数学与经济学的关系探讨
数学论文经济学的概念

数学论文经济学的概念数学作为一门研究数量、结构、变化以及空间等概念的学科,与经济学有着密切的联系。
经济学作为研究资源分配、生产、交换和消费等经济活动的学科,也经常需要运用数学方法来分析和解决实际问题。
首先,数学在经济学中的应用主要体现在经济模型的建立和分析中。
经济学家通常会利用数学工具来构建各种经济模型,以描述经济现象和解释经济规律。
这些模型可以是线性模型、非线性模型、动态模型等,而数学方法的运用可以帮助经济学家更准确地描述和预测经济现象。
其次,数学在经济学中的应用还体现在经济数据的分析和处理中。
经济学研究通常需要处理大量的数据,并对这些数据进行统计分析和建模。
数学统计方法在此时发挥着至关重要的作用,它可以帮助研究者更好地理解数据背后的规律和趋势,从而得出更加准确的结论。
此外,数学在经济学中的应用还可以体现在决策分析和优化问题中。
经济决策往往需要在有限的资源条件下作出最优的选择,这就需要利用数学优化方法来进行决策分析和决策制定。
数学优化方法可以帮助经济主体在复杂的决策环境中找到最优的解决方案,从而实现最大化利益或最小化成本。
综上所述,数学在经济学中的应用是不可或缺的。
数学方法不仅可以帮助经济学家更好地理解和分析经济现象,还可以为经济决策提供理论支持和实践指导。
因此,数学与经济学的结合将为经济学研究和实践带来更多的创新和进步。
另外,数学在经济学中还有着广泛的应用,比如在货币政策制定、金融工程、风险管理等方面。
在货币政策制定中,经济学家需要利用数学模型来分析货币供应、通货膨胀、利率等因素之间的相互关系,以便为政府和央行提供更加科学的政策建议。
在金融工程领域,数学方法被应用于定价衍生金融产品、构建投资组合、风险管理等方面,从而帮助金融机构更好地理解和管理金融市场的波动和风险。
数学在经济学中的应用还可以拓宽经济学的研究范畴,比如利用拓扑学和复杂动态系统理论来研究市场结构和宏观经济波动等问题,为经济学研究提供新的视角和方法。
论数学与经济学的关系

论数学与经济学的关系
数学与经济学是两个密不可分的领域,它们之间有着深刻的关系。
首先,数学为经济学提供了强大的工具。
经济学需要处理大量的数据,并进行建模和预测。
这些工作需要使用高级的数学方法,如微积分、线性代数、概率论和统计学。
数学方法的应用使得经济学家能够更好地理解经济现象、预测市场动向,并制定有效的经济政策。
其次,经济学也为数学提供了新的应用领域。
经济学中的问题常常需要使用数学方法来分析和解决。
例如,经济学中的优化问题需要用到微积分和线性代数,而金融学中的衍生品定价问题则需要用到随机过程和蒙特卡罗模拟。
这些问题的解决使得数学方法在实际中得到了广泛的应用并不断得以发展。
最后,数学和经济学的交叉还催生了一些新的跨学科领域,如数理金融、计量经济学等。
这些领域需要数学和经济学的专业知识和技能结合起来,以解决实际中的复杂问题。
综上,数学和经济学之间的关系密不可分,它们的相互作用不断地促进了彼此的发展。
- 1 -。
关于数学和经济学关系的认识和思考

经济学并非数学 , 其主要 强调经济思想 , 而数学只是分析工具之一 , 唯有在合理 的经济 理论框 架之下应用数学方法和工具才能将其应有 作 用发挥 出来 , 但不能完 全将经济学替代 , 在经济理 论和思想研 究 中, 若 过分地依 赖数学工具 , 本末倒置 , 未 限制数学化 的程度 , 则会 破坏经 济
析工具 。在社会科学 中 , 经济 学仅 为一门分支学科 , 是社会活动 中与经 济行为和现象相关 的理论 。 社会活动容易受到多种因素的影响 , 如文化 因素 、 道德 因素 、 历史 因素、 制度因素等 , 并不能完全用数学公式进行 推
经济学 向数 学化发展增强 了专业化 、 增加了经济学家人数 、 扩展 了
