用于约束多目标优化问题的双群体差分进化算法
多目标差分进化算法

多目标差分进化算法
多目标差分进化算法(Multi-Objective Differential Evolution,MODE)是一种用于解决多目标优化问题的进化算法。
与单目标差分进化算法类似,MODE也是一种基于群体的全局优化方法,它可以在不使用任何显式约束的情况下解决复杂的多目标问题。
MODE是由Kalyanmoy Deb和Amrit Pratap等人于2002年提出的。
这种方法通过维护一组个体来进行多目标优化,并使用不同的权重向量(或目标向量)来评估每个个体的适应度。
在MODE中,每个权重向量都被视为一个目标问题的不同实例,个体的适应度被定义为它们在所有目标问题中的表现。
采用差分进化算法的操作方式,MODE在每一代中对群体进行进化。
具体来说,对于每个个体,MODE将选择三个不同的个体作为参考点(也称为候选个体)。
然后,通过与参考个体进行差分操作,生成一个试探个体。
试探个体的适应度被评估,并与当前个体进行比较。
如果试探个体的适应度更优,则将其保留到下一代中,并用其替换当前个体。
在MODE中,采用了一种精英策略来维护较好的解。
具体来说,在每一代中,由于同一权重向量的多个个体可能收敛到同一解决方案,MODE将更新每一个权重向量中最优的个体,并将其保留到下一代中。
因此,这种策略可以确保每个权重向量都有一个最优解,进而使模型达到更好的全局优化效果。
总之,多目标差分进化算法是一种有效的全局优化方法,能够高效地解决多目标优化问题。
在实践中,MODE已被广泛应用于各种领域中,如机器学习、工程设计、经济学和环境管理等。
多目标多约束优化问题算法

多目标多约束优化问题算法多目标多约束优化问题是一类复杂的问题,需要使用特殊设计的算法来解决。
以下是一些常用于解决这类问题的算法:1. 多目标遗传算法(Multi-Objective Genetic Algorithm, MOGA):-原理:使用遗传算法的思想,通过进化的方式寻找最优解。
针对多目标问题,采用Pareto 前沿的概念来评价解的优劣。
-特点:能够同时优化多个目标函数,通过维护一组非支配解来表示可能的最优解。
2. 多目标粒子群优化算法(Multi-Objective Particle Swarm Optimization, MOPSO):-原理:基于群体智能的思想,通过模拟鸟群或鱼群的行为,粒子在解空间中搜索最优解。
-特点:能够在解空间中较好地探索多个目标函数的Pareto 前沿。
3. 多目标差分进化算法(Multi-Objective Differential Evolution, MODE):-原理:差分进化算法的变种,通过引入差分向量来生成新的解,并利用Pareto 前沿来指导搜索过程。
-特点:对于高维、非线性、非凸优化问题有较好的性能。
4. 多目标蚁群算法(Multi-Objective Ant Colony Optimization, MOACO):-原理:基于蚁群算法,模拟蚂蚁在搜索食物时的行为,通过信息素的传递来实现全局搜索和局部搜索。
-特点:在处理多目标问题时,采用Pareto 前沿来评估解的质量。
5. 多目标模拟退火算法(Multi-Objective Simulated Annealing, MOSA):-原理:模拟退火算法的变种,通过模拟金属退火的过程,在解空间中逐渐减小温度来搜索最优解。
-特点:能够在搜索过程中以一定的概率接受比当前解更差的解,避免陷入局部最优解。
这些算法在解决多目标多约束优化问题时具有一定的优势,但选择合适的算法还取决于具体问题的性质和约束条件。
基于多策略融合和约束处理技术的差分进化算法

基于多策略融合和约束处理技术的差分进化算法
宋尔萍
【期刊名称】《微电子学与计算机》
【年(卷),期】2024(41)6
【摘要】当约束优化问题的目标函数结构比较复杂,约束条件较为严格时,差分进化算法(Differential Evolution,DE)的收敛性能表现较差。
为发挥基于群智能搜索算法的优势,本文提出了一个基于等级划分、状态转移和不可行解处理的多策略融合差分进化算法(Multi-Strategy fusion Differential Evolution,MSDE)。
