高一物理追击和相遇专题(含详解)

合集下载

高中物理追击及相遇问题专题(含详解)5654

高中物理追击及相遇问题专题(含详解)5654

直线运动中的追及和相遇问题一、相遇和追及问题的实质研究的两物体能否在相同的时刻到达相同的空间位置的问题。

二、 解相遇和追及问题的关键1.画出物体运动的情景图2.理清三大关系(1)时间关系 :0t t t B A ±= (2)位移关系:0A B x x x =±(3)速度关系:v A=v B两者速度相等往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。

三、追及、相遇问题的分析方法: A. 画出两个物体运动示意图,根据两个物体的运动性质,选择同一参照物,列出两个物体的位移方程; B. 找出两个物体在运动时间上的关系 C. 找出两个物体在运动位移上的数量关系 D. 联立方程求解.说明:追及问题中常用的临界条件:⑴速度小者加速追速度大者,速度在接近,但距离在变大。

追上前两个物体速度相等时,有最大距离; ⑵速度大者减速追赶速度小者, 速度在接近,但距离在变小。

追上前在两个物体速度相等时,有最小距离.即必须在此之前追上,否则就不能追上. 四、典型例题分析:(一).匀加速运动追匀速运动的情况(开始时v 1< v 2): 1.当v 1< v 2时,两者距离变大; 2.当v 1= v 2时,两者距离最大;3.v 1>v 2时,两者距离变小,相遇时满足x 1= x 2+Δx ,全程只相遇(即追上)一次。

【例1】一小汽车从静止开始以3m/s 2的加速度行驶,恰有一自行车以6m/s 的速度从车边匀速驶过.求:(1)小汽车从开动到追上自行车之前经过多长时间两者相距最远?此时距离是多少? (2)小汽车什么时候追上自行车,此时小汽车的速度是多少?(二).匀速运动追匀加速运动的情况(开始时v 1> v 2): 1.当v 1> v 2时,两者距离变小;2.当v 1= v 2时,①若满足x 1< x 2+Δx ,则永远追不上,此时两者距离最近;②若满足x 1=x 2+Δx ,则恰能追上,全程只相遇一次; ③若满足x 1> x 2+Δx ,则后者撞上前者(或超越前者),此条件下理论上全程要相遇两次。

高一物理追击相遇问题试题答案及解析

高一物理追击相遇问题试题答案及解析

高一物理追击相遇问题试题答案及解析1.(8分)如图所示,质点甲以8m/s的速度从O点沿Ox轴正方向运动,质点乙从点Q(0m,60m)处开始做匀速直线运动,要使甲、乙在开始运动后l0s在x轴上的P点相遇,求乙的速度.【答案】大小为10m/s,方向偏向x轴正方向与y轴负方向成53°角。

【解析】质点甲在10s内的位移为 2分因此甲、乙相遇的P点坐标为(80m,0)由图中几何关系可知,在这10s内乙的位移为 2分则乙的速度为 2分方向偏向x轴正方向与y轴负方向成53°角。

2分【考点】运动的合成。

2.一辆值勤的警车停在公路边,当警员发现从他旁边以10 m/s的速度匀速行驶的货车严重超载时,决定前去追赶,经过5.5 s后警车发动起来,并以2.5 m/s2的加速度做匀加速运动,但警车的行驶速度必须控制在90 km/h以内.问:(1)警车在追赶货车的过程中,两车间的最大距离是多少?(2)警车发动后要多长时间才能追上货车?【答案】(1)75m (2)12s【解析】(1)警车在追赶货车的过程中,当两车速度相等时,它们间的距离最大,设警车发动后经过时间两车的速度相等.则此时所以两车间的最大距离(2),当警车刚达到最大速度时,运动时间因为,故此时警车尚未赶上货车,且此时两车距离警车达到最大速度后做匀速运动,设再经过Δt时间追赶上货车,则所以警车发动后要经过才能追上货车.【考点】追击相遇3.(12分)某人离公共汽车尾部20m,以速度v向汽车匀速跑过去,与此同时,汽车以1m/s2的加速度从静止启动,作匀加速直线运动。