科。伴随计量经济 学、 数理经济学等科学发 展 , 人们逐渐意识到经济学 已经步人科学发展时期 。 数学化的经济学使经济分析得 到简化 , 经济理
论向模 型化方向发展。数 学表述 带有一定 的精确 性和确定性 , 这对文字
在经济学研究 中, 数学方法 的应用应基 于客观经济活动 , 并与最初
过程 和经济范畴 , 可深化其认识 , 对应 用其理论有一定帮助 。在现代经济学 中, 数学得 到广泛应 用, 现 阶段在经济 学涉及到的领域多会 应用到数 学。 关键词 : 数 学; 经济学; 关 系; 认识 ; 思考 数学 和经济学之间存在着一定 的关 联 ,经济学的决策和研究都 与 如此一来使得经济学在社会层 面上 的作用更加直接和明显。
学中 , 应用数学的局限 f 生 主要体现在 以下几个方面 : 第一 , 经济 学并 非数学模 型、 数学概念 的单纯 汇集 , 而是 在经济学
此, 经济学 向数学化发展具备 以下意义 。
( 一) 对 经济 学发展有促进作 用
数学与经济的关系

数学与经济的关系数学和经济作为两个不同的学科,看似有着很大的差异,但实际上它们之间存在着密切的关系。
数学在经济领域的应用,不仅能够提供决策的依据,还可以解决一些经济问题,为经济发展提供支持。
本文将从数学在经济中的应用角度出发,论述数学与经济之间的关系。
经济学作为一门研究生产、分配、交换和利用稀缺资源的学科,需要大量的数据进行分析和决策。
而数学作为一种科学的工具,可以提供对经济问题的量化和模型化分析。
首先,数学可以用来量化和分析经济数据。
例如,经济学中常用的经济指标如国内生产总值(GDP)、通货膨胀率、失业率等,都是通过对大量数据的加工和计算得出的。
数学中的统计学和概率论等工具可以用来在经济数据中寻找规律和趋势,从而为政府制定经济政策和企业制定发展战略提供依据。
其次,数学可以用来构建经济模型,解决经济问题。
经济学家常常通过构建数学模型来描述和分析一些复杂的经济现象。
例如,供求模型可以用来分析市场价格和数量的关系;效用函数可以用来评估人们在面对不同选择时的选择偏好;成本函数可以用来分析企业的生产成本和利润等。
这些模型可以通过数学方法进行求解,从而得到对经济问题的定量结论,为经济决策提供决策依据。
此外,在金融领域,数学也扮演着重要的角色。
金融市场的波动和金融产品的定价往往需要用到数学中的随机过程和微积分等工具。
例如,期权定价模型中的布莱克-斯科尔斯模型就是基于数学的方法进行推导和计算的。
金融衍生品的价格和风险管理也需要借助数学模型进行定量分析,以确保金融机构能够更好地管理风险和提供金融服务。
除了上述应用之外,数学的逻辑思维和分析能力在经济研究中也起到了重要作用。
经济学研究需要进行逻辑推理和严密的分析,数学提供了这样一种思维方式。
通过运用数学的思维方法,经济学家能够更好地理解和解释经济现象,提出新的理论和观点。
总之,数学与经济存在着密不可分的关系。
数学提供了经济学研究的工具和方法,为经济问题的定量分析和决策提供支持。
浅析应用数学与经济学的关系

浅析应用数学与经济学的关系【摘要】应用数学在经济学领域起着至关重要的作用。
数学工具在经济学中的应用涉及到数理统计、微积分、线性代数等多个领域,通过建立数学模型来描述和预测复杂的经济现象。
这些数学方法不仅能够帮助经济学家进行经济决策,还能对经济现象进行深入的分析和解释。
数学与经济学之间存在着紧密的联系,数学为经济学提供了强大的工具和分析能力,在经济学预测和分析中起到必不可少的作用。
数学与经济学的结合为经济学的发展提供了新的途径和方法,推动着经济学领域不断取得新的进展。
【关键词】关键词:应用数学、经济学、数学工具、数学模型、预测、分析、决策、经济现象、联系、工具、分析能力。
1. 引言1.1 应用数学与经济学的概念应用数学与经济学是两个看似不相关的领域,但实际上它们之间存在着密切的联系和互动。
