2018北京市顺义区初三(上)期末数学

合集下载

15顺义区九上期末数学答案(201801)

15顺义区九上期末数学答案(201801)

顺义区2017——2018学年度第一学期期末九年级教学质量检测数学答案一、选择题(共8道小题,每小题2分,共16分)下面各题均有四个选项,其中只有一个..是符合题意的.二、填空题(共8道小题,每小题2分,共16分)9.()21b a -; 10.210S a a =-+,25; 11.tan ∠α<tan ∠β; 12.略;13.35r ≤≤; 14.略; 151116.略 .三、解答题(共12道小题,共68分,其中第17-23题每小题5分,第24、25题每小题6分,第26、27、28题每小题7分)17.解不等式1得8x≤…………………………………………………………….2分解不等式2得1x >-…………………………………………………………….4分 ∴不等式组的解集为18x -<≤.………………………………………………….5分18.212sin 45tan 60+︒︒.123=+ 13………………………………………………….4分(每项1分)2=………………………………………………………………………….5分19.(1)△ADF ,△EBA ,△FGA ;………………………….3分(每个一分) (2)证明:△ADF ∽△ECF ∵四边形ABCD 为平行四边形∴BE ∥AD …………………………………………………….4分 ∴∠1=∠E ,∠2=∠D∴△ADF ∽△ECF …………………………………………….5分(其它证明过程酌情给分)21GA BCF D E20. 901000500180180n r l πππ⨯===…………………………….…….……….3分 中心虚线的长度为30005002300010ππ+⨯=+…………………4分=30001000 3.14=6140+⨯……………………………………………..…5分21.(1)…………………………….……….,…….2分(2)令y =0,代入243y x x =-+,则x =1,3,∴A (0,1),B (0,3),∴AB =2,……….……….,.………………..…….….3分∵△ABC 的面积为3,∴AB 为底的高为3,令y =3,代入243y x x =-+,则x =0,4,∴C (0,3)或(4,3).…………….……….,…………………….….……….5分(各1分) 22.证明:∵AD 是角平分线,∴∠1=∠2,……………………………………….1分又∵AB :AC = AE :AD ,……………………….2分∴△ABE ∽△ACD ,………………………………………..…….3分 ∴∠3=∠4,……………………………………………………….4分 ∴∠ BED =∠BDE ,∴BE =BD .………………………………………………………..5分3421E DA CB23.解:过点D 作DE ⊥AB 于点E , 在Rt △ADE 中,∠AED =90°,tan ∠1=AEDE, ∠1=30°,………………………….…..1分 ∴AE =DE × tan ∠1=40×tan30°=4040×1.73×13≈23.1……………………..3分在Rt △DEB 中,∠DEB =90°,tan ∠2=BEDE, ∠2=10°,……………………………...4分 ∴BE =DE × tan ∠2=40×tan10°≈40×0.18=7.2………………………………..………..5分 ∴AB =AE +BE ≈23.1+7.2=30.3米.………………………………………………………..6分24.证明: 延长CE 交⊙O 于点G . ∵AB 为⊙O 的直径,CE ⊥AB 于E , ∴BC =BG ,∴∠ G =∠2,……………………………………………..2分 ∵BF ∥OC ,∴∠1=∠F ,………………………………………………3分 又∵∠G =∠F ,………………………………………..….4分∴∠1=∠2.…………………………………………….…5分(其它方法对应给分)AB COFE1221EFOCBA21GEFOCB A25.解:(1)令x =3,代入2y x =-,则y =1,∴A (3,1),…………………………………………………………….....1分 ∵点A (3,1),在双曲线ky x=(k ≠0)上, ∴3k =.………………………..………………..………………………...3分(2如图所示,当点M 在N 右边时,n 的取值范围是1n >或30n -<<.………6分 26. (1)证明: 连接OD .………………………………………..1分 ∵EF 切⊙O 于点D ,∴OD ⊥EF .……………………………………….……..2分 又∵OD =OC ,∴∠ODC =∠OCD , ∵AB =AC ,∴∠ABC =∠OCD , ∴∠ABC =∠ODC , ∴AB ∥OD ,∴DE ⊥AB .…………………………………….………..3分 (2)解:连接AD .…………………………….…………….…4分∵AC 为⊙O 的直径,∴∠ADB =90°,…………………………………..…5分 ∴∠B +∠BDE =90°,∠B +∠1=90°,E DC BAOF312FOA B C DE∴∠BDE=∠1,∵AB=AC,∴∠1=∠2.又∵∠BDE =∠3,∴∠2=∠3.∴△FCD∽△FDA…………………………………….6分∴FC CD FD DA=,∵tan∠BDE=12,∴tan∠2=12,∴1=2CDDA,∴1=2FCFD,∵CF=3,∴FD=6.……………………………….…7分27.(1)AB……………………….2分(2)解:过点E作横线的垂线,交l1,l2于点M,N,……………………………..….3分∴∠DME=∠EDF= 90°,∵∠DEF=90°,∴∠2+∠3=90°,∵∠1+∠3=90°,∴∠1=∠2,∴△DME∽△ENF,………….…….4分∴DM ME DE EN NF EF==,∵EF=2DE,∴12 DM ME DEEN NF EF===,∵ME=2,EN=3,∴NF=4,DM=1.5,根据勾股定理得DE=2.5,EF=5,DF=……………………….5分(3)EG=2.5.…………………………………………………………..…….7分l2 321MNl1 EFD28.(1)∵抛物线219y x bx =+经过点A (-3,4) 令x =-3,代入219y x bx =+,则()14939b =⨯+⨯-,∴b =-1.………………………………………………………………………....2分(2)①.....3分由对称性可知OA =OC ,AP =CP , ∵AP ∥OC ,∴∠1=∠2,又∵∠AOP =∠2,∴∠AOP =∠1, ∴AP =AO , ∵A (-3,4),∴AO =5,∴AP =5, ∴P 1(2,4),同理可得P 2(-8,4),∴O P 的表达式为2y x =或1y x =-. ………………………………….5分(各1分)…………………………………….....6分②以O 为圆心,OA 长为半径作⊙O ,连接BO ,交⊙O 于点C ∵B (12,4),∴OB =, ∴BC 的最小值为5. ………………………….7分。