试问,此人的速度v分别为下列数值时,能否追上汽车?如果能,要用多长时间?如果不能,则他与汽车之间的最小距离是多少?(1)v=6m/s;(2)v=7m/s.【答案】(1)2m;(2)4s末追上车【解析】设人出发点为初位置,则人与车的位移分别为x人=vt,x车=x+at2要追上汽车,则要求Δx=x车-x人=0(1)当v=6m/s代入上式可得Δx=t2-6t+20=0∵Δ=62-4××20<0∴Δx不能为零,不能追上,且Δx=(t-6)2+2,当t=6s时,Δx最小为2m。

高一物理必修1追击与相遇问题讲练结合含详解

高一物理必修1追击与相遇问题讲练结合含详解

- 让每一个人同等地提高自我追击与相遇问题1.相遇和追击问题的实质研究的两物体可否在同样的时辰抵达同样的空间地点的问题。

2.解相遇和追击问题的重点画出物体运动的情况图,理清三大关系( 1)时间关系:t A t B t0(2)位移关系:x A x B x0(3)速度关系:二者速度相等。

它常常是物体间可否追上或(二者)距离最大、最小的临界条件,也是解析判断的切入点。

3.相遇和追击问题解析:( 一) 追及问题1、追及问题中二者速度大小与二者距离变化的关系。

甲物体追赶前面的乙物体,若甲的速度大于乙的速度,则二者之间的距离。

若甲的速度小于乙的速度,则二者之间的距离。

若开始甲的速度小于乙的速度过一段时间后二者速度相等,则二者之间的距离(填最大或最小)。

2、追及问题的特点及办理方法:“追及”主要条件是:两个物体在追赶过程中处在同一地点,常有的情况有三种:⑴初速度为零的匀加快运动的物体甲追赶同方向的匀速运动的物体乙,必定能追上,追上前有最大距离的条件:两物体速度,即 v甲v乙。

⑵ 匀速运动的物体甲追赶同向匀加快运动的物体乙,存在一个可否追上的问题。

判断方法是:假设速度相等,从地点关系判断。

①当甲乙速度相等时,甲的地点在乙的后方,则追不上,此时二者之间的距离最小。

②当甲乙速度相等时,甲的地点在乙的前面,则追上,此状况还存在乙再次追上甲。

③当甲乙速度相等时,甲乙处于同一地点,则恰巧追上,为临界状态。

解决问题时要注意二者能否同时出发,能否从同一地址出发。

⑶ 匀减速运动的物体追赶同向的匀速运动的物体时,情况跟⑵近似。

3、解析追及问题的注意点:⑴ 要抓住一个条件,两个关系:一个条件是两物体的速度知足的临界条件,如两物体距离最大、最小,恰巧追上或恰巧追不上等。

两个关系是时间关系和位移关系,经过画草图找两物体的位移关系是解题的打破口。

⑵ 若被追赶的物体做匀减速运动,必定要注意追上前该物体能否已经停止运动。

⑶认真审题,充足发掘题目中的隐含条件,同时注意v t 图象的应用。

(完整)高中物理追击和相遇问题专题带答案

(完整)高中物理追击和相遇问题专题带答案

专题:直线运动中的追击和相遇问题一、相遇和追击问题的实质研究的两物体能否在相同的时刻到达相同的空间位置的问题。

二、解相遇和追击问题的关键画出物体运动的情景图,理清三大关系(1)时间关系:t A t B t0(2)位移关系:x A x B x0(3)速度关系:两者速度相等。