应用数学是数学的一个分支,旨在解决实际问题,将数学方法应用于其他学科或领域。
而经济学是研究资源配置和决策的学科,涉及到市场、消费、生产等方面的分析和研究。
将这两个领域结合起来,就形成了应用数学与经济学的交叉领域。
在应用数学与经济学的交叉领域中,数学方法被广泛应用于经济学的各个方面,如市场分析、消费者行为、生产效率等。
数学工具能够帮助经济学家更好地理解经济现象,并通过建立数学模型进行预测和分析。
数学在经济学预测和分析中的作用不可忽视,它提供了精确的工具和方法,帮助经济学家对经济活动进行深入研究。
应用数学与经济学的结合为经济学提供了更强大的工具和分析能力,使得经济学家能够更准确地理解和解释经济现象。
应用数学在经济学领域的应用是必不可少的,它为经济学的发展和研究提供了重要支持和帮助。
通过深入探讨应用数学与经济学的关系,可以更好地促进这两个领域的发展和进步。
1.2 应用数学在经济学中的重要性在经济学中,数学工具被广泛应用于量化分析和建模。
经济学家可以利用微积分、线性代数、概率论等数学知识来描述经济现象,研究市场供需关系、成本收益关系等经济规律。
数学和经济学关系的认识和思考

数学和经济学关系的认识和思考一、经济学中应用数学的意义数学属于实证性学科,为人们社会活动服务,同时也服务于科学研究。
在人类经济活动中,数量关系比较复杂,因此数学则成为经济活动开展的必要条件,同时也是经济学中开展科学研究的一种方法。
基于此,经济学向数学化发展具备以下意义。
(一)对经济学发展有促进作用经济学向数学化发展增强了专业化、增加了经济学家人数、扩展了研究领域的专业化水平。
经济事物要求量与质相互统一,其前提是定量分析和定性认识,定性认识发展至定量分析的过程表明认识过程的深化与发展。
任何科学都需要应用数学,只有将其成功运用才能得到完善。
经济学向数学化的发展在很多层面上促进了经济学进步。
数学方法不仅可以让经济学涉及的对象更加具体和明确,还可以使各个经济变量向数量化转变,使逻辑推理更加严密和合理,基于理论得出具体且明确的结论,在坚实、明确的科学前提下建立经济理论,使经济关系中存在的不稳定、不确定等不良因素得到减少甚至消除,为经济科学发展奠定基础。
(二)对经济学的严谨性有促进作用数学形式下的经济理论,使得经济学向精密化、定量化的方向发展,经济学可以将定性分析、定量分析结合在一起,形成一门严密的学科。
伴随计量经济学、数理经济学等科学发展,人们逐渐意识到经济学已经步入科学发展时期。
数学化的经济学使经济分析得到简化,经济理论向模型化方向发展。
数学表述带有一定的精确性和确定性,这对文字性表述来说则难以实现,同时数学推导带有一定的逻辑性,可以通过数学模型对经济问题进行深入探讨,而学术争议则可以以其为前提,或反对对方的基础上做出假设,或从对方论证中找出错误,或对原模型假设进行修改以得出新结论,使经济学层面上的分歧得到避免,防止出现因理解不同而产生不必要的争论,使经济学家的研讨效率从整体上得到提升。
(三)现实生产效率得到了提升从现实角度来看,在经济的宏观研究过程中,经济学向数学化方向的转变,大量的经济增长、投入产出、最优化等数学模型得到广泛应用,如此一来使得经济学在社会层面上的作用更加直接和明显。
经济学和数学的关系

经济学和数学的关系之所以说学好经济学,数学很重要是因为经济学已经越来越成为一门精确的学科,而一个学科成为科学的标志就是它是否成功的使用了数学,经济学也是如此。
经济学如果非要和现有学科进行比较的话,那我说与之最接近的就是物理,而把经济学归为文科一类的归类方法是相当过时的。
为什么说经济学类比于物理呢?因为二者同样是在一系列假定的基础之上,用严格的推理得到结论的学科,唯一不同就是物理大量使用重复试验的方法来验证结论,而经济学中的重复试验则比较困难。