首先,根据目标函数值和约束违反度值对父代群体进行等级划分,并根据等级特征将子群体划分为3个层次;然后,利用不同等级和层次的特征设计有效的进化操作,提高差分进化算法的勘探和挖掘能力;进一步,根据不可行解的分布特征将群体进行状态转移,使转移后的个体在决策空间具有较好的分布;接着,利用转移后个体的分布特征设计了约束处理技术,提高个体向可行域收敛的概率,使不可行解以较高的概率转移到可行域中;最后,与4个最新的进化算法做了仿真实验,结果表明,本文提出的相关策略改进了DE算法的性能。
【总页数】8页(P20-27)
【作者】宋尔萍
【作者单位】青海大学数理学院
【正文语种】中文
【中图分类】TP301.6
【相关文献】
1.结合机械设计约束处理的差分进化算法
2.混合多约束处理技术的并行约束差分进化算法
3.基于混合差分进化和alpha约束支配处理的多目标优化算法
4.结合机械设计约束处理的差分进化算法
5.基于多策略自适应差分进化算法的污水处理过程多目标优化控制
因版权原因,仅展示原文概要,查看原文内容请购买。
多目标优化和进化算法

多目标优化和进化算法
多目标优化(Multi-Objective Optimization,简称MOO)是指在优化问题中存在多个目标函数需要同时优化的情况。
在实际问题中,往往存在多个目标之间相互制约、冲突的情况,因此需要寻找一种方法来平衡这些目标,得到一组最优解,这就是MOO的研究范畴。
进化算法(Evolutionary Algorithm,简称EA)是一类基于生物进化原理的优化算法,其基本思想是通过模拟进化过程来搜索最优解。
进化算法最初是由荷兰学者Holland于1975年提出的,随后经过不断的发展和完善,已经成为了一种重要的优化算法。
在实际应用中,MOO和EA经常被结合起来使用,形成了一种被称为多目标进化算法(Multi-Objective Evolutionary Algorithm,简称MOEA)的优化方法。
MOEA通过模拟生物进化过程,利用选择、交叉和变异等操作来生成新的解,并通过多目标评价函数来评估每个解的优劣。
MOEA能够在多个目标之间进行平衡,得到一组最优解,从而为实际问题提供了有效的解决方案。
MOEA的发展历程可以追溯到20世纪80年代初,最早的研究成果是由美国学者Goldberg和Deb等人提出的NSGA(Non-dominated Sorting Genetic Algorithm),该算法通过非支配排序和拥挤度距离来保持种群的多样性,从而得到一组最优解。
随后,又出现了许多基于NSGA的改进算法,如NSGA-II、
MOEA/D、SPEA等。
总之,MOO和EA是两个独立的研究领域,但它们的结合产生了MOEA这一新的研究方向。
MOEA已经在许多领域得到了广泛应用,如工程设计、决策分析、金融投资等。
基于差分进化算法的自动化约束优化问题

基于差分进化算法的自动化约束优化问题在当今科技飞速发展的时代,自动化技术在各个领域的应用日益广泛,而其中的约束优化问题更是备受关注。
约束优化问题是指在满足一系列约束条件的前提下,寻找最优的解决方案。
这些约束条件可能涉及资源限制、技术要求、法律法规等多个方面,使得问题的求解变得复杂而具有挑战性。
差分进化算法作为一种强大的优化算法,为解决自动化约束优化问题提供了有效的途径。
那么,什么是差分进化算法呢?简单来说,它是一种基于群体的随机搜索算法,通过模拟生物进化过程中的变异、交叉和选择操作,来不断优化解的质量。
与传统的优化算法相比,差分进化算法具有许多独特的优势。
首先,它对问题的初始解不敏感,这意味着即使初始解的质量较差,算法也能够通过不断的迭代逐步找到更好的解。
其次,差分进化算法具有较强的全局搜索能力,能够避免陷入局部最优解,从而提高获得最优解的可能性。
此外,它的参数设置相对简单,易于实现和应用。
在自动化约束优化问题中,我们常常面临各种各样的约束条件。
例如,在生产制造领域,可能需要在有限的时间、材料和人力等资源约束下,最大化生产效率或产品质量;在物流配送中,需要在满足车辆载重、行驶时间和路线限制等条件下,最小化运输成本;在工程设计中,要在满足结构强度、尺寸限制和性能要求等约束的同时,优化设计方案的成本和性能。
为了有效地应用差分进化算法解决这些约束优化问题,我们需要对算法进行适当的改进和调整。
一种常见的方法是引入惩罚函数,将约束违反的情况转化为目标函数的惩罚项。