[精华版]顺义区2018届九年级上期末考试数学试卷有答案精品

[精华版]顺义区2018届九年级上期末考试数学试卷有答案精品

北京市顺义区2018届初三上学期期末考试数学试卷一、选择题(共8道小题,每小题2分,共16分)下面各题均有四个选项,其中只有一个..是符合题意的.1.实数a、b、c、d在数轴上的对应点的位置如图所示,在这四个数中,绝对值最小的数是A. aB. bC.cD. d2.如图,在△ABC中,∠A=90°.若AB=12,AC=5,则cosC的值为A.513B.1213C.512D.1253.右图是百度地图中截取的一部分,图中比例尺为1:60000,则卧龙公园到顺义地铁站的实际距离约为(注:比例尺等于图上距离与实际距离的比)A.1.5公里 B.1.8公里C.15公里 D.18公里4.已知蓄电池的电压为定值,使用蓄电池时,电流I(单位A)与电阻R(单位Ω)是反比例函数关系,它的图象如图所示.则用电阻R表示电流I的函数表达式为A.3IR=B.IR=-6C .3I R=- D .I R=65.二次函数的部分图象如图所示,对称轴是1x =-, 则这个二次函数的表达式为A. 223y x x =-++B. 223y x x =++C. 223y x x =-+-D. 223y x x =--+6. 如图,已知⊙O 的半径为6,弦AB 的长为8, 则圆心O 到AB 的距离为A.. D .107.已知△ABC ,D ,E 分别在AB ,AC 边上,且DE ∥BC , AD=2,DB=3,△ADE 面积是4,则四边形DBCE 的面积 是A .6B .9C .21D .258.如图1,点P 从△ABC 的顶点A 出发,沿A-B-C 匀速运动,到点C 停止运动.点P 运动时,线段AP 的长度与运动时间的函数关系如图2所示,其中D 为曲线部分的最低点,则△ABC 的面积是A .10B .12C .20D .24二、填空题(共8道小题,每小题2分,共16分) 9.分解因式:22a b ab b -+= .10.如图,利用成直角的墙角(墙足够长),用10m 长的栅栏围成yx一个矩形的小花园,花园的面积S (m 2)与它一边长a (m )的 函数关系式是 ,面积S 的最大值是 .11.已知∠α,∠β如图所示,则tan ∠α与tan ∠β的大小关系是 .12.如图标记了 △ABC 与△DEF 边、角的一些数据,如果再添加一个条件使△ABC ∽△DEF , 那么这个条件可以是 .(只填一个即可)13.已知矩形ABCD 中, AB=4,BC=3,以点B 为圆心 r 为半径作圆,且⊙B 与边CD 有唯一公共点,则r 的取值 范围是 .14.已知y 与x 的函数满足下列条件:①它的图象经过(1,1)点;②当1x >时,y 随x 的增大而减小.写出一个符合条件的函数: .15.在ABC △中,45A ∠=,AB =,2BC =,则AC 的长为 .16.在平面直角坐标系xOy 中,抛物线2122y x x =++可以看作是抛物线2221y x x =---经过若干次图形的变化(平移、翻折、旋转)得到的,写出一种由抛物线y 2得到抛物线y 1的过程: .三、解答题(共12道小题,共68分,其中第17-23题每小题5分,第24、25题每小题6分,第26、27、28题每小题7分)17.解不等式组:()52365142x x x x -≤+⎧⎪⎨-<+⎪⎩. 18.212sin 45tan 60+︒︒.19.如图,E 是□ABCD 的边BC 延长线上一点,AE 交CD 于点F ,FG ∥AD 交AB 于点G . (1)填空:图中与△CEF 相似的三角形有 ;(写出图中与△CEF 相似的所有三角形)(2)从(1)中选出一个三角形,并证明它与△CEF 相似.20.制造弯形管道时,经常要先按中心线计算“展直长度”,再备料.下图是一段管道,其中直管道部分AB 的长为3 000mm ,弯形管道部分BC ,CD 弧的半径都是1 000mm , ∠O=∠O’=90°,计算图中中心虚线的长度.21. 已知二次函数243y x x =-+. (1)在网格中,画出该函数的图象.(2)(1)中图象与x 轴的交点记为A ,B ,若该图象上存在 一点C ,且△ABC 的面积为3,求点C 的坐标.22.已知:如图,在△ABC 的中,AD 是角平分线,E 是AD 上一点,且AB :AC = AE :AD . 求证:BE=BD .23.如图所示,某小组同学为了测量对面楼AB 的高度,分工合作,有的组员测得两楼间距离为40米,有的组员在教室窗户处测得楼顶端A 的仰角为30°,底端B 的俯角为10°,请你根据以上数据,求出楼AB 的高度.(精确到0.1米) (参考数据:sin10°≈0.17, cos10°≈0.98,tan10°≈0.18 1.41,≈1.73)24.已知:如图, AB 为⊙O 的直径,CE ⊥AB 于E ,BF ∥OC ,连接BC ,CF . 求证:∠OCF =∠ECB .25.如图,在平面直角坐标系xOy 中,直线2y x =-与双曲线ky x=(k ≠0)相交于A ,B 两点,且点A 的横坐标是3. (1)求k 的值;(2)过点P (0,n )作直线,使直线与x 轴平行, 直线与直线2y x =-交于点M ,与双曲线ky x =(k ≠0)交于点N ,若点M 在N 右边, 求n 的取值范围.26.已知:如图,在△ABC 中,AB=AC ,以AC 为直径作⊙O 交BC 于点D ,过点D 作⊙O 的切线交AB 于点E ,交AC 的延长线于点F .(1)求证:DE ⊥AB ; (2)若tan ∠BDE=12, CF=3,求DF 的长.27.综合实践课上,某小组同学将直角三角形纸片放到横线纸上(所有横线都平行,且相邻两条平行线的距离为1),使直角三角形纸片的顶点恰巧在横线上,发现这样能求出三角形的边长.(1)如图1,已知等腰直角三角形纸片△ABC,∠ACB=90°,AC=BC ,同学们通过构造直角三角形的办法求出三角形三边的长,则AB= ;(2)如图2,已知直角三角形纸片△DEF ,∠DEF =90°,EF=2DE ,求出DF 的长;(3)在(2)的条件下,若橫格纸上过点E 的横线与DF 相交于点G ,直接写出EG 的长. 28.