,16元,(2)y=2x+4,x≥3.(3)5km~7km8.(1)1.3x 13+2(x-10)(2)12吨.(3)61户.9.(1)选择甲旅行社较优惠(2)选择哪家旅行社较优惠与学生人数x的多少有关系,10.B11.(1)y甲=()() 560500 40800500x xx x⎧≤<⎪⎨+≥⎪⎩(2)当k>45时,选择甲工程队更合算;当0<k<45时,选择乙工程队更合算;当k=45时,选择两个工程队的花费一样.12.C13.(1)0.6 0.65 (2)当x≤150时,y=0.6x;当150<x≤300时,y=0.65x-7.5;当x>300时,y=0.9x-82.5.(3)0.62元.。
北师大版数学八年级下册第二章一元一次不等式与一元一次不等式组第6节一元一次不等式组课后练习

第二章一元一次不等式与一元一次不等式组第6节一元一次不等式组课后练习学校:___________姓名:___________班级:___________考生__________评卷人得分一、单选题1.若关于x的一元一次不等式组122x ax x->⎧⎨->-⎩无解,则a的取值范围是()A.1a≥B.1a>C.1a≤-D.1a<-2.若关于x的不等式组()212xa x⎧->⎨-<⎩的解集为x>a,则a的取值范围是() A.a<2B.a≤2C.a>2D.a≥23.已知关于x 的不等式组255332xxxt x+⎧->-⎪⎪⎨+⎪-<⎪⎩恰有5个整数解,则t的取值范围是()A.﹣6<t<112-B.1162t-≤<-C.1162t-<≤-D.1162t-≤<-4.把不等式组21123xx+>-⎧⎨+≤⎩的解集表示在数轴上,下列选项正确的是()A.B.C.D.5.若方程组3133x y kx y+=+⎧⎨+=⎩的解x,y满足01x y<+<,则k的取值范围是()A.10k-<<B.40k-<<C.08k<<D.4k>-6.如图所示为在数轴上表示的某不等式组的解集,则这个不等式组可能是()A.31215xx-≥⎧⎨->⎩B.31526xx->⎧⎨⎩C.35215xx+≥⎧⎨-<⎩D.322313x xxx<+⎧⎪+⎨--⎪⎩7.已知点M(1﹣2m,1﹣m)关于x轴的对称点在第四象限,则m的取值范围在数轴上表示正确的是()A.B .C.D.8.已知关于x的不等式组()()25513322xxxt x+⎧->⎪⎪⎨+⎪-<⎪⎩恰有5个整数解,则t的取值范围是()A.1992t<<B.1992t≤<C.1992t<≤D.1992t≤≤9.关于x的不等式组12xx m⎧≤-⎪⎨⎪>⎩的所有整数解的积为2,则m的取值范围为()A.m>-3B.m<-2C.m-3≤<-2D.m-3<≤-2 10.不等式组111324(1)2()xxx x a-⎧-<-⎪⎨⎪-≤-⎩有3个整数解,则a的取值范围是()A.65a-≤<-B.65a-<≤-C.65a-<<-D.65a-≤≤-评卷人得分二、填空题11.不等式组273(1)2342363x xxx+>+⎧⎪+⎨-≤⎪⎩的非负整数解有_____个.12.运行程序如图所示,从“输入实数x”到“结果是否>18”为一次程序操作,若输入x 后程序操作进行了两次停止,则x的取值范围是______.13.在平面直角坐标系中,已知点A(7-2m,5-m)在第二象限内,且m为整数,则点A的坐标为_________.14.不等式组2425x a x b +>⎧⎨-<⎩的解集是0<x <2,那么a+b 的值等于_____. 15.关于x 的不等式组,22213x b x b -≥⎧⎨-≤⎩无解,则常数b 的取值范围是__________ 16.关于x 的不等式组1234x m x +⎧⎨-≥-⎩有3个整数解,则m 的取值范围是_____. 17.同时满足332x x ->-和34x x +>的最大整数是_______. 18.若关于x 的不等式组1423x x x m+⎧-≥⎪⎨⎪>⎩的所有整数解的和是﹣9,则m 的取值范围是_____.19.已知x =3是方程2x a -—2=x—1的解,那么不等式(2—5a )x <13的解集是______.20.若数m 使关于x 的不等式组2122274x x x m -⎧≤-+⎪⎨⎪+>-⎩,有且仅有三个整数解,则m 的取值范围是______.评卷人得分 三、解答题 21.某校计划组织师生共310人参加一次野外研学活动,如果租用6辆大客车和5辆小客车恰好全部坐满.已知每辆大客车的乘客座位数比小客车多15个.(1)求每辆大客车和每辆小客车的乘客座位数;(2)由于最后参加活动的人数增加了20人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,为将所有参加活动的师生装载完成,求租用小客车数量的最大值.22.解下列不等式(组):(1)4123x x -<-(2)()543113125x x x x ⎧+<+⎪⎨--≥⎪⎩.23.涡阳苏果超市计划购进甲,乙两种商品共100件,这两种商品的进价、售价如表所示:进价(元/件)售价(元/件)甲种商品1015乙种商品2030设其中甲种商品购进x件,售完此两种商品总利润为y元.(1)写出y与x的函数关系式;(2)该商场计划最多投入1500元用于购进这两种商品共100 件,则至少要购进多少件甲种商品?若售完这些商品,商场可获得的最大利润是多少元?24.某汽车制造公司计划生产A、B两种新型汽车共40辆投放到市场销售.已知A型汽车每辆成本34万元,售价39万元;B型汽车每辆成本42万元,售价50万元.若该公司对此项计划的投资不低于1536万元,不高于1552万元.请解答下列问题:(1)该公司有哪几种生产方案?(2)该公司按照哪种方案生产汽车,才能在这批汽车全部售出后,所获利润最大,最大利润是多少?(3)在(2)的情况下,公司决定拿出利润的2.5%全部用于生产甲乙两种钢板(两种都生产),甲钢板每吨5000元,乙钢板每吨6000元,共有多少种生产方案?(直接写出答案)25.如果一元一次方程的根是一元一次不等式组的解,则称该一元一次方程为该不等式组的相伴方程.(1)在方程320x -=①,210x +=①,()315x x -+=-①中,写出是不等式组25312x x x x -+>-⎧⎨->-+⎩的相伴方程的序号 . (2)写出不等式组213133x x x -<⎧⎨+>-+⎩的一个相伴方程,使得它的根是整数: . (3)若方程1, 2x x ==都是关于x 的不等式组22x x m x m <-⎧⎨-≤⎩的相伴方程,求m 的取值范围.26.