它往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。

三、追击、相遇问题的分析方法:A. 画出两个物体运动示意图,根据两个物体的运动性质, 选择同一参照物, 列出两个物体的位移方程;B. 找出两个物体在运动时间上的关系C. 找出两个物体在运动位移上的数量关系D. 联立方程求解.说明:追击问题中常用的临界条件:⑴速度小者追速度大者,追上前两个物体速度相等时, 有最大距离;⑵速度大者减速追赶速度小者, 追上前在两个物体速度相等时, 有最小距离. 即必须在此之前追上,否则就不能追上.四、典型例题分析:(一).匀加速运动追匀速运动的情况(开始时v1< v2):v1< v2时,两者距离变大;v1= v2时,两者距离最大;v1>v2 时,两者距离变小,相遇时满足x1= x2+Δx,全程只相遇(即追上)一次。

【例1】一小汽车从静止开始以3m/s2的加速度行驶,恰有一自行车以6m/s的速度从车边匀速驶过.求:(1)小汽车从开动到追上自行车之前经过多长时间两者相距最远?此时距离是多少?(2)小汽车什么时候追上自行车,此时小汽车的速度是多少?答案:(1)2s 6m (2)12m/s(二).匀速运动追匀加速运动的情况(开始时v1> v2):v1> v2时,两者距离变小;v1= v2时,①若满足x1< x2+Δx,则永远追不上,此时两者距离最近;②若满足x1=x2+Δx ,则恰能追上,全程只相遇一次;③若满足x1> x2+ Δx,则后者撞上前者(或超越前者),此条件下理论上全程要相遇两次。

高一物理追击相遇问题试题答案及解析

高一物理追击相遇问题试题答案及解析

高一物理追击相遇问题试题答案及解析1. A与B两个质点向同一方向运动,A做初速度为零的匀加速直线运动,B做匀速直线运动.开始计时时,A、B位于同一位置,则当它们再次位于同一位置时 ()A.两质点速度相等B.A与B在这段时间内的平均速度相等C.A的瞬时速度是B的2倍D.A与B的位移相同【答案】BCD【解析】设A的加速度为a,B的速度为v,经过时间t,A、B再次位于同一位置,由题意可得,,故此时A的速度,所以A错误;C正确;由题意知A、B在t时间内位移相同,根据平均速度的定义式,可知A与B在这段时间内的平均速度相等,所以B正确;D正确。

【考点】本题考查追击相遇问题,意在考查学生的分析能力。

2.甲乙两车在一平直道路上同向运动,其v-t图象如右图所示,图中△OPQ和△OQT的面积分别为x1和x2(x2>x1),初始时,甲车在乙车前方x处 ( )A.若x0=x1+x2,两车能相遇B.若x0<x1,两车相遇2次C.若x0=x1,两车相遇1次D.若x0=x2,两车相遇1次【答案】BC【解析】由图线可知:在T时间内,甲车前进了,乙车前进了;A、若,即,两车不会相遇。

若,满足,因此两车不会相遇;错误B、若,即,在T时刻之前,乙车会超过甲车,但甲车速度增加的快,所以甲车还会超过乙车,则两车会相遇2次;正确CD、若,即两车只能相遇一次;C正确故选BC【考点】追及问题点评:研究v-t图象时要注意观察:一点,注意横纵坐标的含义;二线,注意斜率的意义;三面,v-t图象中图形与时间轴围成的面积为这段时间内物体通过的位移,研究追及问题最好画出运动轨迹示意图。

3.经检测,火车甲以u甲=20m/s的速度在平直的铁轨上行驶,紧急制动后,需经过200m才能停下。

某次夜间,火车甲以20m/s的速度在平直的铁轨上行驶,突然发现前方仅125m处有一火车乙正以u乙=4m/s的速度同向匀速行驶,司机甲立即制动刹车。

关于能否发生撞车事故,某同学的解答过程是:“设火车甲制动位移为s1=200m所用时间为t,火车乙在这段时间内的位移为s2你认为该同学的结论是否正确?如果正确,请定性说明理由;如果不正确,请说明理由,并求出正确结果【答案】会相撞【解析】不正确,因为火车相撞时,速度不一定为零,紧急制动后,需经过200m才能停下。