在平面直角坐标系xOy 中,抛物线219y x bx =+经过点A (-3,4). (1)求b 的值;(2)过点A 作x 轴的平行线交抛物线于另一点B ,在直线AB 上任取一点P ,作点A 关于直线OP 的对称点C ;①当点C 恰巧落在x 轴时,求直线OP 的表达式;②连结BC ,求BC 的最小值.顺义区2017——2018学年度第一学期期末九年级教学质量检测数学答案一、选择题(共8道小题,每小题2分,共16分)下面各题均有四个选项,其中只有一个..是符合题意的.二、填空题(共8道小题,每小题2分,共16分)9.()21b a -; 10.220S a a =-+; 11.tan ∠α<tan ∠β; 12.略;13.35r ≤≤; 14.略; 15.1 16.略 .三、解答题(共12道小题,共68分,其中第17-23题每小题5分,第24、25题每小题6分,第26、27、28题每小题7分)17.解不等式1得8x ≤…………………………………………………………….2分解不等式2得1x >-…………………………………………………………….4分 ∴不等式组的解集为18x -<<.………………………………………………….5分18.212sin 45tan 60+︒︒.123=+13=………………………………………………….4分(每项1分)2=………………………………………………………………………….5分19.(1)△ADF ,△EBA ,△FGA ;………………………….3分(每个一分)(2)证明:△ADF ∽△ECF ∵四边形ABCD 为平行四边形∴BE ∥AD …………………………………………………….4分 ∴∠1=∠E ,∠2=∠D∴△ADF ∽△ECF …………………………………………….5分 (其它证明过程酌情给分)20. 901000500180180n r l πππ⨯===…………………………….…….……….3分 中心虚线的长度为 3000500230001000ππ+⨯=+…………………4分=30001000 3.14=6140+⨯……………………………………………..…5分 21. (1)…………………………….……….,…….2分(2)令y=0,代入243y x x =-+,则x=1,3,∴A (0,1),B (0,3),∴AB=2,……….……….,.………………..…….….3分 ∵△ABC 的面积为3,∴AB 为底的高为3, 令y=3,代入243y x x =-+,则x=0,4,∴C (0,3)或(4,3).…………….……….,…………………….….……….5分(各1分) 22.证明:∵AD 是角平分线,∴∠1=∠2,……………………………………….1分 又∵AB AD = AE AC ,……………………….2分∴△ABE ∽△ACD ,………………………………………..…….3分 ∴∠3=∠4,……………………………………………………….4分 ∴∠BED =∠BDE ,∴BE=BD .………………………………………………………..5分 23.解:过点D 作DE ⊥AB 于点E , 在Rt △ADE 中,∠AED =90°,tan ∠1=AEDE, ∠1=30°,………………………….…..1分∴AE=DE × tan ∠1=40×tan30°=4040×1.73×13≈23.1……………………..2分 在Rt △DEB 中,∠DEB =90°,tan ∠2=BEDE, ∠2=10°,……………………………...3分 ∴BE=DE × tan ∠2=40×tan10°≈40×0.18=7.2………………………………..………..4分 ∴AB=AE+BE ≈23.1+7.2=30.3米.………………………………………………………..5分 24.证明: 延长CE 交⊙O 于点G . ∵AB 为⊙O 的直径,CE ⊥AB 于E , ∴BC=BG ,∴∠ G=∠2,……………………………………………..2分∵BF ∥OC ,∴∠1=∠F ,………………………………………………3分 又∵∠G=∠F ,………………………………………..….5分 ∴∠1=∠2.…………………………………………….…6分(其它方法对应给分) 25.解:(1)令x=3,代入2y x =-,则y=1,∴A (3,1),…………………………………………………………….....1分∵点A (3,1),在双曲线ky x=(k ≠0)上,∴3k =.………………………..………………..………………………...3分 (2)………………………………….…..4分(画图)如图所示,当点M在N右边时,n的取值范围是1n>或30n-<<.………6分26.(1)证明:连接OD.………………………………………..1分∵EF切⊙O于点D,∴OD⊥EF.……………………………………….……..2分又∵OD=OC,∴∠ODC=∠OCD,∵AB=AC,∴∠ABC=∠OCD,∴∠ABC=∠ODC,∴AB∥OD,∴DE⊥AB.…………………………………….………..3分(2)解:连接AD.…………………………….…………….…4分∵AC为⊙O的直径,∴∠ADB=90°,…………………………………..…5分∴∠B+∠BDE=90°,∠B+∠1=90°,∴∠BDE=∠1,∵AB=AC,∴∠1=∠2.又∵∠BDE =∠3,∴∠2=∠3.∴△FCD∽△FDA…………………………………….6分∴FC CD FD DA=,∵tan∠BDE=12,∴tan∠2=12,∴1=2CD DA ,∴1=2FC FD , ∵CF=3,∴FD=6.……………………………….…7分27.(1)……………………….2分(2)解:过点E 作横线的垂线,交l 1,l 2于点M ,N ,……………………………..….3分∴∠DME=∠EDF= 90°,∵∠DEF=90°,∴∠2+∠3=90°,∵∠1+∠3=90°,∴∠1=∠2,∴△DME ∽△ENF ,………….…….4分 ∴DM ME DE EN NF EF==, ∵EF=2DE , ∴12DM ME DE EN NF EF ===, ∵ME=2,EN=3,∴NF=4,DM=1.5,根据勾股定理得DE=2.5,EF=5,DF =.……………………….5分 (3)EG=2.5.…………………………………………………………..…….7分28.(1)∵抛物线219y x bx =+经过点A (-3,4) 令x=-3,代入219y x bx =+,则()14939b =⨯+⨯-, ∴b=-3.………………………………………………………………………....2分(2)①…………………………………….....3分由对称性可知OA=OC,AP=CP,∵AP∥OC,∴∠1=∠2,又∵∠AOP=∠2,∴∠AOP=∠1,∴AP=AO,∵A(-3,4),∴AO=5,∴AP=5,∴P1(2,4),同理可得P2(-8,4),∴OP的表达式为2y x=或12y x=-.………………………………….5分(各1分)…………………………………….....6分②以O为圆心,OA长为半径作⊙O,连接BO,交⊙O于点C∵B(12,4),∴OB=∴BC的最小值为5.………………………….7分。