阅读下面的材料,回答问题:如果(x-2)(6+2x)>0,求x 的取值范围. 解:根据题意,得20620x x ->⎧⎨+>⎩或20620x x -<⎧⎨+<⎩,分别解这两个不等式组,得第一个不等式组的解集为x >2,第二个不等式组的解集为x <-3.故当x >2或x <-3时,(x-2)(6+2x)>0.(1)由(x-2)(6+2x)>0,得出不等式组20620x x ->⎧⎨+>⎩或20620x x -<⎧⎨+<⎩,体现了_____思想; (2)试利用上述方法,求不等式(x-3)(1-x)<0的解集.27.某超市准备购进A、B两种品牌台灯,其中A每盏进价比B进价贵30元,A售价120元,B售价80元.已知用1040元购进的A数量与用650元购进B的数量相同.(1)求A、B的进价;(2)超市打算购进A、B台灯共100盏,要求A、B的总利润不得少于3400元,不得多于3550元,问有多少种进货方案?(3)在(2)的条件下,该超市决定对A进行降价促销,A台灯每盏降价m(8<m<15)元,B不变,超市如何进货获利最大?参考答案:1.A【解析】【分析】先求出不等式组中的每个不等式的解集,然后根据不等式组无解即可得出答案.【详解】解:解不等式122x x ->-,得1x <,解不等式0x a ->,得x a >,①不等式组1220x x x a ->-⎧⎨->⎩无解, ①1a ≥.故选:A .【点睛】本题考查了一元一次不等式组的解法,属于常考题型,正确理解题意、熟练掌握解一元一次不等式组的方法是解题的关键.2.D【解析】【分析】先求出每一个不等式的解集,然后根据不等式组有解根据已知给的解集即可得出答案.【详解】 ()2120x a x ⎧->⎨-<⎩①②, 由①得2x >,由①得x a >,又不等式组的解集是x >a ,根据同大取大的求解集的原则,①2a >,当2a =时,也满足不等式的解集为2x >,①2a ≥,故选D.【点睛】本题考查了解一元一次不等式组,不等式组的解集,熟练掌握不等式组解集的确定方法“同大取大,同小取小,大小小大中间找,大大小小无解了”是解题的关键.3.C【解析】【分析】本题首先求解不等式组的公共解集,继而按照整数解要求求解本题.【详解】①2553x x +->-, ①20x <;①32x t x +->, ①32x t >-;①不等式组的解集是:2032t x <<-.①不等式组恰有5个整数解,①这5个整数解只能为 15,16,17,18,19,故有143215t ≤-<,求解得:1162t -<≤-. 故选:C .【点睛】本题考查含参不等式组的求解,解题关键在于求解不等式时需将参数当做常量进行运算,其次注意运算仔细即可.4.B【解析】【分析】分别求出每一个不等式的解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则逐个判断即可.【详解】解:解不等式2x +1>-1,得:x >-1,解不等式x +2≤3,得:x ≤1,①不等式组的解集为:-1<x ≤1,故选:B .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.B【解析】【分析】理解清楚题意,运用二元一次方程组的知识,解出k 的取值范围.【详解】①0<x+y <1,观察方程组可知,上下两个方程相加可得:4x+4y=k+4,两边都除以4得,x+y=44k +, 所以44k +>0, 解得k >-4;44k +<1, 解得k <0.所以-4<k <0.故选B .【点睛】当给出两个未知数的和的取值范围时,应仔细观察找到题中所给式子与它们和的关系,进而求值.6.C【解析】【分析】数轴上表示的解集是2≤x <3,再根据不等式组的求法,先分别求出不等式组中每个不等式的解,即可得到不等式的解集,最后根据所求不等式组的解集是否与题干中的解集进行判断,即可得到答案.【详解】解:数轴上表示的解集是2≤x <3, A 、31215x x -≥⎧⎨->⎩①②,①解不等式①得:x≤2,解不等式①得:x>3,①不等式组无解,故本选项不符合题意;B、31526xx->⎧⎨⎩①②①解不等式①得:x>2,解不等式①得:x≤3,①不等式组的解集是2<x≤3,故本选项不符合题意;C、35 215 xx+≥⎧⎨-<⎩①②①解不等式①得:x≥2,解不等式①得:x<3,①不等式组的解集是2≤x<3,故本选项符合题意;D、322313x xxx<+⎧⎪⎨+--⎪⎩①②①解不等式①得:x<2,解不等式①得:x≥3,①不等式组无解,故本选项不符合题意;故选C.【点睛】本题考查数轴和求不等式组的解集,解题的关键是读懂数轴,掌握解不等式组的方法. 7.D【解析】【分析】直接利用关于x轴对称点的性质得出对应点坐标,进而利用第四象限内点的性质得出答案.【详解】解:①点M(1﹣2m,1﹣m)关于x轴的对称点在第四象限,①对称点坐标为:(1﹣2m,m﹣1),则1﹣2m>0,且m﹣1<0,解得:m<12,如图所示:.故选D .【点睛】本题考查了关于x 轴对称点的性质以及不等式的解法,正确得出m 的取值范围是解题的关键.8.C【解析】【分析】先求出不等式的解集,再根据x 有5个整数解确定含t 的式子的值的范围,特别要考虑清楚是否包含端点值,这点极易出错.再求出t 的范围即可.【详解】解:由(1)得x<-10,由(2)x>3-2t,,所以3-2t<x<-10, ①x 有5个整数解,即x=-11,-12,-13,-14,-15,①163215t -≤-<-①1992t <≤ 故答案为C .【点睛】本题考查根据含字母参数的不等式组的解集来求字母参数的取值范围,关键是通过解集确定含字母参数的式子的范围,特别要考虑清楚是否包含端点值,这点极易出错. 9.C【解析】【详解】分析:首先确定不等式组的解集,先利用含m 的式子表示,可表示出整数解,根据所有整数解的积为2就可以确定有哪些整数解,从而求出m 的范围.详解:原不等式组的解集为m <x ≤12-.整数解可能为-1,-2,-3…等又因为不等式组的所有整数解的积是2,而2=-1×(-2),由此可以得到-3≤m<-2.故选C.点睛:本题主要考查了一元一次不等式组的整数解,是一道较为抽象的中考题,利用数轴就能直观的理解题意,列出关于m的不等式组,要借助数轴做出正确的取舍.10.B【解析】【分析】解不等式组,可得不等式组的解,根据不等式组有3个整数解,可得答案.