初一变量之间的关系

合集下载

初一变量之间的关系知识点归纳实用

初一变量之间的关系知识点归纳实用

变量之间的关系 济宁学院附中李涛【基础知识】 知识网络自变量变量的概念因变量变量之间的关系变量的表达方法1.表格法2.关系式法3. 图象 法速度时间图象路程时间图象知识点一、变量、自变量、因变量1 、在某一变化过程中, 不断变化的量叫做变 量。

2、如果一个变量 y 随另一个变量 x 的变化而变化,则把 x 叫做自变量, y 叫做因变量。

3 、自变量与因变量如何确定: (方法技巧)(1) 自变量是先发生变化的量; 因变量是后发生变化的量。

(2)自变量是主动发生变化的量,因变量是随着自变量的变化而发生变化的量。

(3)利用具体情境来体会两者的依存 关系。

知识点二: 变量的表示方法1.列表法 1.定义:表格是采用数表相结合的形式,运用表格表示两个变量之间的关系,从中获取信息、研究不同量之间的关系。

(1)首先要明确表格中所列的是哪两个变量;(2)分清哪一个 量为自变量,哪一个量为因变量; 列表时一般第一行代表自变量,第二行代表因变量 .(3)自变量从小到大的顺序列出,再分别求出对应的因变量的值。

结合实 际情境理解它们之间的关系。

特点:优点:直观,可以直接从表中找出自变量与因变量的对应值,缺点:具有局限性,只能表示因变量的一部分。

2.关系式法(又叫解析式法) 1、定义:关系式(即解析式)是利用数学式子来表示变量之间关系的等式,通常是用含有自变量(用字母表示)的代数 式表示因变量(也用字母表示),这样的数学等量关系式叫做关系式 。

2、本质:是数学等量关系式 3.写法注意,必须将因变量单独 写在等号的左边。

3 、求关系式的方法: -- (就是找等量关系)类型: (1)将自 变量和因变量看作两个未知数,根据 等量关系,并最终写成关系式的形式。

(2)根据表格中所列的数据 相同的变化关系写出变量之 间的关系式; (例如: y 变化一样都和第一个比) (3)根据实际问题中的基本数量关系写出变量之间的关系式; (4)根据图象写出与之对应的变量之间的关系式。

