变量间的相互关系解析
用图像表示变量间的关系

⑥ 90
60 ②
⑤
⑦
20 24 时间/分
判断速度随时间的变化情况:
怎样看图:
从左往右若图象上升,表明速度增大;
若图象下降,表明速度减小;
若图象与横轴平行;则表明速度保持不变,
尝试
探究 洪峰公司根据工作需要,准备租一辆面包车,
经考察,个体车与出租车公司的月租金计算方法如图所示,请 你根据图中提供的信息,与同伴讨论一个租车方案,
__关__系_式__法__
给定一个变量的值可求出另一个变量的值
__图__象__法_
能够直观地看出变量间的变化__趋__势_
在图象中
上升线------表示因变量随自变量的增大而增大; 水平线-----表示因变量随自变量的增大而不变; 下降线------表示因变量随自变量的增大而减小, 以上三点是打开“解决图象类问题”的一把万能钥匙 ,
y元
200 150 100 50
0
乙 1 当每月通话时间为多少时,两
A
甲
公司的收费相同 2 当每月通话时间在什么范围
时, t/分钟 应选择乙公司 100 200 300 3 当每月通话时间在什么范围
时,
应选择
甲公司
变量之间关系的三种表示方法
变量之间关系的表示 __列__表__法_
特征 能看出两个变量之间的_变__化__关系
随堂练习:
1.柿子熟了,从树上落下来.下面的那一幅图可以 大致刻画出柿子下落过程中 即落地前 的速度的 变化情况
速
速
度
度
0
时间
1
0
时间
2
速
度
正确
0 3
时间
速 度
0 4 时间
资料的统计分析--双变量分析

分解成若干个两变量间的关系,或者说,多个变量之间的关系可
以用若干个两变量间的关系来描述。
如图:四种现象之间的关系,就可以分解成三个两变量之间的关 系。
社会流动程度
女性就业情况
离婚现象
青少年犯罪现象
两变量之间的关系可以分为相关关系与因果关 系。
一、相关关系
1、概念:两个变量之间的相关(correlation)关系指 的是当其中一个变量发生变化时(或取值不同时), 另一个变量也随之发生变化(取值也不同)。反过来 也一样。
第二节 交互分类
探讨两个定类变量(或一个定类,一个定序变量)之 间关系的方法。
一、交互分类的意义与作用 所谓交互分类(cross classification),就是将调查所
得的一组数据按照两个不同的变量进行综合的分类。 交互分类可以较为深入的描述样本资料的分布状况和
内在结构。更重要的是,交互分类可以对变量之间的 关系进行分析和解释。 交互分类所适用的变量层次是定类变量和定序变量。
第三节 其他层次变量的相关测量与检验
3、定距变量与定距变量
当资料是分组资料时候 公式为:
f 为各组所对应的频数
第三节 其他层次变量的相关测量与检验
3、定距变量与定距变量
皮尔逊相关系数可以采用F检验的方法, 也可采用t检验的方法,因为F=t2
第三节 其他层次变量的相关测量与检验
注意:
本章思考题
1、名词解释:相关关系、因果关系、交 互分类、消减误差比例、回归分析
2、课后练习题。
第三节 其他层次变量的相关测量与检验
要将随机样本中有关两个定序变量间关系的结 果推论到总体,同样必须对其进行统计检验, Gamma系数的抽样分布在随机抽样和样本规 模比较大的情况下,近似于正态分布,因此可 以用Z检验的方法进行。将G值转换为Z值的公 式为:
变量之间的影响关系和多重影响因素的共同作用类型