因此经济学研究中数学使用的好坏直接导致了经济学研究的成败。
也因此现代经济学领域很少有像科斯那样的奇才能逾越数学而仍旧非常成功的经济学家。
如此重要的数学本身的体系也是很复杂的,因此本文就重点谈谈数学的各个分支学科和经济的联系。
数学有三高,数学分析、高等代数、解析几何(最近也有新提法:数学分析,高等代数,概率统计,私下认为这样有点弱化几何的地位),这是老的提法,也有人叫三基,因此可以称之为老三高或者老三基,是高等数学的基础。
还有近代数学的基础——新三基,领域上还是分析、代数和几何,只不过内容有了本质上的进化,分别是实函与泛函分析、近似代数和拓扑学。
先看老三高,数学分析就相当于经济学类学生大一学的高等数学,不过高等数学其实是为工科的学生准备的,以计算为主,最终的目的是能使用数学进行工程计算,而数学分析是以证明为主,主要是训练学生逻辑思维的能力,因此表面上看内容差别不是太大,但是实际学起来是不一样的。
因此对于经济学这样的以推理为主的学科,学习数学分析是十分必要的。
这一点田国强教授等人也多次撰文提过。
数学分析数学系的本科生至少要学三到四个学期,而高等数学一般最多只有两个学期,而且其中还含有常微分方程和解析几何的东西,可见其内容被压缩冲淡了许多。
高等代数相当于经济类学生学的线性代数,除了范围上前者更广一些外主要的差别也是偏重理论与偏重计算的问题。
高等代数更注重理论的证明过程,而线性代数更注重计算,学生会算了就行,至于怎么来的,为什么这样,这些对将来科研很重要的东西都很少训练。
数学与经济学的关系

- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学与经济学的关系探讨摘要:本文总结了数学如何作为一种工具帮助经济学研究,同时总结了数学在经济学的应用中出现的一些问题,包括"数学滥用";、强行使用数学等,最后本文总结了数学在经济学研究中被赋予了不应有的地位以及虽然数学本身并不能独立支撑经济学研究,但这并不妨碍我们在经济学中使用数学工具。
关键词:方法论;数学;经济学数学与经济学的关系在学界已经被讨论了好多年,想要认清数学与经济学的关系,首先我们必须弄明白经济学与数学之间是否存在包含关系。
Dow(1990)就曾指出,如果我们认为经济学就是一门数学学科,那么我们可以很容易地将历史学、社会学、哲学以及方法论看做是这些学科在不同专业领域吸收知识,并且经济学实践将这些学科联系在一起。
但是对那些将经济学看做是一门使用了数学的人文科学的人来说,经济学的内容本身就需要历史学、社会学、哲学以及方法论这些领域的专业知识。
我认为后一种观点好像更贴切地描述了数学在经济学研究中的地位,就是说经济学是一门使用了数学专业知识的人文科学。
一、数学作为一种有效的研究工具,可以帮助经济学家进行经济研究经济学家大多善于使用修辞学的表达方法来描述经济现象,在描述某些经济学家自己也没有完全弄明白的现象时,有些经济学家善于使用晦涩难懂的经济学术语来掩盖本身理论解释的不充分性,但是,这种做法会使得理论解释的说服力大打折扣。
在这种情况下,使用数学方法进行补充性解释可以避免使用晦涩难懂的语言来掩盖理论本身欠缺的解释性,可以通过明白的数学公式展现清晰的逻辑。
因为这个原因,在经济学研究中使用数学函数以及运用数学模型成了经济学家们更好地解释经济现像和预测未来经济发展走势的一种有用手段。
罗默(2015)就曾经指出,借助新的变量,模型可以将文字叙述与数学公式较好地联系在一起,增加理论和实证之间的关联程度。
罗默举例道,早在1956年,索洛在他的经济增长理论中就曾使用数学公式来表示"资本";这一变量。
利用数学公式同概念的紧密结合,索洛精准地阐释了"资本";这一变量的含义,进而通过对概念的阐释轻松地将理论与实证结合起来。
毫无疑问,这是一个典型的数学知识助力经济学修辞解释的例子。