北师大版七年级初一变量之间的关系

北师大版七年级初一变量之间的关系

欢迎阅读变量之间的关系复习知识点总结:自变量变量的概念因变量变量之间的关系表格法关系式法变量的表达方法速度时间图象图象法路程时间图象单价元/升)这三个量中, 是常量, 是自变量, 是因变量.?5.在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中因变量是( )A.太阳光强弱B.水的温度C.所晒时间D.热水器6.一个圆柱的高h为10 cm,当圆柱的底面半径r由小到大变化时,圆柱的体积V也发生了变化,在这个变化过程中( )A.r是因变量,V是自变量B.r是自变量,V是因变量C.r是自变量,h是因变量D.h是自变量,V是因变量.上表中___________是自变量, __________是因变量x为__________℃时,声速y达到346 m/s.?x(kg)间有下面的关系:(2)如果用h表示距离地面的高度,用t表示温度,那么随着h的变化,t是怎么变化的?(3)你知道距离地面6 km的高空气温是多少吗?(2)水的温度是如何随着时间的变化而变化的?(3)时间每推移2 min,水的温度如何变化?(4)时间为8 min时,水的温度为多少?你能得出时间为9 min时水的温度吗?(5)根据表格,你认为时间为16 min和18 min时水的温度分别为多少?(6)为了节约能源,你认为应在什么时间停止烧水?13.心理学家发现,学生对概念的接受能力y 与提出概念所用的时间x(单位:min)之间有如下关系(1)上表中反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量? (2)当提出概念所用时间是10 min 时,学生的接受能力是多少?(3)根据表格中的数据,你认为提出概念所用时间为多少时,学生的接受能力最强?12AE 时,3.如图,△ABC 的面积是2cm 2,直线l ∥BC ,顶点A 在l 上,当顶点C 沿BC 所在直线向点B 运动(不超过点B )时,要保持△ABC 的面积不变,则顶点A 应( )lCB AA.向直线l 的上方运动;B.向直线l 的下方运动;C.在直线l上运动;D.以上三种情形都可能发生.4.当一个圆锥的底面半径为原来的2倍,高变为原来的13时,它的体积变为原来的( )A.2B.2C.4D.49.设梯形的上底长为x cm,下底比上底多 2 c m,高与上底相等,面积为2cm2,则根据题意可列方程为_____.10.用一根长50cm的细绳围成一个矩形.设矩形的一边长为xcm,面积为y cm2.求y与x的函数关系式;11.南方A市欲将一批容易变质的水果运往B市销售,若有飞机、火车、汽车三种运输方式,现只选择其中一种,这三种运输方式的主要参考数据如下表所示:若这批水果在运输(包括装卸)过程中的损耗为200元/h,记A、B两市间的距离为x km(1)如果用W1、W2、W3分别表示使用飞机、火车、汽车运输时的总支出费用(包括损耗),求W1、W2、W3与x间的关系式;(2)当12y cm2.(1)(2)(3)(4)13.(1)(2)6(3)14所示:(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)随着行驶时间的不断增加,油箱中剩余油量的变化趋势是怎样的?(3)请直接写出Q与t的关系式,并求出这辆汽车在连续行驶6h后,油箱中的剩余油量;(4)这辆车在中途不加油的情况下,最多能连续行驶的时间是多少?15.用一根长是20cm的细绳围成一个长方形(如图),这个长方形的一边的长为x cm,它的面积为y cm2.(1)写出y与x之间的关系式,在这个关系式中,哪个是自变量?它的取值应在什么范围内?(2)用表格表示当x从1变到9时(每次增加1),y的相应值;(3)从上面的表格中,你能看出什么规律?(4)猜想一下,怎样围法,得到的长方形的面积最大?最大是多少《用图象表示的变量间关系》习题6.一个苹果从180m的楼顶掉下,它距离地面的距离h(m)与下落时间t(s)之间关系如上图,下面的说法正确的是( )A.每相隔1s,苹果下落的路程是相同的;B.每秒钟下落的路程越来越大C.经过3s,苹果下落了一半的高度;D.最后2s,苹果下落了一半的高度7.一个三角形的面积始终保持不变,它的一边的长为x cm,这边上的高为y cm,y与x的关系如下图,从图像中可以看出:(1)当x越来越大时,y越来越________;(2)这个三角形的面积等于________cm2.(3)可以想像:当x非常大非常大时,y一定非常小非常小,这个三角形显得很“扁”,但无论x多么的大,y总是_______零(填“大于”、“小于”、“大于或等于”之一).8.某商店出售茶杯,茶杯的个数与钱数之间的关系,如图所示,由图可得每个茶杯_______元.9.甲、乙两人在一次赛跑中,路程s与时间t的关系如图所示,根据图象回答:这是一次____米赛跑;先到达终点的是____;乙的速度是________.14.小明、爸爸、爷爷同时从家里出发到达同一目的地后立即返回,小明去时骑自行车,返回时步行;爷爷去时是步行,返回时骑自行车;爸爸往返都是步行.三人步行速度不等,小明和爷爷骑自行车的速度相等,每个人的行走路程与时间的关系用如图三个图象表示.根据图象回答下列问题:(1)三个图象中哪个对应小明、爸爸、爷爷?(2)家距离目的地多远?(3)小明与爷爷骑自行车的速度是多少?爸爸步行的速度是多少?15.如图表示玲玲骑自行车离家的距离与时间的关系.她9点离开家,15点回到家,请根据图象回答下列问题:(1)玲玲到达离家最远的地方是什么时间?她离家多远?(2)她何时开始第一次休息?休息了多长时间?(3)第一次休息时,她离家多远?(4)11点~12点她骑车前进了多少千米?第三章变量之间的关系达标检测卷一、选择题(每题3分,共24分)与x的,车t的图( )8.A,B两地相距20 km,甲、乙两人都从A地去B地,图中l1和l2分别表示甲、乙两人所走路程s(km)与时间t(h)之间的关系.下列说法:①乙晚出发1 h;②乙出发3 h后追上甲;③甲的速度是4 km/h;④乙先到达B地.其中正确的个数是( )A.1B.2C.3D.4二、填空题(每题5分,共30分)9.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的关系是y=x+32.如果某一温度的摄氏度数是25 ℃,那么它的华氏度数是____________.10.小雨画了一个边长为3 cm的正方形,如果将正方形的边长增加x cm,那么面积的增加值y(cm2)与边长的增加值x(cm)之间的关系式为____________.?11.如图是甲、乙两名运动员在自行车比赛中所走路程与时间的关系图象,则甲的速度____________乙的速度(用“>”“=”或“<”填空).12.小明早晨从家骑车到学校,先上坡,后下坡,行驶情况如图所示,如果返回时上、下坡的速度与去学校时上、下坡的速度相同,那么小明从学校骑车回家用的时间是____________.13.某航空公司行李的托运费按行李的质量收取,30 kg以下免费,30 kg及以上按图中所示的关系来由变化到.?弹簧的长度是___________;?(2)如果所挂物体的质量为x kg,弹簧的长度为y cm,根据上表写出y与x的关系式;(3)当所挂物体的质量为5.5 kg时,请求出弹簧的长度;(4)如果弹簧的最大长度为20 cm,则该弹簧最多能挂质量为多重的物体?。