┃精选3套试卷┃2018届北京市九年级上学期数学期末达标测试试题

┃精选3套试卷┃2018届北京市九年级上学期数学期末达标测试试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,直线1l//2l//3l,若AB=6,BC=9,EF=6,则DE=()A.4 B.6 C.7 D.9 【答案】A【分析】根据平行线分线段成比例定理列出比例式,代入数值进行计算即可. 【详解】解:∵1l//2l//3l,∴AB DE BC EF,∵AB=6,BC=9,EF=6,∴696DE,∴DE=4故选:A【点睛】本题考查平行线分线段成比例定理,找准对应关系是解答此题的关键. 2.下列说法正确的是()A.“任意画出一个等边三角形,它是轴对称图形”是随机事件B.某种彩票的中奖率为11000,说明每买1000张彩票,一定有一张中奖C.抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为1 3D.“概率为1的事件”是必然事件【答案】D【解析】试题解析:A、“任意画出一个等边三角形,它是轴对称图形”是必然事件,选项错误;B. 某种彩票的中奖概率为11000,说明每买1000张,有可能中奖,也有可能不中奖,故B错误;C. 抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为12.故C错误;D. “概率为1的事件”是必然事件,正确. 故选D.3.对于一元二次方程230x x c -+=来说,当94c =时,方程有两个相等的实数根:若将c 的值在94的基础上减小,则此时方程根的情况是( ) A .没有实数根 B .两个相等的实数根 C .两个不相等的实数根 D .一个实数根【答案】C【分析】根据根的判别式,可得答案. 【详解】解:a=1,b=-3,c=94, Δ=b 2−4ac=9−4×1×94=0 ∴当c 的值在94的基础上减小时,即c ﹤94, Δ=b 2−4ac >0∴一元二次方程有两个不相等的实数根, 故选C . 【点睛】本题考查了根的判别式的应用,能熟记根的判别式的内容是解此题的关键. 4.将抛物线y=3x 2﹣3向右平移3个单位长度,得到新抛物线的表达式为( ) A .y=3(x ﹣3)2﹣3 B .y=3x 2 C .y=3(x+3)2﹣3D .y=3x 2﹣6【答案】A【解析】根据二次函数的图象平移规律:左加右减,上加下减,即可得出.【详解】抛物线233y x =-向右平移3个单位,得到的抛物线的解析式是()233 3.y x =-- 故选A. 【点睛】本题主要考查二次函数的图象平移规律:左加右减,上加下减. 5.正六边形的周长为6,则它的面积为( )A .BCD .【答案】B【分析】首先根据题意画出图形,即可得△OBC 是等边三角形,又由正六边形ABCDEF 的周长为6,即可求得BC 的长,继而求得△OBC 的面积,则可求得该六边形的面积. 【详解】解:如图,连接OB ,OC ,过O 作OM ⊥BC 于M ,∴∠BOC=16×360°=60°, ∵OB=OC ,∴△OBC 是等边三角形, ∵正六边形ABCDEF 的周长为6, ∴BC=6÷6=1, ∴OB=BC=1, ∴BM=12BC=12, ∴2222131()2OB BM -=-=, ∴S △OBC =12×BC×OM=13312⨯= , 3336=. 故选:B . 【点睛】此题考查了圆的内接六边形的性质与等边三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.6.下列说法正确的是( ) A .对角线相等的平行四边形是菱形 B .方程x 2+4x+9=0有两个不相等的实数根 C .等边三角形都是相似三角形 D .函数y =4x,当x >0时,y 随x 的增大而增大 【答案】C【分析】根据相似三角形的判定,菱形的判定方法,一元二次方程根的判别式反比例函数的性质可得出答案.【详解】解:A .对角线相等的平行四边形是矩形,故本选项错误;B .方程x 2+4x+9=0中,△=16﹣36=﹣20<0,所以方程没有实数根,故本选项错误;C .等边三角形对应角相等,对应边成比例,所以是相似三角形,故本选项正确;D .函数y =4x,当x >0时,y 随x 的增大而减小,故本选项错误. 故选:C . 【点睛】本题考查了相似三角形的判定,菱形的判定方法,一元二次方程根的判别式反比例函数的性质,熟记定理是解题的关键.7.抛物线22y x =的开口方向是( ) A .向下 B .向上C .向左D .向右【答案】B【分析】抛物线的开口方向由抛物线的解析式y=ax 2+bx+c (a ≠0)的二次项系数a 的符号决定,据此进行判断即可.【详解】解:∵y=2x 2的二次项系数a=2>0, ∴抛物线y=2x 2的开口方向是向上; 故选:B . 【点睛】本题考查了二次函数图象的开口方向.二次函数y=ax 2+bx+c (a ≠0)的图象的开口方向:当a <0时,开口方向向下;当a >0时,开口方向向上.8.扬帆中学有一块长30m ,宽20m 的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为xm ,则可列方程为( )A .()()3302020304x x --=⨯⨯ B .()()13022020304x x --=⨯⨯ C .13022020304x x +⨯=⨯⨯ D .()()33022020304x x --=⨯⨯【答案】D【分析】根据空白区域的面积34=矩形空地的面积可得. 【详解】设花带的宽度为xm ,则可列方程为330220203(4())0x x --=⨯⨯, 故选D . 【点睛】本题主要考查由实际问题抽象出一元二次方程,解题的关键是根据图形得出面积的相等关系.9.已知一次函数()10y kx m k =+≠和二次函数()220y ax bx c a =++≠部分自变量和对应的函数值如表:当y 2>y 1时,自变量x 的取值范围是 A .