这样,在算法的迭代过程中,违反约束的解会受到相应的惩罚,从而引导搜索朝着满足约束的方向进行。
另一种方法是采用约束处理技术,如可行性规则和修复策略。
可行性规则通过判断解是否满足约束条件,只允许可行解参与后续的进化操作。
而修复策略则是对不可行解进行修正,使其满足约束条件。
除了上述方法,还可以结合其他优化算法或技术,形成混合算法,以提高求解自动化约束优化问题的性能。
差分进化算法介绍

差分进化算法介绍1.差分进化算法背景差分进化(Differential Evolution,DE)是启发式优化算法的一种,它是基于群体差异的启发式随机搜索算法,该算法是Raincr Stom和Kenneth Price为求解切比雪夫多项式而提出的。
差分进化算法具有原理简单、受控参数少、鲁棒性强等特点。
近年来,DE在约束优化计算、聚类优化计算、非线性优化控制、神经网络优化、滤波器设计、阵列天线方向图综合及其它方面得到了广泛的应用。
差分算法的研究一直相当活跃,基于优胜劣汰自然选择的思想和简单的差分操作使差分算法在一定程度上具有自组织、自适应、自学习等特征。
它的全局寻优能力和易于实施使其在诸多应用中取得成功。
2.差分进化算法简介差分进化算法采用实数编码方式,其算法原理同遗传算法相似刚,主要包括变异、交叉和选择三个基本进化步骤。
DE算法中的选择策略通常为锦标赛选择,而交叉操作方式与遗传算法也大体相同,但在变异操作方面使用了差分策略,即:利用种群中个体间的差分向量对个体进行扰动,实现个体的变异。
与进化策略(Es)采用Gauss或Cauchy 分布作为扰动向量的概率密度函数不同,DE使用的差分策略可根据种群内个体的分布自动调节差分向量(扰动向量)的大小,自适应好;DE 的变异方式,有效地利用了群体分布特性,提高了算法的搜索能力,避免了遗传算法中变异方式的不足。
3.差分进化算法适用情况差分进化算法是一种随机的并行直接搜索算法,最初的设想是用于解决切比雪夫多项式问题,后来发现差分进化算法也是解决复杂优化问题的有效技术。
它可以对非线性不可微连续空间的函数进行最小化。
目前,差分进化算法的应用和研究主要集中于连续、单目标、无约束的确定性优化问题,但是,差分进化算法在多目标、有约束、离散和噪声等复杂环境下的优化也得到了一些进展。
4.基本DE算法差分进化算法把种群中两个成员之间的加权差向量加到第三个成员上以产生新的参数向量,这一操作称为“变异”。
面向多目标优化的进化算法和遗传算法研究

面向多目标优化的进化算法和遗传算法研究随着科技的不断进步,人们在工业、农业、商业等领域中对高效优化问题的需求越来越大。
多目标优化问题是其中的一类重要问题。
与单目标问题相比,多目标问题涉及到多个目标函数,这些目标函数之间相互影响,难以直接比较。
多目标优化问题的解决方案被认为是最优的,当它们满足所有目标函数时。
面向多目标优化问题,进化算法和遗传算法是两种有效的优化方法,其优点在于具有较好的全局搜索能力,并且适用于各种类型的问题。
本文将介绍进化算法和遗传算法在面对多目标优化问题时的研究。
一、进化算法在多目标优化问题中的应用进化算法是一种基于自然选择和适应性等有生命的生物体生存策略和规律的计算思想的一类优化算法。
它与传统的优化算法相比不需要对问题进行数学建模,同时还能够处理问题的不确定性和复杂性。
因此,进化算法是一种十分灵活的方法,其在多目标优化问题中表现良好。
(一)多目标进化算法多目标进化算法(Multi-Objective Evolutionary Algorithm, MOEA)是一类专门解决多目标优化问题的进化算法。
在MOEA中,每个个体都包含多个特征向量,每个向量表示该个体在不同目标下的得分。
同时,MOEA中也包含算法来处理收敛和多样性的问题。
在MOEA中,多样性和收敛性是非常重要的,因为这些因素会影响到解的质量和搜索速度。
(二)基于多目标进化算法的Pareto最优解Pareto最优解是指在多目标优化问题中,不能再优化一个目标的解集合。
这是一种非常常用的解决多目标优化问题的方法。
Pareto最优方法通过建立较小集合的非劣解来推动优化过程。
每个单独的非劣解都应该优于所有其他不可行解的任何一个水平。
因此,优化问题的解就变成找到Pareto最优解集。
这个问题可以通过多目标进化算法来解决。
(三)多目标粒子群优化算法多目标粒子群优化算法(Multi-Objective Particle Swarm Optimization, MOPSO)是一种基于粒子群优化算法的多目标优化算法。