初一数学第三章

初一数学第三章

第三章变量之间的关系
1、用表格表示变量之间的关系
用列表法表示变量之间的关系时,变量对应的数值有限,但比较直观
(1)定义解析
变量:是指没有固定的值,可以改变的数
自变量:分析系统(或模型)时,可以选择研究其中一些变量对另一些变量的影响,那么我们选择的这些变量就称为自变量
因变量:分析系统(或模型)时,可以选择研究其中一些变量对另一些变量的影响,那么被影响的量就被称为因变量
常数:是指固定的值,一直没有改变的数
(2)表格表示
如图:
从图中可以看出,人口随着时间变化而变化
因此时间是自变量,人口数目是因变量
个人见解:通常列表一般自变量在上面,因变量在下面,更直观去表现变化关系
2、用关系式表示变量之间的关系
用关系式表示变量之间的关系时,给定自变量的值,都可以求出因变量的值
个人见解:重点在于找到正确的自变量和因变量
通常设自变量为x 因变量为y
通式为:y=ax+b,其中b为常数,a为自变量的变化系数
公式列取之后,随意在题目中找到两组数,带入公式中,得到一个二元一次方程组求取a和b的值,带入通式当中
获取自变量和因变量的关系式
注意:计算一定要仔细,反复检查,得到关系式之后在代入第三组数据进行验证
3、用图象表示的变量间的关系
个人见解:一般和坐标为自变量,纵坐标表示因变量,大多数使用的是折线或者曲线图
做题时一般是给你一个具体的图像,
(1)一一对应的数据自己做成表格,跟方便后期的关系式计算
(2)做题的时候认真读题,观察给你的数据属于自变量还是因变量,根据给定的数据从图表中读取相对应的结果
(3)图像更加直观的表现变量的变化趋势,总结区域性变量的变化走向。

初一数学变量之间的关系

初一数学变量之间的关系

二、快乐合作,收获新知。

如图,三角形ABC的底边BC上的高是6厘米,当三角形的顶点C沿底边所在的直线向点B运动时,三角形的面积发生了变化。

(1)指出这个变化过程中的变量,其中哪个量是自变量?哪个量是因变量?(2)如果三角形的底边长x(厘米),那么三角形的面积y(厘米2)可以表示为。

(3)你发现了吗:变量之间的关系,除了用表格表示外,还可以用表示,如图y=3x 表示高一定时,和之间的关系,它是变量y随x变化的关系式。

(4)当底边长从12厘米变化到3厘米时,三角形的面积从厘米2变化到厘米2让我们利用数值转换机直观地来感受一下:表格法和关系式法吧。

小试牛刀:如果三角形ABC的底边BC是8厘米,当三角形的顶点A沿DA所在的直线运动时,三角形的面积发生了变化。

(1)在这个变化过程中,自变量因变量各是什么?(2)如果三角形的高为x(厘米),而三角形的面积y (厘米2)可以表示为:。

(3)当高从3厘米变化到12厘米时,三角形的面积从厘米2变化到 厘米2。

(4)你发现两道题的异同了吗?三、深入探究,巩固新知1、如图,圆锥的高是4厘米,当圆锥的底面半径由小到大变化时,圆锥的体积也随之发生了变化。

(1)指出这个过程中的变量,其中哪个量是自变量?哪个量是因变量?(2)如果圆锥的底面半径为r (厘米),那么圆锥的体积V (厘米3)与r (厘米)的关系为(3)当底面半径由1厘米变化到10厘米时,圆锥的体积由 立方厘米变化到 立方厘米。