-1<x <2 B .4<x <5C .x <-1或x >5D .x <-1或x >4【答案】D【分析】利用表中数据得到直线与抛物线的交点为(-1,0)和(1,5),-1<x <1时,y 1>y 2,从而得到当y 2>y 1时,自变量x 的取值范围.【详解】∵当x=0时,y 1=y 2=0;当x=1时,y 1=y 2=5; ∴直线与抛物线的交点为(-1,0)和(1,5), 而-1<x <1时,y 1>y 2,∴当y 2>y 1时,自变量x 的取值范围是x <-1或x >1. 故选D . 【点睛】本题考查了二次函数与不等式:对于二次函数y=ax 2+bx+c (a 、b 、c 是常数,a≠0)与不等式的关系,利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.10.方程2x (x ﹣3)=5(x ﹣3)的根是( ) A .x=52B .x=3C .x 1=52,x 2=3 D .x 1=﹣52,x 2=﹣3 【答案】C【解析】利用因式分解法解一元二次方程即可. 解:方程变形为:2x (x ﹣3)﹣5(x ﹣3)=0, ∴(x ﹣3)(2x ﹣5)=0, ∴x ﹣3=0或2x ﹣5=0, ∴x 1=3,x 2=52. 故选C .11.方程248x x =的解是( ) A .2x = B .0x =C .10x =,22x =D .12x =-,22x =【答案】C【分析】先把从方程的右边移到左边,并把两边都除以4化简,然后用因式分解法求解即可.【详解】∵248x x =, ∴2480x x -=, ∴220x x -=, ∴()20x x -=, ∴10x =,22x =. 故选C. 【点睛】本题考查了一元二次方程的解法,常用的方法有直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.12.某小组做“用频率估计概率”的试验时,统计了某结果出现的频率,绘制了如图的折线统计图,则符合这一结果的试验最有可能的是( )A .在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B .一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌花色是红桃C .袋子中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球D .掷一个质地均匀的正六面体骰子,向上的面点数是偶数 【答案】D【解析】根据图可知该事件的概率在0.5左右,在一一筛选选项即可解答. 【详解】根据图可知该事件的概率在0.5左右,(1)A 事件概率为13,错误. (2)B 事件的概率为14,错误.(3)C 事件概率为23,错误.(4)D 事件的概率为12,正确.故选D. 【点睛】本题考查概率,能够根据事件的条件得出该事件的概率是解答本题的关键. 二、填空题(本题包括8个小题)13.若一个圆锥的侧面展开图是一个半径为3cm ,圆心角为120°的扇形,则该圆锥的侧面面积为_____cm 2(结果保留π).【答案】3π【详解】212033360ππ⨯=.故答案为:3π.14.如图,⊙O为△ABC的内切圆,D、E、F分别为切点,已知∠C=90°,⊙O半径长为1cm,BC=3cm,则AD长度为__cm.【答案】3【分析】如图,连接OD、OE、OF,由切线的性质和切线长定理可得OD⊥AB,OE⊥BC,OF⊥AC,AF=AD,BE=BD,接着证明四边形OECF为正方形,则CE=OE=CF=OF=1cm,所以BE=BD=2cm,由勾股定理可求AD 的长.【详解】解:如图,连接OE,OF,OD,∵⊙O为△ABC内切圆,与三边分别相切于D、E、F,∴OD⊥AB,OE⊥BC,OF⊥AC,AF=AD,BE=BD,∴四边形OECF为矩形而OF=OE,∴四边形OECF为正方形,∴CE=OE=CF=OF=1cm,∴BE=BD=2cm,∵AC2+BC2=AB2,∴(AD+1)2+9=(AD+2)2,∴AD=3cm,故答案为:3【点睛】本题考查了三角形的内切圆与内心,切线的性质,切线长定理,勾股定理,正方形的判定和性质,熟悉切线长定理是本题的关键.15.根据下列统计图,回答问题:该超市10月份的水果类销售额___________11月份的水果类销售额(请从“>”“=”或“<”中选一个填空).【答案】>【分析】根据统计图,分别求出该超市10月份的水果类销售额与11月份的水果类销售额,比较大小即可. 【详解】∵10月份的水果类销售额为6020%12⨯=(万元),11月份的水果类销售额为7015%10.5⨯=(万元),∴10月份的水果类销售额>11月份的水果类销售额. 故答案是:> 【点睛】本题主要考查从统计图种提取信息,通过观察统计图,得到有用的信息,是解题的关键.16.如图,小明从路灯下A 处,向前走了5米到达D 处,行走过程中,他的影子将会(只填序号)________.①越来越长,②越来越短,③长度不变.在D 处发现自己在地面上的影子长DE 是2米,如果小明的身高为1.7米,那么路灯离地面的高度AB 是________米.【答案】①;5.95.【解析】试题解析:小明从路灯下A 处,向前走了5米到达D 处,行走过程中,他的影子将会越来越长; ∵CD ∥AB , ∴△ECD ∽△EBA , ∴CD DE BA AE =,即1.7225AB =+, ∴AB=5.95(m ). 考点:中心投影.17.若关于x 的一元二次方程12x 2﹣2kx+1-4k=0有两个相等的实数根,则代数式(k-2)2+2k(1-k)的值为______. 【答案】72【分析】根据题意可得一元二次方程根的判别式为0,列出含k 的等式,再将所求代数进行变形后整体代入求值即可.【详解】解:∵一元二次方程12x 2﹣2kx+1-4k=0有两个相等的实数根, ∴2214241402bac kk ,整理得,22410k k ,∴21+22k k2221k k k224k k224k k当21+22k k时, 224k k142=-+72= 故答案为:72. 【点睛】本题考查一元二次方程根的判别式与根个数之间的关系,根据根的个数确定根的判别式的符号是解答此题的关键.18.如图,一下水管横截面为圆形,直径为100cm ,下雨前水面宽为60cm ,一场大雨过后,水面上升了10cm ,则水面宽为__________cm .【答案】1【分析】先根据勾股定理求出OE的长,再根据垂径定理求出CF的长,即可得出结论.【详解】解:如图:作OE⊥AB于E,交CD于F,连接OA,OC∵AB=60cm,OE⊥AB,且直径为100cm,∴OA=50cm,AE=130cm 2AB=∴OE=22503040cm-=,∵水管水面上升了10cm,∴OF=40-10=030cm,∴CF=2240OC OF cm-=,∴CD=2CF=1cm.