高一物理必修1追击与相遇问题讲练结合(含详解)

高一物理必修1追击与相遇问题讲练结合(含详解)

高一物理必修1同步拔高追击与相遇问题1.相遇和追击问题的实质研究的两物体能否在相同的时刻到达相同的空间位置的问题。

2.解相遇和追击问题的关键画出物体运动的情景图, 理清三大关系(1)时间关系 : (2)位移关系:(3)速度关系:两者速度相等。

它往往是物体间能否追上或(两者)距离最大、最小的临界条件, 也是分析判断的切入点。

(一)3.相遇和追击问题剖析:(二)追及问题1.追及问题中两者速度大小与两者距离变化的关系。

甲物体追赶前方的乙物体, 若甲的速度大于乙的速度, 则两者之间的距离。

若甲的速度小于乙的速度, 则两者之间的距离。

若开始甲的速度小于乙的速度过一段时间后两者速度相等, 则两者之间的距离(填最大或最小)。

⑴ 2.追及问题的特征及处理方法:“追及”主要条件是: 两个物体在追赶过程中处在同一位置, 常见的情形有三种: 初速度为零的匀加速运动的物体甲追赶同方向的匀速运动的物体乙, 一定能追上, 追上前有最大距离的条件: 两物体速度 , 即。

⑵匀速运动的物体甲追赶同向匀加速运动的物体乙, 存在一个能否追上的问题。

判断方法是: 假定速度相等, 从位置关系判断。

①当甲乙速度相等时, 甲的位置在乙的后方, 则追不上, 此时两者之间的距离最小。

②当甲乙速度相等时, 甲的位置在乙的前方, 则追上, 此情况还存在乙再次追上甲。

③当甲乙速度相等时, 甲乙处于同一位置, 则恰好追上, 为临界状态。

解决问题时要注意二者是否同时出发, 是否从同一地点出发。

⑶匀减速运动的物体追赶同向的匀速运动的物体时, 情形跟⑵类似。

3.分析追及问题的注意点:⑴要抓住一个条件, 两个关系: 一个条件是两物体的速度满足的临界条件, 如两物体距离最大、最小, 恰好追上或恰好追不上等。

两个关系是时间关系和位移关系, 通过画草图找两物体的位移关系是解题的突破口。

⑵若被追赶的物体做匀减速运动, 一定要注意追上前该物体是否已经停止运动。

⑶仔细审题, 充分挖掘题目中的隐含条件, 同时注意图象的应用。

高一物理追击相遇问题试题答案及解析

高一物理追击相遇问题试题答案及解析1.一只气球以10 m/s的速度匀速上升,某时刻在气球正下方距气球6 m处有一小石子以20 m/s的初速度竖直上抛,若g取10 m/s2,不计空气阻力,则以下说法正确的( )A.石子一定追不上气球B.石子一定能追上气球C.若气球上升速度等于7 m/s,其余条件不变,则石子在到达最高点时追上气球D.若气球上升速度等于9 m/s,其余条件不变,则石子在抛出后1 s末追上气球【答案】AD【解析】设石子经过时间t后速度与气球相等,则此时间内气球上升的位移由x=vt=10m,石子上升的位移为由因为15-10m=5m<6m,所以石子一定追不上气球,故A正确,B错误;若气球上升速度等于9m/s,在石子在抛出后1s末,气球上升的位移为9m,石子上升的位移为15m因为15-9m=6m,所以1s末石子追上气球,故D正确;由以上分析可知,当气球上升速度等于9m/s,在1s末追上气球,所以当气球上升速度等于7m/s,石子追上气球的时间肯定小于1s,而石子到的最高点的时间为2s,所以石子在达到最高点之前就追上气球了,故C错误【考点】本题考查追及相遇问题。