【详解】解:不等式组11132412xxx x a-⎧--⎪⎨⎪-≤-⎩<()(),由13x-﹣12x<﹣1,解得:x>4,由4(x﹣1)≤2(x﹣a),解得:x≤2﹣a,故不等式组的解为:4<x≤2﹣a,由关于x的不等式组11132412xxx x a-⎧--⎪⎨⎪-≤-⎩<()()有3个整数解,得:7≤2﹣a<8,解得:﹣6<a≤﹣5.故选B.【点睛】本题考查了解一元一次不等式组,利用不等式的解得出关于a的不等式是解题的关键.11.4【解析】【分析】首先正确解不等式组,根据它的解集写出其非负整数解.【详解】解不等式2x+7>3(x+1),得:x<4,解不等式2342363xx+-≤,得:x≤8,则不等式组的解集为x<4,所以该不等式组的非负整数解为0、1、2、3这4个,故答案为4.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.12.148 3x<≤【解析】【分析】根据运行程序,第一次运算结果小于等于18,第二次运算结果大于18列出不等式组,然后求解即可.【详解】解:由题意得:36183(36)618xx-≤⎧⎨-->⎩①②,解不等式①,得:8x≤,解不等式①,得:143 x>,则x得取值范围是:148 3x<≤;故答案为148 3x<≤.【点睛】本题考查了一元一次不等式组的应用,读懂题目信息,理解运行程序并列出不等式组是解题的关键.13.(-1,1)【解析】【详解】根据平面直角坐标系的象限特点,第二象限的点的符号为(-,+),所以可得720 50mm-⎧⎨-⎩<>,解不等式可得72<m <5,由于m 为整数,所以m=4,代入可得7-2m=-1,5-m=1,即A 点的坐标为(-1,1).故答案为(-1,1).14.1【解析】【详解】试题分析:先分别用a 、b 表示出各不等式的解集,然后根据题中已知的解集,进行比对,从而得出两个方程,解答即可求出a 、b .24{25x a x b >①<②+-, ①由①得,x >4-2a ;由①得,x <5+2b , ①此不等式组的解集为:4-2a <x <5+2b , ①不等式组24{25x a x b +-><的解是0<x <2, ①4-2a=0,5+2b =2, 解得a=2,b=-1,①a+b=1考点:解一元一次不等式组.15.b >-3【解析】【分析】先求出不等式的解集,再根据不等式无解可得出b 的取值范围.【详解】22213x b x b -≥⎧⎨-≤⎩①② 解不等式①得:22≥+x b解不等式①得:312+≤b x所以不等式组的解集为31222++≤≤b b x ①此不等式无解,①31222++>b b 解得:3b >-故答案为:3b >-.【点睛】本题考查不等式组无解问题,关键是掌握不等式组解集的口诀:同大取大,同小取小,大小小大取中间,大大小小找不到(无解).16.01m ≤<【解析】【分析】解不等式组的两个不等式,根据其整数解的个数得m 的取值范围可得.【详解】解:解不等式x+1≥m ,得:x≥m ﹣1,解不等式2﹣3x≥﹣4,得:x≤2,①不等式组有3个整数解,①110m ≤﹣<﹣,即01m ≤<,故答案为0<m≤1.【点睛】本题是对不等式知识的考查,熟练掌握不等式知识是解决本题的关键.17.2【解析】【分析】根据题意列出不等式组,求出x 的取值范围,再找出符合条件的x 的整数值即可.【详解】根据题意得33234x x x x -⎧>-⎪⎨⎪+>⎩ 解得:-2<x<3.同时满足x 3x 32->-和3x 4x +>的最大整数是2, 故答案为2【点睛】本题考查的是求不等式组解集的方法,即同大取较大,同小去较小,大小小大中间找,大大小小解不了的原则.18.-5≤m <-4.【解析】【分析】先求出不等式的解集,根据已知不等式组的整数解得和为-9即可得出答案.【详解】解:1423x x x m +⎧-≥⎪⎨⎪>⎩①②解不等式①得:x≤-2,①m <x≤-2又①不等式组的所有整数解得和为-9,①-4+(-3)+(-2)=-9①-5≤m <-4;故答案为-5≤m <-4.【点睛】本题主要考查了解一元一次不等式组,是一道较为抽象的题,利用数轴就能直观的理解题意,列出关于m 的不等式组,临界数-5的取舍是易错的地方,要借助数轴做出正确的取舍.19.x <19 【解析】【详解】先根据x=3是方程2x a --2=x-1的解,代入可求出a=-5,再把a 的值代入所求不等式(2—5a )x <13,由不等式的基本性质求出x 的取值范围x <19. 故答案为x <19.20.114m -<≤-【解析】【分析】先解不等式组,求出解集,再根据“有且仅有三个整数解的条件”确定m 的范围.【详解】解:解不等式组2122274x x x m-⎧≤-+⎪⎨⎪+>-⎩ 得:437m x +-< 由有且仅有三个整数解即:3,2,1.则:4017m +-< 解得:114m -<≤-【点睛】本题考查了一元一次不等式组,利用不等式的解得出关于m 的不等式组是解题关键. 21.(1)每辆小客车的乘客座位数是20个,大客车的乘客座位数是35个(2)3【解析】【分析】(1)根据“每辆大客车的乘客座位数-小客车乘客座位数=15;6辆大客车乘客+5辆小客车乘客=310”列出二元一次方程组解之即可.(2)根据题意,设租用a 辆小客车才能将所有参加活动的师生装载完成,利用“大客车乘客+小客车乘客≥310+20”解之即可.【详解】(1)设每辆小客车的乘客座位数是x 个,大客车的乘客座位数是y 个,根据题意,得1556310y x x y -=⎧⎨+=⎩解得2035x y =⎧⎨=⎩ 答:每辆小客车的乘客座位数是20个,大客车的乘客座位数是35个.(2)设租用a 辆小客车才能将所有参加活动的师生装载完成,则20a+35(11-a)≥310+20,解得a≤323,符合条件的a 的最大整数为3.答:租用小客车数量的最大值为3.【点睛】本题考查了二元一次方程组和一元一次不等式的应用,解决本题的关键是找到题目中蕴含的数量关系.22.(1)x<-1;(2)x≤-3.【解析】【分析】(1)由移项,合并,系数化为1,即可得到答案;(2)先分别求出每个不等式的解集,然后取解集的公共部分,即可得到不等式组的解集.【详解】解:(1)4123x x -<-,①4231x x -<-+,①22x <-,①1x <-;(2)()543113125x x x x ⎧+<+⎪⎨--≥⎪⎩①②, 解不等式①,得:12x <-; 解不等式①,得:3x ≤-;①不等式组的解集为:3x ≤-.