我能行:如图,圆锥的底面半径是2厘米,当圆锥的高由小到大变化时,圆锥的体积也随之发生了变化。

(1)在这个变化过程中,自变量、因变量各是什么?(2)如果圆锥底面高为 h (厘米),那么圆锥的体积v (厘米3)与高D B CA DBC AD A1 A 2h之间的关系式:____________(3)(3)当高由1cm变化到10cm时,圆锥的体积由____cm3变化到____cm3四、走进生活应用数学议一议:你知道什么是“低碳生活”吗?“低碳生活”是指人们生活中尽量减少所耗能量,从而降低碳、特别是二氧化碳的排放量的一种方式。

七年级下册数学课本目录

七年级下册数学课本目录

七年级下册数学课本目录第一章整式的乘除
1.同底数幂的乘法
2.幂的乘方与积的乘方
3.同底数幂的除法
4.整式的乘法
5.平方差公式
6.完全平方公式
7.整式的除法
第二章相交线与平行线
1.两条直线的位置关系
2.探索直线平行的条件
3.平行线的性质
4.用尺规作角
第三章三角形
1.认识三角形
2.图形的全等
3.探索三角形全等的条件
4.用尺规作三角形
5.利用三角形全等测距离
第四章变量之间的关系
1.用表格表示的变量间关系
2.用关系式表示的变量间关系
3.用图像表示的变量间关系第五章生活中的轴对称
1.轴对称现象
2.探索轴对称的性质
3.简单的轴对称图形
4.利用轴对称进行设计
第六章概率初步
1.感受可能性
2.频率的稳定性
3.等可能事件的概率。