故答案为:1.【点睛】本题考查的是垂径定理的应用,熟知平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧是解答此题的关键.三、解答题(本题包括8个小题)19.在学习“轴对称现象”内容时,老师让同学们寻找身边的轴对称图形,小明利用手中的一副三角尺和一个量角器(如图所示)进行探究.(1)小明在这三件文具中任取一件,结果是轴对称图形的概率是_________;(取三件中任意一件的可能性相同)(2)小明发现在A、B两把三角尺中各选一个角拼在一起(无重叠无缝隙)会得到一个更大的角,若每个角选取的可能性相同,请用画树状图或列表的方法说明拼成的角是钝角的概率是多少.【答案】(1)2.3(2)2.3【分析】(1)找到沿某条直线折叠,直线两旁的部分能够互相重合的图形是轴对称图形,判断出三个图形中轴对称图形的个数,从而可求得答案;(2)画好树状图,根据概率公式计算即可解答.【详解】解:(1)因为:等腰直角三角形,量角器是轴对称图形, 所以小明在这三件文具中任取一件,结果是轴对称图形的概率是2.3故答案为:2.3(2)设90°的角即为12,,A A ,60°的角记为,B ,45°的角记为12,,C C ,30°的角记为,D 画树状图如图所示,一共有18种结果,每种结果出现的可能性是相同的,而其中可以拼成的这个角是钝角的结果有12种, ∴这个角是钝角的概率是122.183= 【点睛】此题为轴对称图形与概率的综合应用,考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.20.小明投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y (件)与销售单价x (元)之间的关系可近似的看作一次函数:y =﹣10x+500,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.(1)设小明每月获得利润为w (元),求每月获得利润w (元)与销售单价x (元)之间的函数关系式,并确定自变量x 的取值范围.(2)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少?(3)如果小明想要每月获得的利润不低于2000元,那么小明每月的成本最少需要多少元?(成本=进价×销售量)【答案】(5)21070010000w x x =-+-(60≤x≤76);(6)当销售单价定为76元时,每月可获得最大利润,最大利润是6560元;(7)5.【分析】(5)由题意得,每月销售量与销售单价之间的关系可近似看作一次函数,利润=(定价﹣进价)×销售量,从而列出关系式;(6)首先确定二次函数的对称轴,然后根据其增减性确定最大利润即可;(7)根据抛物线的性质和图象,求出每月的成本.【详解】解:(5)由题意,得:w=(x ﹣60)•y=(x ﹣60)•(﹣50x+500)=21070010000x x -+-,即21070010000w x x =-+-(60≤x≤76);(6)对于函数21070010000w x x =-+-的图象的对称轴是直线x=7002(10)-⨯-=6. 又∵a=﹣50<0,抛物线开口向下.∴当60≤x≤76时,W 随着X 的增大而增大,∴当x=76时,W=6560答:当销售单价定为76元时,每月可获得最大利润,最大利润是6560元.(7)取W=4得,210700100002000x x -+-=解这个方程得:1x =70,2x =7.∵a=﹣50<0,抛物线开口向下,∴当70≤x≤7时,w≥4.∵60≤x≤76,∴当70≤x≤76时,w≥4.设每月的成本为P (元),由题意,得:P=60(﹣50x+500)=﹣600x+50000∵k=﹣600<0,∴P 随x 的增大而减小,∴当x=76时,P 的值最小,P 最小值=5.答:想要每月获得的利润不低于4元,小明每月的成本最少为5元.考点:5.二次函数的应用;6.最值问题;7.二次函数的最值.21.已知关于x 的一元二次方程(a ﹣1)x 2﹣2x+1=0有两个不相等的实数根,求a 的取值范围.【答案】a <2且a ≠1【分析】根据一元二次方程的定义和判别式的意义得到a ﹣1≠0且△=(﹣2)2﹣4(a ﹣1)>0,然后解两个不等式得到它们的公共部分即可.【详解】∵关于x 的一元二次方程(a ﹣1)x 2﹣2x+1=0有两个不相等的实数根,∴a ﹣1≠0且△=(﹣2)2﹣4(a ﹣1)>0,解得:a <2且a≠1.【点睛】本题考查了一元二次方程根的情况与判别式的关系,对于一元二次方程ax 2+bx+c=0(a≠0),判别式△=b 2-4ac ,当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根;注意a≠0这一隐含条件,避免漏解.22.学生会组织周末爱心义卖活动,义卖所得利润将全部捐献给希望工程,活动选在一块长20米、宽14米的矩形空地上.如图,空地被划分出6个矩形区域,分别摆放不同类别的商品,区域之间用宽度相等的小路隔开,已知每个区域的面积均为32平方米,小路的宽应为多少米?【答案】小路的宽应为2米.【分析】设每条道路的宽为x 米,则活动区域可以看成长为()202x -米、宽为()22x -米的矩形,根据矩形的面积公式结合活动区域的面积为326⨯平方米,即可得出关于x 的一元二次方程,解之取其较小值即可得出结论.【详解】设小路宽度为x 米,由题意,可列方程如下:()()20214326x x --=⨯解得:12x =;22214x =>(舍去)答:小路的宽应为2米.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.23.如图,90ABD BCD ∠=∠=︒,DB 平分ADC ∠,过点B 作//BM CD 交AD 于M ,连接CM 交DB 于N ,若6CD =,8AD =,求BD ,DN 的长.【答案】BD=3DN=35【分析】由平行线的性质可证∠MBD=∠BDC ,即可证AM=MD=MB=4,由BD 2=AD•CD 可得BD 长,再由勾股定理可求MC 的长,通过证明△MNB ∽△CND ,可得2===3BM MN BN CD CN DN ,即可求DN 的长. 