2.甲车以加速度1m/s2由静止开始作匀加速直线运动,乙车落后2s在同一地点由静止出发,以加速度4m/s2作加速直线运动,两车运动方向一致,则乙车追上甲车所用的时间为()A.2s B.3s C.4s D.6s【答案】A【解析】由题意可知,两车机遇时的运动位移相等,运动时间,由运动公式得,,代入数据解得:,故只有A正确。

【考点】追及相遇问题3.在足够长的平直公路上,一辆汽车以加速度a启动时,有一辆匀速行驶的自行车以速度v从旁驶过,则()A.汽车追不上自行车,因为汽车启动时速度小于自行车速度B.以汽车为参考系,自行车是向前做匀减速运动C.汽车与自行车之间的距离开始是不断增加的,然后两者距离逐渐减小,两车相遇D.汽车追上自行车的时间是【答案】BCD【解析】根据追击问题,设两者之间间隔为,则,只要等于零,就能相遇,显然A错。

高中物理追击和相遇问题专题(含详解).doc

v1.0可编辑可修改直线运动中的追及和相遇问题一、相遇和追及问题的实质研究的两物体能否在相同的时刻到达相同的空间位置的问题。

二、解相遇和追及问题的关键1.画出物体运动的情景图2.理清三大关系( 1)时间关系:t A t B t0(2)位移关系:x A x B x0( 3)速度关系:v A=v B两者速度相等往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。

三、追及、相遇问题的分析方法:A. 画出两个物体运动示意图,根据两个物体的运动性质, 选择同一参照物, 列出两个物体的位移方程;B.找出两个物体在运动时间上的关系C.找出两个物体在运动位移上的数量关系D.联立方程求解 .说明 : 追及问题中常用的临界条件:⑴速度小者加速追速度大者, 速度在接近,但距离在变大。

追上前两个物体速度相等时, 有最大距离 ;⑵速度大者减速追赶速度小者 , 速度在接近,但距离在变小。

追上前在两个物体速度相等时 , 有最小距离 . 即必须在此之前追上 , 否则就不能追上 .四、典型例题分析:( 一 ) .匀加速运动追匀速运动的情况(开始时v1< v 2):1.当 v1< v 2时,两者距离变大;2.当 v1= v 2时,两者距离最大;3.v1>v2时,两者距离变小,相遇时满足x1= x 2+x,全程只相遇( 即追上 ) 一次。

【例 1】一小汽车从静止开始以3m/s2的加速度行驶,恰有一自行车以6m/s 的速度从车边匀速驶过.求:(1) 小汽车从开动到追上自行车之前经过多长时间两者相距最远此时距离是多少(2)小汽车什么时候v1.0可编辑可修改( 二 ) .匀速运动追匀加速运动的情况(开始时v1> v 2):1.当 v1> v 2时,两者距离变小;2.当 v1= v 2时,①若满足x1< x 2+x,则永远追不上,此时两者距离最近;②若满足 x1=x2+x,则恰能追上,全程只相遇一次;③若满足 x1> x2+x,则后者撞上前者(或超越前者),此条件下理论上全程要相遇两次。

高中物理相遇和追与问题(完整版)