初一下册 第6章 变量之间的关系

初一下册 第6章 变量之间的关系

初一下册第六章复习(回忆)一、变量变数或变量,是指没有固定的值,可以改变的数。

变量以非数字的符号来表达,一般用英文或拉丁字母表示变量。

与变量对立的即是常量,常量也称作常数。

按照变量之间的时间因果等关系,可以将变量分为自变量和因变量。

在这里,为了能够更好理解这两个基本概念的联系与区别,我们通过两个角度来叙述。

(一)实践中的变量变量是指在实验中可以变化的因素。

在实验中,由实验者操纵和调控的变量叫做自变量。

例如,在探究光照强度对光合速率影响的实验中,人为控制和调节光照强度,则光照强度就是自变量。

实验中由于实验变量而引起实验对象的变化和结果叫做因变量。

例如,在探究光照强度对光合速率影响的实验中,由于光照强度不同,使得实验对象的光合速率有所变化,这个光合速率的变化就叫做因变量。

再如,我们可以分析人体这个系统中,呼吸对于维持生命的影响,那么呼吸就是自变量,而生命维持的状态被认为是因变量。

系统和模型可以是一个二元函数这么简单,也可以是整个社会这样复杂。

(二)抽象出的变量在函数关系式中,某特定的数会随一个(或几个)变动的数的变动而变动,就称为因变量。

如:Y=f(X)。

此式表示为:Y随X的变化而变化。

Y是因变量,X是自变量。

各种函数举例:①一次函数:一般式是y=kx+b(k≠0),其中x为自变量,y为因变量,k为系数,b为常数项(常数项即为恒定不变的数值)。

②反比例函数:一般式是y=k/x,其中x为自变量,y为因变量,k为比例系数。

③二次函数:y=ax^2;+bx+c(a≠0),其中x为自变量,y为因变量,a为二次项系数,b为一次项系数,c为常数项。

(三)自变量与因变量区别与联系①自变量与因变量之间存在因果关系。

我们知道,变化的量称为自变量,由变化的量而引起的另一个量的变化,那么这一个量叫因变量。

很显然,这是一个由“因”导致“果”的过程,自变量是“因”,因变量是“果”。

我们在某些物理、化学、生物或心理等实验中,为了研究某种因素对实验对象的某种性质产生何种影响,以及随着该因素量或质的变化,这种影响程度将如何改变。

七年级上册初一数学概念总结

七年级上册初一数学概念总结

七年级上册初一数学概念总结一、代数概念1、代数式:代数式是由常数、变量以及运算符号组成的数学表达式,表达某种关系。

2、变量:变量既可代表数字,也可代表某种物理量的变化,它是未知的或有待确定的量,可以用字母表示。

3、常数:常数是指同一个表达式中,所有的变量都确定下来后,不随变量变化而变化的数字,一般用数字表示。

4、等价式:等价式是指对等的两个代数式,当两个代数式都成立时,它们之间称为等价的。

5、恒等式:恒等式是指两边的两个代数式相等,它们的值总是相等的。

二、因式分解1、因式分解:因式分解是指将一个多项式拆分成一系列的因数的过程。

2、本原因式:本原因式是指不可继续分解的因式。

3、同类因式:同类因式是指相同的因式,它们可以相加或相减。

4、最简式:最简式是指将一个多项式简化成最简单的形式,即可以用最少的因式表达出来。

三、方程1、一元一次方程:一元一次方程是指一个未知数只出现一次,并且次数是一次的方程。

2、二元一次方程:二元一次方程是指有两个未知数,且只出现一次,并且次数是一次的方程。

3、二元二次方程:二元二次方程是指有两个未知数,且只出现二次,并且次数是二次的方程,也称根的方程。

4、无解方程:无解方程是指求解该方程没有解的方程。

5、负数解:负数解是指方程可以有负数的解的情况。

四、几何概念1、几何体:几何体是指由一组构件共用一个封闭空间组成的三维物体,如立方体、正方体、球体、圆柱体、圆锥体等。

2、平面图形:平面图形是指由一组构件共用一个平面空间组成的二维物体,如正方形、圆形、三角形、多边形等。

3、中心角:中心角是指多边形的一个角,它的两条边的中点分别指向多边形的中心点。

4、中线:中线是指多边形的一条直线,它由每个多边形的顶点构成,并且两个顶点都指向多边形的中心点。

5、面积:面积是指三维物体或者平面图形中内部空间的大小,它用来描述多边形或者几何体的大小。

初一第9章变量之间的关系

初一第9章变量之间的关系

变量之间的关系过关测试 济宁学院附中李涛一、填空题1、小明从杭州给远在北京的爷爷打电话,电话费随着时间的变化而变化。

在这一问题中,自变量是 ,因变量是 。

2、某城市大剧院地面的一部分为扇形,观众席的座位按下列方式设置:上述问题中,第五排、第六排分别有 个、 个座位;第排有 个座位.3.计划购买40元的某种文化用品,则所购买的总数N (个)和单价想X (元)的关系式为 。

4.三角形底边为8 cm ,当它的高由小到大变化时,三角形的面积也随之发生了变化.1.在这个变化过程中,高是_________,三角形面积是_________.2.如果三角形的高为h cm ,面积S 表示为_________.3.当高由1 cm 变化到5 cm 时,面积从_______cm 2变化到_______cm 2.4.当高为3 cm 时,面积为_________cm 2.5.当高为10 cm 时,面积为_________cm 2.5、假定甲、乙两人在一次赛跑中,路程S 与时间t 的关系如图所示,那么可以知道: ①这是一次 米的赛跑;②甲、乙两人中先到达终点的是;③乙在这次赛跑中的速度为 m/s 。