【详解】解:∵BM ∥CD∴∠MBD=∠BDC∴∠ADB=∠MBD ,且∠ABD=90°∴BM=MD ,∠MAB=∠MBA∴BM=MD=AM=4∵DB 平分ADC ∠,∴∠ADB=∠CDB ,∵90ABD BCD ∠=∠=︒,∴△ABD ∽△BCD ,∴BD 2=AD•CD ,∵ CD=6,AD=8,∴BD 2=48,即BD=∴BC 2=BD 2-CD 2=12∴MC 2=MB 2+BC 2=28∴MC=∵BM ∥CD∴△MNB ∽△CND ,∴2===3BM MN BN CD CN DN ,且BD= ∴设DN=x ,则有2=3x x ,解得x=5,即【点睛】本题考查了相似三角形的判定及其性质,掌握相关判定方法并灵活运用,是解题的关键.24.现有A 、B 两个不透明的盒子,A 盒中装有红色、黄色、蓝色卡片各1张,B 盒中装有红色、黄色卡片各1张,这些卡片除颜色外都相同.现分别从A 、B 两个盒子中任意摸出一张卡片.(1)从A 盒中摸出红色卡片的概率为______;(2)用画树状图或列表的方法,求摸出的两张卡片中至少有一张红色卡片的概率.【答案】(1)13;(2)P (至少一张红色卡片)23=.【分析】(1)根据A 盒中红色卡片的数量除以A 盒中卡片总数计算即可;(2)画出树状图得出所有可能的情况数与至少有一张红色卡片的情况数,再根据概率公式计算即可.【详解】解:(1)从A 盒中摸出红色卡片的概率=13; (2)画出树状图如下:共有6种等可能的情况,其中至少有一张红色卡片的情况有4种,∴P (至少一张红色卡片)4263==. 【点睛】本题考查的是求两次事件的概率,属于常考题型,熟练掌握画树状图或列表的方法是解题的关键. 25.已知1y -与x 成反比例,当1x =时,5y =-,求y 与x 的函数表达式.【答案】61y x=-+ 【分析】根据反比例的定义,设1k y x -=,再将1,5x y ==-代入求出k ,即可求得. 【详解】由题意设1k y x-=, 将1,5x y ==-代入得 511k --=, 解得6k =-,∴61y x -=-即61y x=-+. 【点睛】本题考查了反比例的定义,利用代入法求解未知数,要注意的是,y 与x 的函数表达式指的是()y f x =形式,如本题最后结果不可写成61y x-=-. 26.已知关于x 的一元二次方程mx 2+2mx+m ﹣4=0;(1)若该方程没有实数根,求m 的取值范围.(2)怎样平移函数y =mx 2+2mx+m ﹣4的图象,可以得到函数y =mx 2的图象?【答案】(1)m <0;(1)向右平移1个单位长度,再向上平移4个单位长度.【分析】(1)根据关于x 的一元二次方程mx 1+1mx+m ﹣4=0没有实数根,可以得到关于m 的不等式组,从而可以求得m 的取值范围;(1)先将函数y =mx 1+1mx+m ﹣4化为顶点式,再根据平移的性质可以得到函数y =mx 1.【详解】(1)∵关于x 的一元二次方程mx 1+1mx+m ﹣4=0没有实数根,∴()()202440m m m m ≠⎧⎪⎨--<⎪⎩, 解得,m <0,即m 的取值范围是m <0;(1)∵函数y =mx 1+1mx+m ﹣4=m(x+1)1﹣4,∴函数y =mx 1+1mx+m ﹣4的图象向右平移一个单位长度,在向上平移4个单位长度即可得到函数y =mx 1的图象.【点睛】本题考查了一元二次方程的问题,掌握根的判别式、一元二次方程的性质以及图象是解题的关键. 27.如图,在ABC ∆中,90B ∠=︒,6AB cm =,8BC cm =,动点D 从点C 出发,沿CA 方向匀速运动,速度为2/cm s ;同时,动点E 从点A 出发,沿AB 方向匀速运动,速度为1/cm s ;当一个点停止运动,另一个点也停止运动.设点D ,E 运动的时间是t()s ()05t <<.过点D 作DF BC ⊥于点F ,连接DE ,EF .(1)t 为何值时,DE AC ⊥?(2)设四边形AEFC 的面积为S ,试求出S 与t 之间的关系式;(3)是否存在某一时刻t ,使得:17:24ABC AEFC S S ∆=四边形若存在,求出t 的值;若不存在,请说明理由; (4)当t 为何值时,45ADE ∠=︒?【答案】(1)当t=5013时,DE ⊥AC ;(2)2444=+55S t t ﹣ ;(3)当t=52时, :17:24AEFC ABC S S =四边形;(4)t=5017时,ADE ∠=o 45 【分析】(1)若DE ⊥AC ,则∠EDA=90°,易证△ADE ∽△ABC ,进而列出关于t 的比例式,即可求解; (2)由△CDF ∽△CAB ,得CF=85t ,BF=8﹣85t ,进而用割补法得到S 与t 之间的关系式,进而即可得到答案;(3)根据:17:24AEFC ABC S S =四边形,列出关于t 的方程,即可求解;(4)过点E 作EM ⊥AC 于点M ,易证△AEM ∽△ACB ,从而得EM=45t ,AM=35t ,进而得DM=13105t -,根据当DM=ME 时,ADE ∠=o 45,列出关于t 的方程,即可求解.【详解】(1)∵∠B=o 90,AB=6 cm ,BC=8 cm ,∴AC=10cm ,若DE ⊥AC ,则∠EDA=90°,∴∠EDA=∠B ,∵∠A=∠A ,∴△ADE ∽△ABC , ∴AE AD AC AB =,即10-2610t t =, ∴t=5013, 答:当t=5013时,DE ⊥AC ; (2)∵DF ⊥BC ,∴∠DFC=90°,∴∠DFC =∠B ,∵∠C=∠C ,∴△CDF ∽△CAB , ∴CFCDCB CA =, 即2810CFt=,∴CF=85t ,∴BF=8﹣85t , ∴28(651444(=+21=856852S t)t)t t ⨯⨯⨯⨯﹣﹣﹣﹣; (3)若存在某一时刻t ,使得:17:24AEFC ABC S S =四边形, 根据题意得:2444171+=6855242t t ⨯⨯⨯﹣, 解得:12517==22t t ,(舍去),答:当t=52时,:17:24AEFC ABC S S =四边形;(4)过点E 作EM ⊥AC 于点M ,则△AEM ∽△ACB ∴AE EM AC BC ==AM AB,∴=1086t EM AM =, ∴EM=45t ,AM=35t , ∴DM=10-2t-35t =13105t -, 在Rt △DEM 中,当DM=ME 时,ADE ∠=o 45,∴13410=55t t -,解得:t=5017即:当t=5017时,ADE ∠=o 45.【点睛】本题主要考查相似三角形的判定和性质定理综合,通过相似三角形的性质,用代数式表示相关线段,进而列出方程,是解题的关键.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.方程2x x =的解是( )A .x=0B .x=1C .x=0或x=1D .x=0或x=-1 【答案】C【分析】根据因式分解法,可得答案.