变量之间的影响关系和多重影响因素的共同作用类型目录一、内容概览 (2)1.1 研究背景 (3)1.2 研究意义 (3)二、变量之间的影响关系 (5)2.1 直接影响关系 (6)2.1.1 正向影响 (7)2.1.2 负向影响 (8)2.2 间接影响关系 (9)2.2.1 长期影响 (10)2.2.2 短期影响 (11)2.3 混合影响关系 (13)2.3.1 共同影响 (14)2.3.2 交互影响 (16)三、多重影响因素的共同作用类型 (17)3.1 同时影响 (18)3.2 顺序影响 (19)3.3 加权影响 (20)3.4 非线性影响 (21)四、结论与展望 (23)4.1 结论总结 (24)4.2 研究不足 (25)4.3 未来研究方向 (25)一、内容概览本文档旨在分析和探讨变量之间的影响关系以及多重影响因素的共同作用类型。
我们将首先介绍变量之间的基本概念,然后详细讨论影响关系及其类型,最后探讨多重影响因素的共同作用类型。
通过对这些主题的深入研究,我们希望能够为决策者、研究人员和实践者提供有关如何理解和处理变量之间关系的有益见解。
相关性和因果性:我们将探讨变量之间的相关性和因果性,以便更好地理解它们之间的关系。
相关性是指两个变量之间的程度或方向上的关联,而因果性则是指一个变量的变化导致另一个变量的变化。
影响关系类型:我们将讨论不同类型的影响关系,如直接效应、间接效应、调节效应等,并分析它们在实际问题中的应用。
多重影响因素:我们将探讨多重影响因素的共同作用类型,如多元回归分析、主成分分析等方法,以揭示多个变量之间的相互作用。
模型构建与验证:我们将介绍如何构建和验证各种类型的模型,以确保我们的分析结果具有较高的可靠性和有效性。
通过本文档的学习,读者将能够掌握变量之间影响关系的基础知识,了解不同类型的影响关系及其应用,以及如何运用多种方法来分析多重影响因素的共同作用。
这将有助于读者在实际问题中做出更明智的决策和预测。
第三章 变量之间的关系(单元小结)七年级数学下册(北师大版)

知识专题
用表格表示变量之间关系的“三个一” 一个优点:根据表格中已列出的自变量的值,可以直接查 到与其对应的因变量的值,使用起来比较方便. 一个不足:表格中所列出的对应值一般都是有限的,由表 格不容易看出两个变量之间的对应规律,不能直观、形象 地反映变量之间的变化趋势. 一个注意:用表格表示变量之间关系时,要先表示自变量,再 表示因变量,在表示自变量和因变量时,第一列要写单位名称.
小兰前20分的速度为6千米/时,最后10分的速度为18千米/时. (3)小红与小兰从学校到书店的平均速度各是多少?
小红的平均速度为6千米/时,小兰的平均速度为5千米/时.
考点专练
例4:一辆汽车以每时 50 千米的速度行驶了 t 时,行驶路 程为 s 千米. (1)这个情境中,有哪些变量?其中自变量是什么?因
缓——速度越慢
知识专题
三种表示变量之间关系的方法和优缺点:
方法
优点
缺点
表格法
对于表中自变量的每一个值,可以 只能列出部分自变量与因变量
不通过计算,直接把因变量的值找 的对应值,难以反映变量间变
到,查询时很方便,于是一些数学 化的全貌,而且从表中看不出
用表应运而生
变量间的对应规律
关系式法 关系式简明扼要,规范准确
程=时间×速度”,销售问题中“销售额=单价× 数量”等; (3)根据表格与图象中的信息列关系式(这种方法以后 会学习)等.
知识专题
4.用关系式表示变量之间的关系的优缺点:
优点:简单明了,能准确反映整个变化过程中自 变量与因变量的相互关系. 缺点:求对应值时有时要经过比较复杂的计算, 而且实际问题中,有的变量之间的关系不一定能 用关系式表示出来.