二、选择题 1、明明从广州给远在上海的爷爷打电话,电话费随着时间的变化而变化,在这个过程中,因变量是( )A 、明明 B 、电话费 C 、时间 D 、爷爷 2、地表以下的岩层温度随着所处深度的变化而变化,在某个地点与的关系可以由公式来表示,则随的增大而( )A 、增大 B 、减小 C 、不变 D 、以上答案都不对3、某种储蓄的月利率是0.36%,现存入本金100元,本金与利息的和y (元)与所存月数x (月)之间的关系式为( )A 、x y 36.0100+= B 、x y 6.3100+= C 、x y 36.11+= D 、x y 36.1001+=4、某人骑车外出,所行的路程S (千米)与时间t (小时)的关系如图所示,现有下列四种说法:①第3小时中的速度比第1小时中的速度快;②第3小时中的速度比第1小时中的速度慢;③第3小时后已停止前进;④第3小时后保持匀速前进。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

变量之间的关系一、教学目标:1、正确区分常量、变量、自变量、因变量;2、了解变量的表示方法;3、掌握图像信息题.二、教学重难点重点:变量的三种表示方法;图像信息规律难点:理解变量与变量的关系;各种图像信息规律的处理三、基础知识3.1 知识框架图3.2 基本知识概念变量是常量是自变量是因变量是变量的表示方法3.3常用的公式:三角型面积圆锥的体积圆柱侧面积圆的面积圆的周长正方体的体积梯形的面积四、典型例题分析考点一:变量的概念自变量与因变量的联系与区别联系:(1)、两者都是某一变化过程中的变量;(2)、两者因研究的侧重点或者先后顺序不同可以相互转化。

区别:(1)、自变量先发生变化或自主发生变化;(2)、因变量后发生变化或随自变量的变化而变化。

例题1、将一定的糖倒入水中,随着加入的水量的增多,糖水的浓度将,这个问题中的自变量是,因变量是。

例题2、气温随高度而变化的过程中,________是自变量,_______因变量.习题:1.正方形边长是3,若边长增加,则面积增加,其中自变量是_________,因变量________考点二:用列表法表示两个变量之间的关系1、用表格的形式表示两个变量之间的关系时,自变量放在第一行,因变量放到第二行。

2、列表格的时候主要要分析两点:第一、哪个是自变量,哪个是因变量;第二、当自变量发生改变的时候,因变量相应地改变了多少。

例题3、某校办工厂2005年的年产值是30万元,以后每年增加5万元(1)上述那些量在发生变化?自变量和因变量各是什么?(2)用表格表示出2005年到2009年的年产值与年份之间的关系例题4、一次实验中,一个同学把一根弹簧的上端固定,在下端挂重物,下表是测得的弹簧长度y与所挂物体质量x的一组对应值:(1)这个变化过程中的自变量和因变量各是什么?(2)当所挂重物为3kg时,弹簧多长?不挂重物呢?(3)若所挂重物为6 kg时(在弹簧的允许范围内),能说出弹簧多长吗?习题:1.把汽油以均匀的速度注入油箱内,注入时间和注入的油量得到的数据如下表:(1)注入汽油5分钟时,注入的油量是多少?(2)如果用t表示注入时间,Q表示注入油量,随着t的增大,Q的变化趋势如何?(3)当t每增加1分钟,Q的变化情况如何?(4)估计t=12分时,Q的值是多少?你是如何估计的?考点三:用关系式表示变量之间的关系1、在探索关系式时,关键是观察随自变量的变化,因变量是如何变化的,总结出规律性的结论。

2、关系式即解析式,其写法不同于方程,一般把因变量单独放到等式左边,而右边则是一个含有表示自变量的字母的代数式。

等式中只含有自变量和因变量这两个变量,其他的量都是常量。

3、利用关系式求因变量的值,①已知自变量与因变量的关系式,欲求因变量的值,实质就是求代数式的值;②对于每一个确定的自变量的值,因变量都有一个确定的与之对应的值。

例题5、在日常生活中,我们常常会用到弹簧秤,下表为用弹簧秤称物品时的长度与物品重量之间的关系.势是怎样的?答:___________________________________________________________(2)当x=3.5时,y=___________; 当x=8时,y=_____________.(3)写出x与y之间的关系:___________________________.例题6、如图,梯形的上底是,下底的长为10,高是6(1)梯形的面积与上底长之间的关系式是什么?(2)用表格表示当从1变到9时(每次增加1)的值.(3)当每增加1,如何变化?(4)当时,等什么?此时表示什么?习题:1. 我们把物体从固态变成液态叫做熔化,下表是一种固体在加热过程中的温度:(1)上表反映的是哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)说一说因变量怎样随着自变量的变化而变化的?(3)画折线图表示两个变量之间的关系;(4)一般地,我们把虽然继续加热,但温度不变的过程叫做熔化过程,熔化过程中的温度叫做熔点。