【点睛】 本题考查了解一元一次不等式组,解一元一次不等式,解题的关键是掌握解一元一次不等式的步骤.23.(1)y=-5x+1000(0≤x≤100),(2)至少要购进50件甲种商品,商场可获得的最大利润是750元.【解析】【分析】(1)根据题意建立函数模型,利用利润=一件的利润×数量即可解题,(2)根据最多投入1500元建立不等式,再根据一次函数的性质求出最值即可.【详解】解:(1)①购进甲,乙两种商品共100件,设其中甲种商品购进x 件,①乙种商品购进(100-x )件,①y=(15-10)x+(30-20)(100-x)=-5x+1000(0≤x≤100),(2)由题意得,10x+20(100-x)≤1500,解得:x≥50,①至少要购进50件甲种商品,①y=-5x+1000,k=-5<0,①y 随着x 的减小而增大,①当x=50时,y 最大=750,①若售完这些商品,商场可获得的最大利润是750元.【点睛】本题考查了一次函数的实际应用,不等式的实际应用,函数的性质,中等难度,运用销售问题的等量关系求出一次函数的解析式是解题关键.24.(1)共有三种方案,分别为①A 型号16辆时, B 型号24辆;①A 型号17辆时,B 型号23辆;①A 型号18辆时,B 型号22辆;(2)当16x =时,272W =最大万元;(3)甲钢板4吨,乙钢板8吨;甲钢板10吨,乙钢板3吨两种生产方案.【解析】【分析】(1)设A 型号的轿车为x 辆,可根据题意列出不等式组,根据问题的实际意义推出整数值;(2)根据“利润=售价-成本”列出一次函数的解析式,然后根据一次函数的性质解答即可; (3)根据(2)中方案求出利润,然后设生产甲钢板m 吨,乙钢板n 吨,列方程求解即可.【详解】(1)设生产A 型号x 辆,则B 型号(40-x )辆,得:1536≤34x +42(40-x )≤1552,解得1618x ≤≤,x 可以取值16,17,18,共有三种方案,分别为:A 型号16辆时,B 型号24辆,A 型号17辆时,B 型号23辆,A 型号18辆时,B 型号22辆.(2)设总利润W 万元,则W =()5840x x +-=3320x -+30k =-<∴w 随x 的增大而减小当16x =时,272W =最大万元;(3)272 2.5%=6.8⨯(万元),设生产甲钢板m 吨,乙钢板n 吨,①50006000 6.810000m n +=⨯,化简得:5668m n +=,①当m =4,n =8时,甲钢板4吨,乙钢板8吨;当m =10,n =3时,甲钢板10吨,乙钢板3吨.【点睛】本题主要考查了一次函数的应用,以及一元一次不等式组的应用,此题是典型的数学建模问题,要先将实际问题转化为不等式组解应用题.25.(1)①;(2)1x =;(3)01m ≤<.【解析】【分析】(1)先求出方程的解和不等式组的解集,再判断即可;(2)解不等式组求得其整数解,根据关联方程的定义写出一个解为1的方程即可; (3)先求出方程的解和不等式组的解集,即可得出答案.【详解】(1)由不等式组25312x x x x -+>-⎧⎨->-+⎩得,3 3.54x <<, 由320x -=,解得,x =23,故方程①320x -=不是不等式组的相伴方程, 由210x +=,解得,x =1-2,故方程①210x +=不是不等式组25312x x x x -+>-⎧⎨->-+⎩的相伴方程,由 ()315x x -+=-,解得 x =2,故方程①()315x x -+=- 是不等式25312x x x x -+>-⎧⎨->-+⎩的相伴方程,故答案为①;(2)由不等式组213133x x x -<⎧⎨+>-+⎩,解得,122x << ,则它的相伴方程的解是整数, 相伴方程x=1故答案为1x =;(3)解不等式组22x x m x m <-⎧⎨-≤⎩得2m x m <≤+ 方程12x x ==,都是不等式组的相伴方程 122m m ∴<<≤+01m ∴≤<【点睛】本题主要考查解一元一次方程和一元一次不等式组,熟练掌握解一元一次方程和一元一次不等式组的技能是解题的关键.26.(1)转化;(2)x >3或x <1【解析】【分析】(1)将一个二次不等式转化为不等式组的形式,该过程体现了转化的数学思想; (2)根据两式相乘,同号得正,异号得负,则转化为30301010x x x x ->-<⎧⎧⎨⎨-<->⎩⎩或 ,再分别解两个不等式组即可.【详解】解:(1)转化;(2)由(x -3)(1-x )<0,可得3010x x -⎧⎨-⎩>,<或3010.x x -⎧⎨-⎩<,> 分别解这两个不等式组,得x >3或x <1.所以不等式(x -3)(1-x )<0的解集是x >3或x <1.【点睛】本题目是一道新型材料题目,考察学生的知识的迁移能力,根据两数相乘,同号得正,异号得负,将二次不等式转化为两个不等式组,解这两个不等式组,即可.27.(1)A 进价80元,B 进价50元;(2)16种;(3)当8<m<10时,A40盏,B60盏,利润最大;当m=10时,A 品牌灯数量在40至55间,利润均为3000;当8<m<10时,A55盏,B45盏,利润最大.【解析】【详解】试题分析:(1)根据:“1040元购进的A 品牌台灯的数量=650元购进的B 品牌台灯数量”相等关系,列方程求解可得;(2)根据:“3400≤A 、B 品牌台灯的总利润≤3550”不等关系,列不等式组,可知数量范围,确定方案数;(3)利用:总利润=A 品牌台灯利润+B 品牌台灯利润,列出函数关系式,结合函数增减性,分类讨论即可.试题解析:(1)设A 品牌台灯进价为x 元/盏,则B 品牌台灯进价为(x-30)元/盏,根据题意得104065030x x -=, 解得x=80,经检验x=80是原分式方程的解.则A 品牌台灯进价为80元/盏,B 品牌台灯进价为x-30=80-30=50(元/盏),答:A 、B 两种品牌台灯的进价分别是80元/盏,50元/盏.(2)设超市购进A 品牌台灯a 盏,则购进B 品牌台灯有(100-a )盏,根据题意,有 ()()()()()()12080805010034001208080501003550a a a a ⎧-+--≥⎪⎨-+--≤⎪⎩解得,40≤a≤55.①a 为整数,①该超市有16种进货方案.(3)令超市销售台灯所获总利润记作w ,根据题意,有w=(120-m-80)a+(80-50)(100-a )=(10-m)a+3000①8‹m‹15①①当8<m<10时,即10-m<0,w随a的增大而减小,故当a=40时,所获总利润w最大,即A品牌台灯40盏、B品牌台灯60盏;①当m=10时,w=3000;故当A品牌台灯数量在40至55间,利润均为3000;①当10<m<15时,即10-m>0,w随a的增大而增大,故当a=55时,所获总利润w最大,即A品牌台灯55盏、B品牌台灯45盏.。