s/千米
实线—小兰 虚线—小红
变量间的相关关系及独立性检验

判断两个变量之间是否存在非线性相关关系可以通过绘制散点图或计算非 线性相关系数等方法来进行。
相关系数及其计算
相关系数是衡量两个变量之间相关关系的统计量,其计算方法有多种,其中最常用的是皮尔逊相关系 数和斯皮尔曼秩相关系数。
皮尔逊相关系数使用积差法计算,其值介于-1和1之间,用于衡量线性相关关系的强度和方向。斯皮尔 曼秩相关系数则用于衡量等级数据之间的相关性。
变量间的相关关系及独立性检验
目录
• 变量间的相关关系 • 变量间的独立性检验 • 变量间的因果关系推断 • 相关性与独立性的区别与联系
01
变量间的相关关系
线性相关关系
线性相关关系是指两个或多个变量之间存在一种可以用直 线表示的依赖关系。当一个变量发生变化时,另一个变量 也会随之发生相应的变化。
独立性检验
常用于验证两个变量之间是否存在直 接的因果关系,例如在经济学中检验 货币政策是否对经济增长有影响,或 者在心理学中检验某种疗法是否对心 理健康有影响。
THANKS。
因果关系推断的方法
基于理论的推断
01
根据相关学科的理论和知识,推断变量之间的因果关
系。
基于相关关系的推断
02 通过分析变量之间的相关系数、相关图等,推断变量之间的因果关系。基于实验的推断03
通过实验的方式,控制其他变量的影响,观察单一变
量的变化对结果变量的影响,从而推断因果关系。
因果关系推断的局限性
相关性与独立性的联系
相关性和独立性是描述变量间关系的 两种不同角度,有时一个变量可能既 与另一个变量相关,又与第三个变量 独立。
在某些情况下,相关性和独立性可能 相互转化,例如当引入第三个变量时 ,两个原本独立的变量可能变得相关 。
变量间的相互关系PPT教学课件

植
物Байду номын сангаас
的
受精 传粉 结果
开花
一
生
考点一: 识别种子的结构
种子的结构、功能和发育
结构 种皮
主要功能 保护
发育时的变化 脱落
胚芽 胚轴 胚 胚根
子叶
是新植株的 幼体
贮藏营养物质,为种 子萌发提供营养(双子 叶植物)
种子萌发时,转运营 养物质(单子叶植物)
发育成茎和叶 发育成连接根和
茎的部分 发育成根
逐渐消失
考点二、 种子的萌发
探究实验
1、提出问题
提出问题: 在哪种环境条件下种子才能萌发呢?
2、作出假设
如何作出假设?
讨论
请根据你的生活经验,举例说明以下条件 哪些是种子萌发的必要条件,哪些不是必要条 件?
1、土壤,2、空气,3、阳光,4、适宜的 温度,5、肥料,6、适量的水分
作出假设: 种子萌发需要水、空气和适宜的温度。
函数关系是一种因果关系,而相关关系 不一定是因果关系,也可能是伴随关系。
例如,有人发现,对于在校儿童,鞋的 大小与阅读能力有很强的相关关系,然而 学会新词并不能使脚变大,而是涉及到第 三个因素——年龄,当儿童长大一些以后, 他的阅读能力会提高,而且由于人长大脚 也变大。
如何分析变量之间是否具有相关的关系
B、空气
C、适宜的温度 D、有生命力的胚
4、小明帮父母收获时,发现有些“玉米棒子”上只有很少的玉米粒子。你认为造
成这些玉米缺粒最可能的原因是( ) [考点四]
A、水分不足
B、光照不足 C、无机盐不足 D、传粉不足
5、菜豆种子贮存营养物质的结构是由什么发育而来的( ) [考点四]
A、卵细胞
变量间的相互关系

从上表发觉,对某个人不一定有此规律,但对诸多种体
放在一起,就体现出“人体脂肪随年龄增长而增长”这 一规律.而表中各年龄相应旳脂肪数是这个年龄人群旳样 本平均数.我们也能够对它们作统计图、表,对这两个变 量有一种直观上旳印象和判断.
下面我们以年龄为横轴,
脂出各个点,35
2.3 变量间旳相互关系
一、变量之间旳有关关系
变量与变量之间旳关系常见旳有两类: 一类是拟定性旳函数关系,像正方形旳边 长a和面积S旳关系,另一类是变量间确实 存在关系,但又不具有函数关系所要求确 实定性,它们旳关系是带有随机性旳。
人旳身高并不能拟定体重,但一般来说 “身高者,体也重”,所以身高与体重这 两个变量具有有关关系.