差分进化算法 约束条件

差分进化算法约束条件
差分进化算法(Differential Evolution, DE)是一种常用的
全局优化算法,通常用于解决连续优化问题。
在应用差分进化算法时,我们经常会遇到约束条件,也就是问题的解需要满足一定的限
制条件。
这些约束条件可能包括等式约束、不等式约束或者其他形
式的约束。
在差分进化算法中处理约束条件的方法有很多种,下面我将从
不同角度来解释:
1. 罚函数法,一种常见的处理约束条件的方法是使用罚函数法。
在罚函数法中,对于违反约束条件的解,通过增加一个罚项来惩罚
这些解,使得在优化过程中不满足约束条件的解变得不利于优化。
这样可以在一定程度上保证优化的解满足约束条件。
2. 转换方法,另一种常见的处理约束条件的方法是通过一定的
变换将约束优化问题转换为无约束优化问题。
这种方法包括线性变换、非线性变换等,通过变换使得原始的约束优化问题转化为一个
无约束优化问题,然后再利用差分进化算法进行求解。
3. 修复法,修复法是指在每一代种群中,对不满足约束条件的
个体进行修复,使其满足约束条件。
这种方法的优点是可以保证每
一代种群中的解都满足约束条件,但缺点是可能会增加计算的复杂度。
4. 多目标优化,有时候约束条件可以被看作是另一个优化目标,可以将约束条件转化为多目标优化问题进行求解。
总的来说,处理约束条件是差分进化算法在实际应用中需要考
虑的一个重要问题,不同的方法适用于不同的情况。
在应用差分进
化算法时,需要根据具体的问题特点选择合适的处理约束条件的方法,以求得较好的优化效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用于约束多目标优化问题的双群体差分进化算法
孟红云1 张小华2 刘三阳1
(1.西安电子科技大学 应用数学系,西安,710071;
2.西安电子科技大学 智能信息处理研究所,西安,710071)
摘 要:首先给出一种改进的差分进化算法,然后提出一种基于双群体搜索机制的求解约束多目标优化问题的差分进化算法.该算法同时使用两个群体,其中一个用于保存搜索过程中找到的可行解,另一个用于记录在搜索过程中得到的部分具有某些优良特性的不可行解,避免了构造罚函数和直接删除不可行解.此外,将本文算法、N SGA-Ⅱ和SPEA 的时间复杂度进行比较表明,NS GA-Ⅱ最优,本文算法与SPE A相当.对经典测试函数的仿真结果表明,与NSGA-Ⅱ相比较,本文算法在均匀性及逼近性方面均具有一定的优势. 关键字: 差分进化算法;约束优化问题;多目标优化问题;
中图分类号:TP18
1 引言
达尔文的自然选择机理和个体的学习能力推动进化算法的出现和发展,用进化算法求解优化问题已成为一个研究的热点[1-3].但目前研究最多的却是无约束优化问题.然而,在科学研究和工程实践中,许多实际问题最终都归结为求解一个带有约束条件的函数优化问题,因此研究基于进化算法求解约束优化问题是非常有必要的.不失一般性,以最小化问题为例,约束优化问题(Constrai ned Opti mizatio n Prob lem ,COP )可定义如下:
)(COP ()()()()q
j x h p i x g t s x f x f x f x F j i k R
x n ,,1,0)( ,,1,0)( ..,,,)(min 21 ===≤=∈ (1) 其中)(x F 为目标函数,)(),(x h x g j i 称为约束条件,n n R x x x x ∈=),,,(21 称为n 维决策
向量.将满足所有约束条件的解空间S 称为(1)的可行域.特别的,当1=k 时,(1)为单目标优化问题;当1>k 时,(1)为多目标优化问题.)(x g i 为第i 个不等式约束,)(x h j 是第j 个等式约束.另一方面,对于等式约束0)(=x h j 可通过容许误差(也称容忍度)0>δ将它转化为两个不等式约束:
⎪⎩⎪⎨⎧≤--≤-0
)(0)(δδx h x h j j
(2) 故在以后讨论问题时,仅考虑带不等式约束的优化问题.进一步,如果x 使得不等式约束0)(=x g i ,则称约束()x g i 在x 处是积极的.在搜索空间S 中,满足约束条件的决策变量x 称为可行解,否则称为不可行解.