相遇追及问题一、考点、热点回顾一、追及问题1.速度小者追速度大者匀速追匀减速2.速度大者追速度小者度大者追速度小者次相遇,则①表中的Δx是开始追及以后,后面物体因速度大而比前面物体多运动的位移;②x0是开始追及以前两物体之间的距离;③t2-t0=t0-t1;④v1是前面物体的速度,v2是后面物体的速度.二、相遇问题这一类:同向运动的两物体的相遇问题,即追及问题.第二类:相向运动的物体,当各自移动的位移大小之和等于开始时两物体的距离时相遇.解此类问题首先应注意先画示意图,标明数值及物理量;然后注意当被追赶的物体做匀减速运动时,还要注意该物体是否停止运动了.求解追及问题的分析思路(1)根据追赶和被追赶的两个物体的运动性质,列出两个物体的位移方程,并注意两物体运动时间之间的关系.(2)通过对运动过程的分析,画出简单的图示,找出两物体的运动位移间的关系式.追及的主要条件是两个物体在追上时位置坐标相同.(3)寻找问题中隐含的临界条件.例如速度小者加速追赶速度大者,在两物体速度相等时有最大距离;速度大者减速追赶速度小者,在两物体速度相等时有最小距离,等等.利用这些临界条件常能简化解题过程.(4)求解此类问题的方法,除了以上所述根据追及的主要条件和临界条件解联立方程外,还有利用二次函数求极值,及应用图象法和相对运动知识求解.相遇问题相遇问题的分析思路:相遇问题分为追及相遇和相向运动相遇两种情形,其主要条件是两物体在相遇处的位置坐标相同.(1)列出两物体运动的位移方程、注意两个物体运动时间之间的关系. (2)利用两物体相遇时必处在同一位置,寻找两物体位移间的关系. (3)寻找问题中隐含的临界条件.(4)与追及中的解题方法相同.二、典型例题【例1】物体A 、B 同时从同一地点,沿同一方向运动,A 以10m/s 的速度匀速前进,B 以2m/s 2的加速度从静止开始做匀加速直线运动,求A 、B 再次相遇前两物体间的最大距离. 【解析一】 物理分析法A 做 υA =10 m/s 的匀速直线运动,B 做初速度为零、加速度a =2 m/s 2的匀加速直线运动.根据题意,开始一小段时间内,A 的速度大于B 的速度,它们间的距离逐渐变大,当B 的速度加速到大于A 的速度后,它们间的距离又逐渐变小;A 、B 间距离有最大值的临界条件是υA =υB . ① 设两物体经历时间t 相距最远,则υA =at ② 把已知数据代入①②两式联立得t =5 s 在时间t 内,A 、B 两物体前进的距离分别为 s A =υA t =10×5 m=50 ms B =12at 2=12×2×52m =25 mA 、B 再次相遇前两物体间的最大距离为 Δs m =s A -s B =50 m -25 m =25 m 【解析二】 相对运动法因为本题求解的是A 、B 间的最大距离,所以可利用相对运动求解.选B 为参考系,则A 相对B 的初速度、末速度、加速度分别是υ0=10 m/s 、υt =υA -υB =0、a =-2 m/s 2. 根据υt 2-υ0=2as .有0-102=2×(-2)×s AB 解得A、B 间的最大距离为s AB =25 m . 【解析三】 极值法物体A 、B 的位移随时间变化规律分别是s A =10t ,s B =12at 2=12×2×t 2 =t 5.则A 、B 间的距离Δs =10t -t 2,可见,Δs 有最大值,且最大值为Δs m =4×(-1)×0-1024×(-1) m =25 m【解析四】 图象法根据题意作出A 、B 两物体的υ-t 图象,如图1-5-1所示.由图可知,A 、B 再次相遇前它们之间距离有最大值的临界条件是υA =υB ,得t 1=5 s . A 、B 间距离的最大值数值上等于ΔO υA P 的面积,即Δs m =12×5×10 m=25 m .【答案】25 m【点拨】相遇问题的常用方法(1)物理分析法:抓好“两物体能否同时到达空间某位置”这一关键,按(解法一)中的思路分析.(2)相对运动法:巧妙地选取参考系,然后找两物体的运动关系.(3)极值法:设相遇时间为t ,根据条件列方程,得到关于t 的一元二次方程,用判别式进行讨论,若△>0,即有两个解,说明可以相遇两次;若△=0,说明刚好追上或相碰;若△<0,说明追不上或不能相碰.(4)图象法:将两者的速度时间图象在同一个坐标系中画出,然后利用图象求解. 拓展如图1-5-2所示是甲、乙两物体从同一地点,沿同一方向做直线运动的υ-t 图象,由图象可以看出 ( 〕A .这两个物体两次相遇的时刻分别是1s 末和4s 末B .这两个物体两次相遇的时刻分别是2s 末和6s 末C .两物体相距最远的时刻是2s 末D .4s 末以后甲在乙的前面【解析】从图象可知两图线相交点1s 末和4s 末是两物速度相等时刻,从0→2s,乙追赶甲到2s 末追上,从2s 开始是甲去追乙,在4s 末两物相距最远,到6s 末追上乙.故选B . 【答案】B【实战演练1】(2011·新课标全国卷)甲乙两辆汽车都从静止出发做加速直线运动,加速度方向一直不变。