初二解方程练习题加答案

初二解方程练习题加答案一、单元一:一元一次方程(10题)1、解方程:2x + 3 = 7解析:将已知方程化简为:2x = 7 - 32x = 4x = 4 ÷ 2x = 2所以方程的解为 x = 2。
2、解方程:4x - 9 = 7解析:将已知方程化简为:4x = 7 + 94x = 16x = 16 ÷ 4x = 4所以方程的解为 x = 4。
3、解方程:3(x + 2) = 15 解析:将已知方程化简为:3x + 6 = 153x = 15 - 63x = 9x = 9 ÷ 3x = 3所以方程的解为 x = 3。
4、解方程:2(3x - 1) = 10 解析:将已知方程化简为:6x - 2 = 106x = 10 + 26x = 12x = 12 ÷ 6x = 2所以方程的解为 x = 2。
5、解方程:5 - 2x = 7解析:将已知方程化简为:-2x = 7 - 5-2x = 2x = 2 ÷ -2x = -1所以方程的解为 x = -1。
6、解方程:3(x - 4) = 6(x + 1) 解析:将已知方程化简为:3x - 12 = 6x + 6-3x = 6x + 6 + 12-3x = 6x + 18-9x = 18x = 18 ÷ -9x = -2所以方程的解为 x = -2。
7、解方程:2(2x - 3) = 4(x + 1) 解析:将已知方程化简为:4x - 6 = 4x + 4-6 = 4方程无解。
8、解方程:7 - (3 - x) = 2解析:将已知方程化简为:7 - 3 + x = 24 + x = 2x = 2 - 4x = -2所以方程的解为 x = -2。
9、解方程:2(3x + 2) - x = 1 + x 解析:将已知方程化简为:6x + 4 - x = 1 + x5x + 4 = x + 14x = 1 - 44x = -3x = -3 ÷ 4x = -0.75所以方程的解为 x = -0.75。
方程与不等式训练300题(学生版)

2020-1六下双基训练300题方程与不等式六年级·寒假·学生版九层之台,起于累土【练习1.1】 简单的一元一次方程1. ()()43206711y y y y --=--2. ()254(3)2(1)x x x --+=-3. 37(1)32(3)x x x --=-+4. 12(1)4()2x x x --=-5. 4(4)35(72)y y +=--6. 7 2.5 2.536x x -=⨯+7. 12(23)3(21)a a -+=-+ 8. 93(1)6x x --=9. 63(32)6(2)x x x --=-+ 10. 7104(0.5)x x -=-+方程与不等式补充材料千里之行,始于足下11. 3(8)64(11)y y y -=-- 12. 13(8)2(152)x x --=-13. 2(10)52(1)x x x x -+=+- 14.223046m m +--=15. 43(20)67(9)x x x x --=-- 16. 2(21)2(1)3(3)x x x -=+++17. 43(23)12(4)x x x +-=-- 18. ()()335225x x -=--19. ()()()243563221x x x --=--+ 20. ()()()321531152x x x --+=+六年级·寒假·学生版九层之台,起于累土【练习1.2】 一元一次方程——去分母21. 21101211364x x x --+-=- 22. 212153x x +--=23. 3157146y y ---= 24. 212134y y -+-=-25. 341125x x -+-= 26. 1112222x x x ⎡⎤⎛⎫---= ⎪⎢⎥⎝⎭⎣⎦27. 12233xx -=-+ 28.13216222x x x ⎛⎫--=+ ⎪⎝⎭方程与不等式补充材料千里之行,始于足下29. 21101136x x ++-= 30.211135x x +-=- 31. 121224x x+--=+ 32.42571510x x +--= 33. 124123x x ---= 34.213124x x--=- 35. 2123134x x ---= 36.3141136x x x ---=-六年级·寒假·学生版九层之台,起于累土37. 211135x x +-=- 38.+4122523x x x -+-=- 39. 25316412x x x ---+= 40. 2523163x x x +--=- 41. 431432x x -+-= 42.()()11212223x x x ⎡⎤--=+⎢⎥⎣⎦ 43. 141123x x --=- 44.5415513412y y y +--+=-方程与不等式补充材料千里之行,始于足下45. 121225x x ++-=- 46.()10532327x x x -++--=47. 7151322324x x x -++-=- 48.34113843242x x ⎧⎫⎡⎤⎛⎫--=⎨⎬ ⎪⎢⎥⎝⎭⎣⎦⎩⎭ 49. 248539x x -=- 50.3121134x x -+-= 51. 1122254x x x++--=+ 52.1328237x x x-+---=六年级·寒假·学生版九层之台,起于累土53. 248236x x ---=- 54.31322322105x x x +-+-=- 55. 225353x x x ---=- 56. 1212323x x x --+=- 57. 12136x x x -+-=- 58.3157146y y ---= 59. 131224x x+--=- 60.21101211364x x x -++-=-方程与不等式补充材料千里之行,始于足下61. 211011412x x x ++-=- 62.()()142113233x x x ⎡⎤+-=-+⎢⎥⎣⎦ 63. 312423(1)32x x x -+-+=- 64.49325532x x x ++--= 65. 