有关关系与函数关系旳异同点
(1)相同点:两者均是指两个变量旳关系;
(2)不同点:函数关系是一种拟定旳关系, 如匀速直线运动中时间t与旅程s旳关系;
有关关系是一种非拟定旳关系,如一块 农田旳水稻产量与施肥量之间旳关系,实 际上,函数关系是两个非随机变量旳关系, 而有关关系是非随机变量与随机变量旳关 系。
n
n
y bˆ
(xi x)( yi y)
i1
n
(xi x)2
xi
nx y
i
i1
n
xi2
2
nx
,
i1
i1
aˆ y bˆx
例1:观察两有关变量得如下表:
x -1 -2 -3 -4 -5 5 3 4 2 1
y -9 -7 -5 -3 -1 1 5 3 7 9
求两变量间旳回归方程
解:
列表:
i 1 2 3 4 5 6 7 8 9 10
xi -1 -2 -3 -4 -5 5 3 4 2 1
变量间的相互关系

ˆ b
( x x)( y y) x y n x y
i 1 i i
n
n
( x x)
i 1 i
n
2
i 1 n
i
i
x
i 1
2 i
nx
2
,
ˆx ˆ y b a
例1:观察两相关变量得如下表:
x y
解:
-1 -9
-2 -7
-3 -5
-4 -3
-5 -1
(2)当x=5时, y=30.3676≈30.37。
小结
1、现实生活中存在许多相关关系:商品销售与 广告、粮食生产与施肥量、人体的脂肪量与年 龄等等的相关关系. 2、通过收集大量的数据,进行统计,对数据 分析,找出其中的规律,对其相关关系作出 一定判断. 3、由于变量之间相关关系的广泛性和不确定 性,所以样本数据应较大,才有代表性.才能对 它们之间的关系作出正确的判断.
25 脂肪含量
如图:
20 15 10 5 年龄
O
20 25 30 35 40
45 50 55 60 65
我们再观察它的图像发现这些点大致分布在一条 直线附近,像这样,如果散点图中点的分布从整体上看 大致在一条直线附近,我们就称这两个变量之间具有 线性相关关系,这条直线叫做回归直线,该直线叫回归 直线方程。 脂肪含量
Ù
= bx + a
7.回归方程被样本数据惟一确定,各样本点 大致分布在回归直线附近.对同一个总体, 不同的样本数据对应不同的回归直线,所以 回归直线也具有随机性.
8.对于任意一组样本数据,利用上述公式都 可以求得“回归方程”,如果这组数据不具 有线性相关关系,即不存在回归直线,那么 所得的“回归方程”是没有实际意义的.因此, 对一组样本数据,应先作散点图,在具有线 性相关关系的前提下再求回归方程.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
阅读教材P84-91
1.两个变量的关系
1.变量与变量之间的关系大致可分为两种类型:确 定的__函__数__关系和不确定的相关关系.
2.两个变量的关系可通过它们所对应的点在平面上 表现出来,这些点对应的图形叫做_散__点___图.
3.若两个变量的散点图中,所有点看上去都在一条 直线附近波动,则称这两个变量是__线__性__相__关____的,而若 所有点看上去在___某__条__曲__线___附近波动,则称此相关为非 线性相关,如果所有点在散点图中没有显示任何关系,则 称变量间__不__相__关__.
xi yi nx y
b i1 n
2
xi x
i 1 n
xi 2
2
nx
i 1
i 1
根据最小二乘法的思想和
此公式,利用计算器或计算机
a y b x 可以方便的求得年龄和人体脂
肪含量的样本数据的回归方程.
求线性回归方程 观察两相关变量得如下表:
x -1 -2 -3 -4 -5 5 3 4 2 1 y -9 -7 -5 -3 -1 1 ຫໍສະໝຸດ 3 7 9(x2,y2)
这样,问题就归结为:当a,b取什么值时Q最小?即
点到直线 y bx a 的“整体距离”最小.