Dow精辟地总结道,数学结论的公式化为经济学纯理论的优势以及使用模拟进行实证演示铺平了道路。
像罗默一样,凯恩斯对待在经济学中使用数学的态度也是积极的。
通常认为凯恩斯对于在经济学中使用数理统计方法是持完全否定的态度的,但是O’Donnell(1990)认为这种现象是由于这些人只看到了凯恩斯一部分的观点,并没有全盘认识凯恩斯的观点,这种对凯恩斯数学观的解读是错误的并且是肤浅的。
事实上凯恩斯对数学本身并没有敌意,而是反感"伪数学";,或者说数学分析方法的不合理的应用。
例如,在对概率的研究中,凯恩斯自己便使用数学表达来方便解释概率这个经济学概念,为了清晰表达两组命题之间的概率,凯恩斯使用a/h来表示概率,a代表概率相关的结论,h表示包含了给定信息的先决条件。
数学知识不仅在经济学先验演绎推理层面有用处,而且在经济学实证层面也有用处。
财会学中数理统计的重要性是众所周知的,约翰•希克斯(1979)一直强调经济分析中,尤其是在动态经济分析中,财会传统的重要性。
在这方面,凯恩斯也有类似的观点,凯恩斯相信某些部分的纯经济理论可以用数学方式表达出来,并且计量经济学可以为经济学提供重要的服务。
凯恩斯强调,计量经济学有两个重要功能:为理论参数提供实验量级和量化独立的原因间的相对强度。
对与凯恩斯来说,数学在经济学理论和计量经济学中有精确的功能,只不过数学能发挥的功能是有限度的。
数学在帮助修辞学进行经济学解释的同时,还可以帮助经济学家形成有益的逻辑性的思维方式,凯恩斯就曾指出,数学是正式思维原则中的一个分支,因此,只要正确地使用数学,数学可以帮助经济学家形成创造一种"有组织的有顺序的思维方式";,这样的思维方式对经济学研究来说非常重要。
二、数学在经济学的应用中出了问题数学具有诸多特性可以帮助经济学家进行经济学研究,但是,在实际操作领域,我们观察到了一些数学在经济学中应用的问题,这些问题不仅会妨碍数学的合理应用,还会使得一些经济学研究者对数学产生消极的观念。
这些问题包括,"数学滥用";,数学的错用以及强行使用数学。
1."数学滥用";首先,我们应当如何理解"数学滥用";。
经济学家罗默发明了"数学滥用";这个经济学术语,罗默定义"数学滥用";是,如同普通的数学理论一样,"数学滥用";也是由各种符号与理论描述组成,但此时,符号与文字叙述之间的联系并不紧密,自然描述与正式表达、理论推导与实证事实之间充满了需要填充的巨大空间。
罗默还进一步批评道,至少在经济增长理论方面,我们的作者和编辑达成了一种默契,即读者都会漠视数学的滥用并接受这一怪象。
不严谨的科学态度催生了数量经济学中的"潜规则";,由于没有更好地数学表达可用,而滥竽充数,制造了"数学滥用";。
经济学家温特劳布(1998)也指出,不一致性被混进了应用经济学中,应用经济学中混进一些不那么精确的数学推导以及没有逻辑论证的事实。
Velupillai(2005)曾经批评"数学滥用";中的形式化,他指出,无标准的、构建性的和计算性的分析在经济学主题中起到了形式化和数学化的作用,这种现象主要出现在新古典主义经济学理论的范畴内。
Velupillai举例道,是不是基于"执行一项任务";的函数概念,展现在子集理论中,是不是可以捕捉所有的直觉性的内容,这还是一个有待商讨的问题。
尽管存在这种不确定性,数理经济学家,甚至是所有将数学应用到经济学中的经济学家,都用"执行一项任务";来定义他们自认为精确的函数的概念。
因此,通过赋予数学一些特殊的数学属性,主教风格的构造性数学保持忠于函数概念的普通意义,也就是说,在封闭的间隔中保持一直地连贯,这样当数学家用这样特定的方式来使用函数时,数学家就能轻松地"执行函数的任务";。
"数学滥用";会阻碍经济学研究,纠正"数学滥用";对经济学的发展是有好处的,罗默曾经指出,每一位经济学家都有义务停止"数学滥用";,如果我们能坚持共享精准、清晰的数学推导,将数学理论中晦涩的概念抽象成明白易懂的名词,就像"人力资本";,"物质资本";,"非竞争性";一样,那么我们的研究水平可以更快地得到提升。