4115(2)13212x x x +--+=-66. 113(23)(32)5(32)(23)32x x x x ---=-+-六年级·寒假·学生版九层之台,起于累土67. 22(31)253y y -=- 68.31242233x x ⎡⎤⎛⎫--= ⎪⎢⎥⎝⎭⎣⎦69. 21101211364x x x -++-=- 70.3213(1)(32)(1)45102x x x --+=-- 71. 431261345x ⎡⎤⎛⎫--= ⎪⎢⎥⎝⎭⎣⎦72.121146x x ++-= 73. 211011412x x x ++-=- 74.111(15)(7)523x x +=--方程与不等式补充材料75. 2110121123644x x x-++-=-76.2383236x x x-+-=-77. 1010210147x x+--=78. ()()137464722x x-=+-79.12223x xx-+-=-80.3221211245x x x+-+-=-81. 13533236524x x⎛⎫⎛⎫---=⎪ ⎪⎝⎭⎝⎭82.112132152yy-+-=六年级·寒假·学生版83. 343111243242x x⎡⎤⎛⎫--=+⎪⎢⎥⎝⎭⎣⎦84.111116412345x⎧⎫⎡⎤⎛⎫--+=⎨⎬⎪⎢⎥⎝⎭⎣⎦⎩⎭85.43254xxx x---=【练习1.3】一元一次方程——去分子、分母中的小数86. 0.10.20.710.30.4x x---=87.1.5 1.51.50.30.1x x--=88.2130.20.5x x-+-=89.0.30.2 1.5570.20.5x x--+=方程与不等式补充材料90. 0.20.10.010.0150.30.04x x---=91.0.010.030.40.110.020.5x x-+-=92.30.412.50.20.5x x+--=-93.341.60.50.2x x-+-=94. 2 1.633180.30.63x x x-+-=95.341.650.2y y-+-=96. 4 1.550.8 1.230.50.20.1x x x----=+97.1.5210.30.2x x--=六年级·寒假·学生版98. 3 1.50.20.1840.20.09x xx--+=+99.0.12230.30.6x xx-+-=100.341.60.50.2x x-+-=101.10.2110.40.7x x+--=102.0.230.210.50.03x x--=103.3 1.140.20.160.70.40.30.06x x x----=104. 1.510.530.6x x--=105.0.10.020.10.10.30.0020.05x x-+-=方程与不等式补充材料106. 0.030.010.170.050.10.020.070.030.09x x x +-+-=107. 0.10.20.0226.57.50.010.02x x---=-108.30.70.310.80.4x xx+-=-109. 0.40.50.20.5110.060.232x xx+-⎛⎫-=+⎪⎝⎭110.2651430.030.30.02x x-+-=【练习1.4】一元一次方程——巧算(整体法、拆括号、裂项、凑分子)111. 11311377325235x x⎛⎫⎛⎫--=--⎪ ⎪⎝⎭⎝⎭112. ()()15201520153411131717x x x---+=六年级·寒假·学生版113. ()()()()1131121132x x x x +--=--+ 114. 31333447167x x x x ⎡⎤⎛⎫⎛⎫---=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 115. ()()1123233211191313x x x -+-+=116. ()()()()1120181120191120182019x x x x +--=--+ 117. 111123452345x x x x +++=+++方程与不等式补充材料118. ()()()()1111123201620162342017x x x x ++++++++= 119. 111133312222y ⎧⎫⎡⎤⎛⎫---=⎨⎬ ⎪⎢⎥⎝⎭⎣⎦⎩⎭120.111246819753x ⎧⎫⎡⎤+⎛⎫+++=⎨⎬⎪⎢⎥⎝⎭⎣⎦⎩⎭121. 2016122320162017x xx +++=⨯⨯⨯ 122. 1122320192020x xx+++=⨯⨯⨯123. 200613352003200520052007x x x x++++=⨯⨯⨯⨯六年级·寒假·学生版124.11 123234201720182019201820192020220192020 x x x x++++=-⨯⨯⨯⨯⨯⨯⨯⨯⨯125.3213201520162017x x x---++=126.201013201920092007x x x---++=127.2017130 1008620162014x x x---++=128.20181614125 357911x x x x x-----++++=方程与不等式补充材料129. 3x a b x b c x c ac a b------++= ()000a b c >>>、、 130.4x a b c x b c d x c d a x d a bd a b c------------+++= () a b c d 、、、均为正数【练习2.1】 较简单的二元一次方程131. 27325x y x y -=⎧⎨+=⎩132. 85765476x y x y +=⎧⎨-=⎩133. 293x y x y -=-⎧⎨+=⎩134. 53702370x y x y --=⎧⎨+-=⎩六年级·寒假·学生版135.5120311120x yy x-=⎧⎨-=⎩136.245x yx y+=⎧⎨-=⎩137.5210x yx y+=⎧⎨+=⎩138.25342x yx y-=⎧⎨+=⎩139.7423624x yx y+=⎧⎨-=⎩140.892317674x yx y+=⎧⎨-=⎩141.()()()()31445135y xx y⎧-=-⎪⎨-=+⎪⎩142.32222m nm n+=⎧⎨-=-⎩方程与不等式补充材料143.372513x yx y-=⎧⎨+=⎩144.25342x yx y-=⎧⎨+=⎩145.30327xx y-=⎧⎨-=⎩146.633594x yx y-=-⎧⎨-=⎩147.2114327x yx y+=⎧⎨+=⎩148.3(1)4(4)5(1)3(5)y xx y-=-⎧⎨-=+⎩149.