Q y1 bx1 a2 y2 bx2 a2 yn bxn a2
yi bxi a
(x1,y1)
(xi,yi) (xn,yn)
(x2,y2)
这样,问题就归结为:当a,b取什么值时Q最小?即
脂肪含量)
40 30 20 10
0 10 20 30 40 50 60
年龄
. 方案1、先画出一条直线,测量出各点与
它的距离,再移动直线,到达一个使距离的和 最小时,测出它的斜率和截距,得回归方程。
脂肪含量 40
35 30
25 20 15 10
5
年龄
0 20 25 30 35 40 45 50 55 60 65
;
i 1
i 1
第三步:代入公式计算b,a的值;
第四步:写出直线方程。
i 1
i 1
10
xxy x b
i 1 10
10 x y
i
i
110 10 0 1
2 10 2
110 10 0
i
i 1
a ybx 0b0 0
∴所求回归直线方程为 y=^x
求线性回归直线方程的步骤:
第一步:列表
xi ,
y, i
xi
y i
;
第二步:计算
n
n
x,
y,
x
2,
i
xi
y i
1.两个变量的关系
导学案 P50例1
2.线性相关关系的判断
导学案 P50例2
3.正相关和负相关
从散点图上看,点散布在从左下角到右上角的区域内, 两个变量的这种相关关系称为_正__相__关___,点散布在从左上 角到右下角的区域内,两个变量的这种相关关系称为 __负__相__关__.
40 30 20 10
0 10 20 30 40 50 60
40 30 20 10
0 10 20 30 40 50 60
4.回归直线方程
• 1.回归直线 • 2.回归方程 • 3.最小二乘法 • 4.求回归方程
如果散点图中的点的分布,从整体上看大致在一条 直线附近,则称这两个变量之间具有线性相关关系,这 条直线叫做回归直线.并根据回归方程对总体进行估计.
. 方案2、在图中选两点作直线,使直线
两侧的点的个数基本相同。
脂肪含量 40
35 30
25 20 15 10
5
年龄
0 20 25 30 35 40 45 50 55 60 65
方案3、如果多取几对点,确定多条直线,再 求出这些直线的斜率和截距的平均值作为回归直
线的斜率和截距。而得回归方程。
脂肪含量 40
35 30
25 20 15 10
5
年龄
0 20 25 30 35 40 45 50 55 60 65
讨论:对一组具有线性相关关系的样本数据: (x1,y1),(x2,y2),…,(xn,yn),
设其回归方程为 y bx a ,可以用哪些数量关
系来刻画各样本点与回归直线的接近程度?
(x1,y1)
求两变量间的回归方程
解1: 列表:
i 1 2 3 4 5 6 7 8 9 10
xi -1 -2 -3 -4 -5 5 3 4 2 1
y i
-9
-7
-5
-3
-1
1
5
3
7
9
xi
y i
9
14 15 12
5
5 15 12 14 9
计算得: x 0, y 0
10
10
x2 i
110,
xi
y i
110
点到直线 y bx a 的“整体距离”最小.
Q y1 bx1 a2 y2 bx2 a2 yn bxn a2
这样通过求此式的最小值而得到回归直线的方 法,即使得一半数据的点到回归直线的距离的平方 和最小的方法叫做最小二乘法.
根据有关数学原理推导,a,b的值由下列公式给出
n
n
xi x yi y
(xi,yi) (xn,yn)
(x2,y2)
我们可以用点(xi,yi)与这条直线上横坐 标为xi的点之间的距离来刻画点(xi,yi)到直 线的远近.
yi bxi a (i 1,2,3,, n)
为了从整体上反映n个样本数据与回归直线的
接近程度,你认为选用哪个数量关系来刻画比较合
适?
(x1,y1)
(xi,yi) (xn,yn)
(x2,y2)
用这n个距离之和来刻画各点到直线的 “整体距离”是比较合适的,即可以用
n
yi bxi a
i 1
表示各点到直线 y bx a 的“整体距
离”.
(x1,y1)
(xi,yi) (xn,yn)
(x2,y2)
用这n个距离之和来刻画各点到直线的 “整体距离”是比较合适的,即可以用
n
yi bxi a
i 1
yi bxi a
(x1,y1)
(xi,yi) (xn,yn)
(x2,y2)
由于绝对值使得计算不方便,在实际应用 中人们更喜欢用
Q y1 bx1 a2 y2 bx2 a2 yn bxn a2
yi bxi a
(x1,y1)
(xi,yi) (xn,yn)