高一物理追击相遇问题试题答案及解析

高一物理追击相遇问题试题答案及解析1.(8分)如图所示,质点甲以8m/s的速度从O点沿Ox轴正方向运动,质点乙从点Q(0m,60m)处开始做匀速直线运动,要使甲、乙在开始运动后l0s在x轴上的P点相遇,求乙的速度.【答案】大小为10m/s,方向偏向x轴正方向与y轴负方向成53°角。

【解析】质点甲在10s内的位移为 2分因此甲、乙相遇的P点坐标为(80m,0)由图中几何关系可知,在这10s内乙的位移为 2分则乙的速度为 2分方向偏向x轴正方向与y轴负方向成53°角。

2分【考点】运动的合成。

2.(10分)如(1)图所示,在太原坞城路某处安装了一台500万像素的固定雷达测速仪,可以准确抓拍超速车辆以及测量运动车辆的加速度。

一辆汽车正从A点迎面驶向测速仪B,若测速仪与汽车相距355m,此时测速仪发出超声波,同时车由于紧急情况而急刹车,汽车运动到C处与超声波相遇,当测速仪接受到发射回来的超声波信号时,汽车恰好停止于D点,且此时汽车与测速仪相距335m,忽略测速仪安装高度的影响,可简化为如(2)图所示分析(已知超声波速度为340m/s,)。

(1)求汽车刹车过程中的加速度a;(2)此路段有80km/h的限速标志,分析该汽车刹车前的行驶速度是否超速?【答案】(1)a="10" m/s2(2)是合法的【解析】(1)根据题意,超声波和汽车运动过程的示意图,如图所示设超声波往返的时间为2t,汽车在2t时间内,刹车的位移为=20m,(2分)当超声波与A车相遇后,A车继续前进的时间为t,位移为=5m,(2分)则超声波在2t内的路程为2×(335+5)m="680" m,由声速为340 m/s,得t="1" s,(1分),解得汽车的加速度a="10" m/s2(1分)(2)由A车刹车过程中的位移,(2分)解得刹车前的速度m/s=72km/h(1分)车速在规定范围内,是合法的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

追及和相遇问题专题研究
一、追及和相遇问题的实质
研究的两物体能否在相同的时刻到达相同的空间位置的问题。

二、 解决追及和相遇问题的关键
1.画出物体运动的情景图
2.理清三大关系
(1)时间关系 :0t t t B A ±= (2)位移关系:0A B x x x =±
(3)速度关系:v A =v B
两者速度相等往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。

三、追及、相遇问题的分析方法:
A. 画出两个物体运动示意图,根据两个物体的运动性质,选择同一参照物,列出两个物体的位移方程;
B. 找出两个物体在运动时间上的关系
C. 找出两个物体在运动位移上的数量关系
D. 联立方程求解.
说明:追及问题中常用的临界条件:
⑴速度小者加速追速度大者,速度在接近,但距离在变大。

追上前两个物体速度相等时,有最大距离;
⑵速度大者减速追赶速度小者, 速度在接近,但距离在变小。

追上前在两个物体速度相等时,有最小距离.即必须在此之前追上,否则就不能追上.
四.典型例题分析:
【例1】一小汽车从静止开始以3 m/s 2的加速度行驶,恰有一自行以6 m/s 的速度从车边匀
速驶过。