那么该固体熔化过程在哪段时间呢?熔点是多少?2. 等腰三角形的顶角度数y和底角度数x的关系是。

考点四:借助图像表示变量之间的关系1、图象是刻画变量之间关系的又一重要方式,特点是非常直观。

2、在用图像表示变量之间的关系时,通常用横轴上的点表示自变量,用纵轴表示因变量。

3、在图像上获取信息的前提是弄清楚横轴,纵轴所表示的意义4、看图像要看清图像从什么位置开始,到什么位置结束。

要观察物体在运动过程中每个时段的状态,应找到对应点所表示的数据5、对比看:速度—时间、路程—时间两图象★若图象表示的是速度与时间之间的关系,随时间的增加即从左向右,“上升的线段”①表示速度在增加;“水平线段”②表示速度不变,也就是做匀速运动,“下降的线段”③表示速度在减少。

★若图像表示的是距离与时间之间的关系,“上升的线段”①表示物体匀速运动;“水平线段”②表示物体停止运动,“下降的线段”③表示物体反向运动。

例题7、一年中,每天日照(从日出到日落)的时间是不同的,下图表示了某地区从2008年1月1日到2008年12月26日的日照时间.⑴右图描述是哪两个变量之间的关系?其中自变量是什么?因变量是什么?⑵哪天的日照时间最短?这一天的日照时间约是多少?⑶哪天的日照时间最长?这一天的日照时间约是多少?⑷大约在什么时间段内,日照时间在增加?在什么时间段内,日照时间在减少?⑸说一说该地一年中日照时间是怎样随时间而变化的.一年之中第几天例题8、小明早上7:00点出发到社区作义务劳动,开始匀速步行,后碰上小亮,小明就停下和小亮聊了一会儿,为了保证能准时到达,他加快了速度,但仍然保持匀速步行,结果准时到达,如图中,以下四个图象中能准确描述小明离家的距离与时间的关系的是()例题9、一辆公共汽车从车站开出,加速一段时间后开始匀速行驶,过了一段时间,发现没多少油了,开到加油站加了油,几分钟后,又开始匀速行驶。

下面哪一幅图可以近似的刻画出该汽车在这段时间内的速度变化情况()A速度时间0B速度时间C速度时间0D速度时间例题10、小明同学骑自行车去郊外春游,下图表示他离家的距离y(千米)与所用的时间x(小时)之间关系的函数图像。

(1)根据图像回答:小明到达离家最远的地方需几小时?此时离家多远?(2)求小明出发两个半小时离家多远?(3)求小明出发多长时间距家12千米?例题11:甲、乙两地相距80千米,A骑自行车,B骑摩托车沿相同路线由甲地到乙地行驶,两人行驶的路程y(千米)与时间x(时)的关系如图6—45所示,请你根据图象回答或解决下面的问题:(1)谁出发较早?早多长时间?谁到达乙地较早?早多长时间?(2)两人在途中行驶的速度分别是多少?(3)请你分别求出表示自行车和摩托车行驶过程的路程y(千米)与时间x(小时)的关系式.(不要求写出自变量x的取值范围)(4)指出在什么时间段内两辆车均行驶在途中(不包括端点).在这一时间段内,请你按下列条件列出关于时间x的方程或不等式(不要化简,也不要求解):①行车行驶在摩托车的前面;②自行车与摩托车相遇;③自行车行驶在摩托车的后面.例题12、某空军加油飞机接到命令,立即给另一架正在飞行的运输飞机进行空中加油,在加油过程中,设运输飞机的油箱余油量为Q1吨,加油飞机的加油油箱余油量为Q2吨,加油时间为t分钟,Q1、Q2与t之间的函数图像如图所示,结合图像回答下列问题:(1)加油飞机的加油油箱中装载了多少吨油?将这些油全部加给运输飞机需多少分钟?(2)运输飞机加完油后,以原速继续飞行,需10小时到达目的地,油料是否够用?说明理由。