()()()()4395211x y x yx y x y⎧+--=⎪⎨-++=⎪⎩150.()()()()337242233228x yx y⎧+=-+⎪⎨-+-=⎪⎩六年级·寒假·学生版【练习2.2】较复杂的二元一次方程组151.1234x yx y+=⎧⎪⎨+=⎪⎩152.1640.30.4 1.7x yx y⎧+=⎪⎨⎪+=⎩153.2320.40.7 2.8x yx y⎧+=⎪⎨⎪+=⎩154.35723423235x yx y++⎧+=⎪⎪⎨--⎪+=⎪⎩155.2()1346()4(2)16x y x yx y x y-+⎧=-⎪⎨⎪+=-+⎩156.2344143m n n mnm+-⎧-=⎪⎪⎨⎪+=⎪⎩方程与不等式补充材料157. 2153224111466x y x y ⎧+=-⎪⎪⎨⎪-=-⎪⎩158. 32212453231045x y x y --⎧+=⎪⎪⎨++⎪-=⎪⎩159. 252234m nm n ⎧-=⎪⎨⎪+=⎩160. ()()35724310413x y y x x y x y -+⎧+=-⎪⎪⎨---⎪=⎪⎩161. ()()()54723187323x y x y x y x y ⎧+-+=⎪⎪⎨⎪+--=⎪⎩162. 2164622372y x y x y x x y++⎧-=-⎪⎨⎪+=--⎩六年级·寒假·学生版163.1115212355x yyx+-⎧-=-⎪⎪⎨⎪+=-⎪⎩164.3223132x y x y-+==165.()5111562347 896x y y x x y---+++==【练习2.3】普通的三元一次方程组166.321x y zx y zx y-+=-⎧⎪+-=⎨⎪+=⎩167.324230140x yx zx y z=-⎧⎪-=⎨⎪++=⎩方程与不等式补充材料168.153241341013x y zx y zz-+=⎧⎪+-=-⎨⎪=⎩169.1225224x y zx y zx y++=⎧⎪++=⎨⎪=⎩170.3232443210x y zx y zx y z-+=⎧⎪+-=⎨⎪++=-⎩171. 235532z x yx y zx y z=+⎧⎪-+=⎨⎪+-=⎩172.52621212x yy zx z-=⎧⎪-=-⎨⎪+=⎩173.12232a b ca b ca b c++=⎧⎪+-=⎨⎪-+=⎩六年级·寒假·学生版174.3123325x y zx y zx y z+-=⎧⎪-+=⎨⎪+-=⎩175.261218x y zx yx y z++=⎧⎪-=⎨⎪-+=⎩176.102317328x y zx y zx y z++=⎧⎪++=⎨⎪+-=⎩177.42314235x y zx y zx y z--=⎧⎪++=⎨⎪+-=⎩178.4329253456218x y zx y zx y z-+=⎧⎪+-=⎨⎪+-=⎩179.24+393251156713x y zx y zx y z+=⎧⎪-+=⎨⎪-+=⎩方程与不等式补充材料180.232623343239x y zx y zx y z++=⎧⎪++=⎨⎪++=⎩181.3213272312x y zx y zx y z++=⎧⎪++=⎨⎪+-=⎩182.4239328a b ca b ca b c++=⎧⎪++=⎨⎪++=⎩183.261218x y zx yx y z++=⎧⎪-=⎨⎪-+=⎩184.56812412345x y zx y zx y z+-=⎧⎪+-=-⎨⎪+-=⎩185.24393251156713x y zx y zx y z++=⎧⎪-+=⎨⎪-+=⎩六年级·寒假·学生版186.9202325x y zx y zx y z-+=⎧⎪++=⎨⎪--=⎩187.261218x y zx yx y z++=⎧⎪-=⎨⎪-+=⎩188.231332163510x y zx y zx y z++=⎧⎪+-=⎨⎪+-=⎩189.3423126x y zx y zx y z-+=⎧⎪+-=⎨⎪++=⎩190.275323342y xx y zx z=-⎧⎪++=⎨⎪-=⎩191.344635511x y zx y zy z++=⎧⎪-+=-⎨⎪+=⎩方程与不等式补充材料192.42325560x y zx y zx y z-+=⎧⎪++=⎨⎪++=⎩193.52574313x yy zz x+=⎧⎪-=-⎨⎪+=⎩194.42325560a b ca b ca b c-+=⎧⎪++=⎨⎪++=⎩195.2343327231a b ca b ca b c-+=⎧⎪-+=⎨⎪+-=⎩【练习2.4】有技巧的多元一次方程组196.78388737x yx y+=⎧⎨+=⎩197.231763172357x yx y+=⎧⎨+=⎩六年级·寒假·学生版198.199519975989199719955987x yx y+=⎧⎨+=⎩199.354x yy zx z+=⎧⎪+=⎨⎪+=⎩200.222426x y zx y zx y z++=⎧⎪++=⎨⎪++=⎩201.1131x y zy z xz x y+-=⎧⎪+-=⎨⎪+-=⎩202.512x yy zz x+=⎧⎪+=-⎨⎪+=-⎩203. 2345238x y zx y z⎧==⎪⎨⎪+-=⎩方程与不等式补充材料204.::z1:2:32318x yx y z=⎧⎨-+=⎩205.:3:2:5:466x yy zx y z=⎧⎪=⎨⎪++=⎩206.323232y z x az x y bx y z c+-=⎧⎪+-=⎨⎪+-=⎩207.252821126x yy zz uu x+=⎧⎪+=⎪⎨+=⎪⎪+=⎩208.12323434545151212345x x xx x xx x xx x xx x x++=⎧⎪++=⎪⎪++=⎨⎪++=⎪⎪++=⎩209.12323434545151251532x x xx x xx x xx x xx x x++=⎧⎪++=⎪⎪++=-⎨⎪++=-⎪⎪++=⎩六年级·寒假·学生版210. 