定义1(全局最优解)()
**2*1*,,,n x x x x =是COP 的全局最优解,是指S x ∈*且)(*x F 不劣于可行域内任意解y 所对应的目标函数)(y F ,表示为)( )(*
y F x F . 对于单目标优化问题,)( )(*y F x F 等价为)()(*y F x F ≤,而对于多目标优化问题是指不存在y ,使得)(y F Pa re to 优于)(*x F .
目前,进化算法用于无约束优化问题的文献居多,与之比较,对约束优化问题的研究相对
较少[4-6]。
文[7]
对当前基于进化算法的各种约束处理方法进行了较为详细的综述.对于约束优化问题的约束处理方法基本上分为两类:基于罚函数的约束处理技术和基于多目标优化技术的约束处理技术.由于罚函数法在使用中不需要约束函数和目标函数的解析性质,因此经常被应用于约束优化问题,但该类方法对罚因子有很强的依赖性,需要根据具体问题平衡罚
函数与目标函数.为了避免复杂罚函数的构造,Ve rdegay 等[8]将进化算法中的竞争选择用于
约束处理,并在比较两个解的性能时提出了三个准则,但他的第三个准则—可行解优于不可行解—这一准则合理性不强 .然而该文的这一准则却为进化算法求解约束优化问题提供了新思路,获得了良好效果.
因为在现实中存在一大类约束优化问题,其最优解位于约束边界上或附近,对于这类问题,在最优解附近的不可行解的适应值很可能优于位于可行域内部的大部分可行解的适应值,因此无论从适应值本身还是从最优解的相对位置考虑,这样的不可行解对找到最优解都是很有帮助的,故如何有效利用搜索过程中的部分具有较好性质的不可行解是解决此类问题的难点之一.基于以上考虑,本文拟给出一种求解约束多目标优化问题的基于双群体机制的差分
进化算法,并对文中算法的时间复杂度与NSG A-Ⅱ[9]和S PE A[10]进行比较,最后用实验
仿真说明文中算法的可行性及有效性. 2 用于约束优化的双群体差分进化算法
2.1 差分进化算法
差分进化算法是一类简单而有效的进化算法,已被成功应用于求解无约束单目标和多目
标优化问题 [11-14].该算法在整个运行过程中保持群体的规模不变,它也有类似于遗传算
法的变异、交叉和选择等操作,其中变异操作定义如下:
()
321r r r P P F P C -⋅+= (3)
其中1r P ,32,r r P P 为从进化群体中随机选取的互不相同的三个个体,F 为位于区间]1,5.0[中的参数.(3)式表示从种群中随机取出的两个个体32,r r P P 的差,经参数F 放大或缩小后被加到第三个个体1r P 上,以构成新的个体()n c c C ,,1 =.为了增加群体的多样性,交叉操作被引入差分进化算法,具体操作如下: 针对父代个体),,(1n r x x P =的每一分量i x ,产生位于区间]1,0[中的随机数i p ,根据i p 与
参数CR 的大小关系确定是否用i c 替换i x ,以得到新的个体),,(1
n r x x P ''=' , 其中 , , ⎩⎨⎧='i i i x c x if if CR
p CR p i i ≥<.如果新个体r P '优于父代个体r P ,则用r P '来替换r P ,否则保持不变.在差分进化算法中,选择操作采取的是贪婪策略,即只有当产生的子代个体优于父代个体时才被保留,否则,父代个体被保留至下一代.
大量研究与实验发现差分进化算法在维护群体的多样性及搜索能力方面功能较强,但收敛速度相对较慢,因此本文拟给出一种改进的差分进化算法用于多目标优化问题,仿真实验表明,改进的差分进化算法在不破坏原有算法维护群体多样性的前提下,可改善差分进化算法的收敛速度.。