(1)汽车从开动后到追上自行车之前,要经多长时间两者相距最远?此时距离是多少?
(2)汽车什么时候追上自行车,此时汽车的速度是多少?
【例2】汽车正以10m/s 的速度在平直公路上前进,突然发现正前方有一辆自行车以4m/s 的速
度做同方向的匀速直线运动,汽车立即关闭油门做加速度大小为 6 m/s 2的匀减速运动,汽车恰好不
碰上自行车。

求关闭油门时汽车离自行车多远?
【例3】一列客运列车以20m/s 的速度行驶,突然发现同轨前方120m 处有一列货运列车正以
6m/s 的速度匀速前进。

于是该客运列车紧急刹车,以0.8m/s 2的加速度匀减速运动,是判断两车是
否相撞。

【例4】甲、乙两车同时从同一地点出发,甲以8m/s的初速度、1m/s2的加速度做匀减速直线运动,乙以2m/s的初速度、0.5 m/s2的加速度和甲同向做匀加速直线运动,求两车再次相遇前两车相距的最大距离和再次相遇时两车运动的时间。

【例5】如图所示,水平面上A、B两点相距X0=10m,甲球从B点向右以V0=8m/S的速度做匀速运动的同时,乙球从A点由静止向右做匀加速运动,到达B点后即以B点的速度匀速运动。

乙球从开始运动到追上甲球所用时间t=10s,求:
(1)乙球从开始运动到追上甲球时运动的位移大小。

(2)乙球加速过程的加速度。

【例1】解法一:解析法
(1)汽车从开动后速度由零逐渐增大,而自行车速度是定值,当汽车的速度还小于自行车的速度时,两者距离越来越大,当汽车的速度大于自行车的速度时,两者距离越来越小。

所以当两车的速度相等时,两车之间距离最大
(2)汽车追上自行车时,两车位移相等
v自t'=-1/2at'2,代入数值得t'=4 s,v'汽=at'=3×4 m/s=12 m/s
解法二:图象法
如图所示,作出v-t图
(1)设相遇前t秒两车速度相等,v汽=at =6 m/s,即3t=6 m/s
解得t=2 s时两车相距最远,两车的位移差
(2)由图知,t=2s以后,若两车位移相等,即v-t图象与时间轴所夹的面积相等,由几何关系知,相遇时间为t'=4 s,此时v汽=2v自=12 m/s
【例2】设汽车应在距离自行车Δs时关闭油门,当两者速度相等时距离最近,此时若不相撞,便不会相撞。

(2分)
设经时间t两者速度相等,则有,得t=" 1" s;(2分)
这段时间内汽车的位移(2分)
自行车的位移(2分)
∴汽车关闭油门时,两者相距至少为Δs=s 1-s 2=3m (2分)
【例3】解:若两车不相撞,速度相等时距离最小,设此时所用时间为t ,此时
v 客=v o -at =v 货
t =17.5s
此时x 客=v o t -2
1at 2=227.5m x 货=v 货t =105m
x 客> x 货+120
所以两车相撞 【例4】解:设两车经过t 1距离最大,此时两车速度相同
V 0甲+a 1 t 1= V 0乙+a 2 t 1 t 1=4s
X= V 0甲t 1+0.5a 1 t 12- (V 0乙t 1+0.5a 2 t 12)=12m
设再次相遇时间为t 2
V 0甲t 2+0.5a 1 t 22= V 0乙t 2+0.5a 2 t 22
T 2=8s t 2=0s (舍)
【例5】解:(1)以乙球为研究对象,设加速时间为t 1加速为a
X 0=0.5a 1t 12
a t 1(t-t 1)=V 0 t
由以上方程解得t 1=2s a=5 m/s 2
乙球从开始到追上甲球位移X= X 0+a t 1(t-t 1)=90m
(2)由第一问可知,乙球加速过程加速度a=5 m/s 2。

相关文档
最新文档