220240280+216023202640a b c d e f a b c d e f a b c d e f a b c d e f a b c d e f a b c d e f +++++=⎧⎪+++++=⎪⎪+++++=⎪⎨++++=⎪⎪+++++=⎪+++++=⎪⎩【练习3.1】 一元一次不等式 211. ()25321x x --≥ 212. 8156x x -≥-213. ()()3129x x -≤+ 214. ()()32232x x x x ⎡--⎤>--⎣⎦215. 3(2)152(2)x x -+-<-- 216.121123x x -++<方程与不等式补充材料217. 21433x x -≥-- 218. 3453172y y y --≤-219. 6721251423x x x --+-+>+- 220.121180.50.25x x -++>221. 124816x x x xx ++++> 222.12123x x +-≥223. 2354124463x x x ---+->+ 224. ()()52186117x x -+<-+六年级·寒假·学生版225. ()332524y y +≤- 226.()311212423x ⎡⎤--≥⎢⎥⎣⎦227. 11111112332x x ⎛⎫⎛⎫-≥-- ⎪ ⎪⎝⎭⎝⎭228. ()21035127x x x ---≥-229. 531132x x +--< 230. 22252y y y ---≤- 231. 123x x-< 232.2352x x -≥+方程与不等式补充材料233. 212(12)13x x --≥- 234.8111122x x x ++-≤-235. 422(2)x x -≥+ 236.3122123x x---≤237. 214432x x -+-< 238. 3(2)12(1)x x +>---239. 111(2)(3)248x x ->-+ 240. 533(2)x x +≤+六年级·寒假·学生版241. 14232x x -+->- 242.2432x x -≥- 243. 11132x x --≥ 244. 7(4)2(43)4x x x ---<245. 5(2)86(1)7x x -+<-+ 246.1132x x --< 247. 21211362x x x +--->- 248.3(1)5182x x x +-->-方程与不等式补充材料249.18136x xx+-+≤-250. 15(31)10(42)6(63)39x x x---≥--251. 0.40.210.20.5x x+->-252. 51531x x+>-253. 22123x x+-≥254.2(1)12xx---<255. 2152246x x-+-≥-256.3(1)12384x x+-+<-六年级·寒假·学生版257.121133x xx-+-≤+258.0.2 1.20.120.130.30.05x x---≤-259.()0.20.10.2 0.030.010.70.310.030.50.15x x x-+--<+260. 0.40.90.030.0250.50.032x x x++-->【练习3.2】一元一次不等式组261.3312183(1)xxx x-⎧+≥+⎪⎨⎪+<+-⎩262.253(2)12135x xx+≤+⎧⎪-⎨+>⎪⎩方程与不等式补充材料263. 22531323213x xx x--⎧-≤⎪⎨⎪->-⎩264. 3(1)954x x +≤⎧⎨+>⎩265. 3(1)702423x x x -->⎧⎪-⎨>⎪⎩266. 2362523x x x x +≤+⎧⎪+⎨<+⎪⎩267. 21390x x >-⎧⎨-+≥⎩268. 33(3)21123x x x x +≤+⎧⎪-+⎨>-⎪⎩269. ()()1032561x x x +⎧>⎪⎨⎪+≥-⎩270. 3150728x x x ->⎧⎨-<⎩六年级·寒假·学生版271.312342x xx x-≤-⎧⎨-+>-⎩272.1232(3)3(2)6x xx x⎧->-⎪⎨⎪--->-⎩273.593(1)311122x xx x-<-⎧⎪⎨-≤-⎪⎩274.328212xx-<⎧⎨->⎩275.523(4)131722x xx x-≤+⎧⎪⎨-<-⎪⎩276.328654x--≤--<-277.2632145x xx x-≤-⎧⎪+⎨->⎪⎩278.121233(2)54x xx x--⎧≤⎪⎨⎪+>+⎩方程与不等式补充材料千里之行,始于足下279. ()32421152x x x x ⎧--≥⎪⎨-+≤⎪⎩280. 513(1)23722x x x x ->+⎧⎪⎨-≤-⎪⎩281. 2132(1)5x x +⎧<⎪⎨⎪-≤⎩282. 312128x x x -≤+⎧⎨-<⎩283. 222212x x x x+⎧≥⎪⎨⎪-<-⎩284. 313112123x x x x +<-⎧⎪++⎨≤+⎪⎩285. 521262(3)4x x x x -⎧->⎪⎨⎪-≤-⎩ 286. 2153712x x x ->⎧⎪⎨-+≤⎪⎩六年级·寒假·学生版九层之台,起于累土287. 2(21)342151132x x x x -≤+⎧⎪-+⎨-≤⎪⎩288. 3(2)8143x x x x +>+⎧⎪-⎨≥⎪⎩289. 267442152x x x x +>-⎧⎪+-⎨≥⎪⎩290. 43213(1)6x x x x-⎧+≥⎪⎨⎪--<-⎩291. ()()35223141x x x x -⎧≤-⎪⎨⎪-<+⎩292. 543132(32)3x x x ->⎧⎨--≤⎩293. 2153112x x x ->⎧⎪⎨+-≥⎪⎩294. 253259837(4)2(43)4x x x x x x x +≤+⎧⎪->+⎨⎪---<⎩方程与不等式补充材料千里之行,始于足下295. ()1231121286432x x x x x x +>+-⎧⎪⎪+≥+⎨-<-⎪⎪⎩296. 8156212(12)133(2)152(2)x x x x x x -≥-⎧⎪-⎪-≥-⎨⎪-+-<--⎪⎩297. 36451322253522x x x x x x +>+-⎧⎪⎪+>+⎨<-⎪⎪⎩298. 18136212113620.40.210.20.5x x x x x x x x +-⎧+≤-⎪⎪+--⎪->-⎨⎪+-⎪>-⎪⎩299. 427323653453x x x x x x ⎧⎪+>++≥+≤-⎨-⎪⎩300. ()()32232217223x x x x x x ⎧⎪->++≤+≥+⎨-⎪⎩。