我们否定"数学滥用";,就应该清楚地识别"数学滥用";。
我们应该如何判断数学是否被"滥用";,胡伟清(2006)提出了一种标准以供参考,他指出,如果使用卡尔多•希克斯效率的概念,我们会发现经济学数学化是一种卡尔多•希克斯改进,也就是说改进带来的好处能够弥补改进所产生的坏处。
我们可以使用一个简单的标准来判断:如果使用数学的好处能够弥补坏处,那么,即便是大量使用公式、模型,也不能算是滥用。
反之,如果不使用数学的好处更多,甚至使用数学带来的坏处更多,那么即便只使用了一个公式,也是滥用。
2.数学的错用我们可以将数学的错用定义为,使用了错误的数学理论或数学概念进行经济学研究。
凯恩斯曾经指出,推演逻辑还要依赖直觉或者对逻辑关系的直接感知,结论一般部分暗含在前提条件中,先决条件被认为拥有完全暗含结论的能力。
所以数学不能错用,如果数学理论被错用,就会使得数学的推导逻辑被打破,丧失数学线性解释的能力。
例如,构造性数学在经济学中的应用总让人有一种已知A+B可以证明C,所以为了得到C的结论,而去拼凑A和B 的感觉。
经济学推演逻辑顺序被颠倒了过来,有了一种为某种理论结果进行狡辩的意味,而这种理论结果往往是作为已经发生了的事实被拿来进行推演验证。
这就丧失了使用数学模型进行经济学预测的意义。
对于数学的错用,Velupillai曾经举例道,PieroSraffa(1960)提供了一组方程,在不需要使用不动点理论的情况下证明了一般均衡理论的存在性,这给经济学研究提供了一个很好地范例。
Velupillai却不解,为什么没有经济学家使用Sraffa提供的充分的并且足够用来重证一般均衡理论存在性的方法,经济学家们却依然依赖Brouwer的非构造性不动点理论,这对Velupillai来说简直是个谜。
Velupillai更进一步提问,为什么,数理经济学家把解方程变成了"一个不动点问题";,只是为了证明方程的解的存在性。
像这样错误地选择数学知识不仅无助于经济学研究,还有可能让经济学研究者走上错误的研究道路。
3.强行使用数学强行使用数学可以被理解为,在不需要使用高深数学知识的地方,为了使用数学知识而强行使用数学。
凯恩斯一直都对这种现象嗤之以鼻,1910年,他批评Pearson的统计学回忆录为"应用了不必要的复杂的数学工具。
";Velupillai也曾经在研究中提问,真的有必要把在正式的经济学理论中的一般均衡的存在性问题作为一个数学问题拿出来进行研究么?强行使用数学并不能帮助经济学研究,反而会令经济学研究更加复杂。
丁小钦(2008)曾经指出,如果通过数学语言来解释经济学问题,那么经济学问题就被转换成了由数学符号组成的数学公式。
这时经济学问题中的概念只表示为数学符号,经济学命题只表示为数学公式,经济学命题的推导变成了数学公式的变形。
数学能展现的的只是公式中数学符号之间的关系,并不包含对公式所代表的内容的思考。
但数学推演之后,所有的数学符号还是要被转换回修辞性的语言。
而转换回的内容同我们引入数学公式之前的经济学表述的一致性值得探讨。
作为经济学研究者,我们应当思考如何正确地使用数学。
罗默曾指出,当他开始学习数量经济学时,数量经济学是由一种与现在完全不同的规则所主导的。
虽然不是毫无例外,但也远比现在要强,每当经济学家们用数学去推导经济学中高度抽象的概念时,他们都会以极其清晰准确严谨的态度满怀骄傲地完成。
或许旧时代这种对待数学的严谨态度更值得我们今天借鉴。
三、对经济学数学化的看法1.数学在经济学研究中被赋予了不应有的地位对于这个现象,Dow曾经做出总结,他说道,我们可以清楚的看到现在在很多经济学的应用中出现了关于方法论的困惑,这种困惑在于在经济学应用中给予了数学表达优先权。