Q(吨)分钟)习题:1、今年又是海南水果的丰收年,某芒果园的果树上挂满了成熟的芒果,一阵微风吹过,一个熟透的芒果从树上掉下来。

下面四个图象中,能表示芒果下落过程中速度与时间变化关系的图象只可能是( )。

2. 小明从家骑车上学,先上坡到达A 地后再下坡到达学校,所用的时间与路程如图所示.如果返回时,上、下坡速度仍然保持不变,那么他从学校回到家需要的时间是( )A .8.6分钟B .9分钟C .12分钟D .16分钟3. 小明某天上午9时骑自行车离开家,15时回家,他有意描绘了离家的距离与时间的变化情况(如右图所示). (1)图象表示了哪两个变量的关系?哪个是自变量?哪个是因变量?速度时间A速度时间 B速度时间 C速度时间D(2)10时和13时,他分别离家多远?(3)他到达离家最远的地方是什么时间?离家多远?(4)11时到12时他行驶了多少千米?(5)他可能在哪段时间内休息,并吃午餐?(6)他由离家最远的地方返回时的平均速度是多少?4. 如图表示一艘轮船和一艘快艇沿相同路线从甲港出发到乙港行驶过程中路程随时间变化的图象,根据图象解答下列问题:(1)轮船和快艇在途中(不包括起点和终点)行驶的速度分别是多少?(2)问快艇出发多长时间赶上轮船?5. 某市出租车计费办法如图所示,请根据图回答问题。

(1)出租车起价是多少元?在多少千米之内只收起价费?(2)由图形求出起价里程走完之后每行驶1km所增加的钱数;(3)某地客人想用30元钱坐车游览本市,利用图形求出他大约能走多少千米?考点五:规律题型例题13. 下列图形都是由同样大小的平行四边形按一定的规律组成,其中,第①个图形中一共有1个平行四边形,第②个图形中一共有5个平行四边形,第③个图形中一共有11个平行四边形,……则第⑥个图形中平行四边形的个数为()A .55B . 42C . 41D . 29例题14. 将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第 n 个图形 有 个小圆. (用含 n 的代数式表示)例题15. 有两个完全重合的矩形,将其中一个始终保持不动,另一个矩形绕其对称中心O 按逆时针方向进行旋转,每次均旋转45°,第1次旋转后得到图①,第2次旋转后得到图②,……,则第10次旋转后得到的图形与图①~④中相同的是()A . 图①B . 图②C . 图③D . 图④习题:1. 观察下列图形(图6—24),若第①个图形中阴影部分的面积为1,第②个图形中阴影部分的面积为43,第③个图形中阴影部分的面积为169,第④个图形中阴影部分的面积为6427,…则第n 个图形中阴影部分的面积为________(用字母n 表示) (2002年潍坊市中考试题)2. 如图6—25,观察下列三角形图案,每行圆点的个数有什么规律?设每个三角形有n 行,用n 的代数式表示这两个三角形图案中圆点的总数,为________3. 观察下列算式:122=,224=,328=,4216=,….根据上述算式中的规律,请你猜想102的末尾数字是( )A 、2B 、4C 、8D 、6专注作业:1、骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化,在这一问题中,因变量是( )A 、沙漠B 、体温C 、时间D 、骆驼2、明明从广州给远在上海的爷爷打电话,电话费随着时间的变化而变化,在这个过程中,因变量是( )A 、明明B 、电话费C 、时间D 、爷爷3、长方形的周长为24cm ,其中一边为x (其中0>x ),面积为y 2cm ,则这样的长方形中y 与x 的关系可以写为( )A 、2x y = B 、()212x y -= C 、()x x y ⋅-=12 D 、()x y -=1224. 一辆汽车以平均速度60千米/时的速度在公路上行驶,则它所走的路程s (千米)与所用的时间t (时)的关系表达式为( )A. s=60tB.s=t 60 C. s=60t D. s=60t 5. 如图,若用(1)、(2)、(3)、(4)四幅图象分别表示变量之间的关系,请按图像所给顺序,将下面的(a )、(b )、(c )、(d )排序,正确的顺序是( )。

相关文档
最新文档