【详解】解:2x x =,方程整理,得,x 2-x=0因式分解得,x (x-1)=0,于是,得,x=0或x-1=0,解得x 1=0,x 2=1,故选:C .【点睛】本题考查了解一元二次方程,因式分解法是解题关键.2.如图,在△ABC 中,∠C=90︒,∠B=30︒,以点A 为圆心,适当长为半径画弧,分别交AB ,AC 于点M 、N ,再分别以点M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于P ,作射线AP 交BC 于点D ,下列说法不正确的是( )A .∠ADC=60︒B .AD=BDC .13ACD ABD S S =:: D .CD=12BD 【答案】C【分析】由题意可知AD 平分CAB ∠,求出DAB ∠,CAD ∠,利用直角三角形30角的性质以及等腰三角形的判定和性质一一判断即可.【详解】解:在Rt ABC ∆中,90C ∠=︒,30B ∠=︒,903060CAB ∴∠=︒-︒=︒,由作图可知:AD 平分CAB ∠1302DAB CAB B ∴∠=∠=︒=∠, 60ADC DAB B ∴∠=∠+∠=︒,故A 正确DA DB =,故B 正确30CAD ∠=︒,2AD BD CD ∴==,13CD BC ∴=, :1:3ADC ABC S S ∆∆∴=,:1:2ADC ABD S S ∆∆∴=,故C 错误,设CD a =,则2AD BD a ==,12CD BD ∴=,故D 正确, 故选:C .【点睛】本题考查作图-复杂作图,角平分线的性质,线段的垂直平分线的性质,解直角三角形等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.3.与三角形三个顶点距离相等的点,是这个三角形的( )A .三条中线的交点B .三条角平分线的交点C .三条高的交点D .三边的垂直平分线的交点【答案】D【分析】可分别根据线段垂直平分线的性质进行思考,首先满足到A 点、B 点的距离相等,然后思考满足到C 点、B 点的距离相等,都分别在各自线段的垂直平分线上,于是答案可得.【详解】解:如图:∵OA =OB ,∴O 在线段AB 的垂直平分线上,∵OB =OC ,∴O 在线段BC 的垂直平分线上,∵OA =OC ,∴O 在线段AC 的垂直平分线上,又三个交点相交于一点,∴与三角形三个顶点距离相等的点,是这个三角形的三边的垂直平分线的交点.故选:D .【点睛】此题主要考查垂直平分线的性质,解题的关键是熟知线段垂直平分线上的点到线段两个端点距离相等. 4.如图,在Rt ABC △中,90ACB ∠=︒,30A ∠=︒,2BC =.将ABC 绕点C 按顺时针方向旋转n 度后得到EDC △,此时点D 在AB 边上,斜边DE 交AC 边于点F ,则n 的大小和图中阴影部分的面积分别为( )A .302,B .602,C .3602, D .603,【答案】C【解析】试题分析:∵△ABC 是直角三角形,∠ACB=90°,∠A=30°,BC=2,∴∠B=60°,AC=BC×cot ∠33AB=2BC=4,∵△EDC 是△ABC 旋转而成,∴BC=CD=BD=12AB=2, ∵∠B=60°,∴△BCD 是等边三角形,∴∠BCD=60°,∴∠DCF=30°,∠DFC=90°,即DE ⊥AC ,∴DE ∥BC ,∵BD=12AB=2, ∴DF 是△ABC 的中位线,∴DF=12BC=12×2=1,CF=12AC=12×23=3,∴S阴影=12DF×CF=12×3=32.故选C.考点:1.旋转的性质2.含30度角的直角三角形.5.下列方程中,是一元二次方程的是()A.2ax bx c++B.2111 22x x+--=C.211x x-+=D.310x x++=【答案】B【解析】根据一元二次方程的定义进行判断即可.【详解】A.属于多项式,错误;B.属于一元二次方程,正确;C.未知数项的最高次数是2,但不属于整式方程,错误;D.属于整式方程,未知数项的最高次数是3,错误.故答案为:B.【点睛】本题考查了一元二次方程的性质以及定义,掌握一元二次方程的定义是解题的关键.6.如图,在平面直角坐标系中,直线AB与x轴,y轴分别交于A,B,与反比例函数kyx=(k>0)在第一象限的图象交于点E,F,过点E作EM⊥y轴于M,过点F作FN⊥x轴于N,直线EM与FN交于点C,若13BEBF=,则△OEF与△CEF的面积之比是()A.2:1 B.3:1 C.2:3 D.3:2【答案】A【分析】根据E,F都在反比例函数的图象上设出E,F的坐标,进而分别得出△CEF的面积以及△OEF的面积,然后即可得出答案.【详解】解:设△CEF 的面积为S 1,△OEF 的面积为S 2,过点F 作FG ⊥BO 于点G ,EH ⊥AO 于点H ,∴GF ∥MC , ∴ME GF =13BE BF =, ∵ME •EH =FN •GF,∴ME GF =FN EH =13, 设E 点坐标为:(x ,k x ),则F 点坐标为:(3x ,3k x ), ∴S △CEF =12(3x ﹣x )(k x ﹣3k x )=23k , ∵S △OEF =S 梯形EHNF +S △EOH ﹣S △FON =S 梯形EHNF =12(k x +3k x )(3x ﹣x )=43k ∴OEFCEF S S ∆∆=4323k k =21. 故选:A .【点睛】此题主要考查了反比例函数的综合应用以及三角形面积求法,根据已知表示出E ,F 的点坐标是解题关键,有一定难度,要求同学们能将所学的知识融会贯通.7.如图,为了测量路灯离地面的高度,身高1.6m 的小明站在距离路灯的底部(点O )12m 的点A 处,测得自己的影子AM 的长为4m ,则路灯CO 的高度是( )A .4.8mB .6.4mC .8mD .9.6m【答案】B 【分析】根据平行得:△ABM ∽△ODM ,列比例式,代入可求得结论.【详解】解:由题意得:AB ∥OC ,∴△ABM ∽△OCM , ∴AB AM OC OM = ∵OA=12,AM=4,AB=1.6,∴OM=OA+AM=12+4=16,∴11.646OC = ∴OC=6.4,则则路灯距离地面6.4米.故选:B.【点睛】本题考查相似三角形的判定和性质,解题关键是利用物高和影长成正比或相似三角形的对应边成比例性质解决此题.8.如图,双曲线k y x=与直线y mx =相交于A 、B 两点,B 点坐标为()2,3--,则A 点坐标为( )A .()2,3? --B .()2,3C .()2,3-D .()2,3-【答案】B 【解析】反比例函数的图象是中心对称图形,则经过原点的直线的两个交点一定关于原点对称.【详解】解:点A 与B 关于原点对称, B 点坐标为()2,3--∴A 点的坐标为(2,3).所以B 选项是正确的.【点睛】本题主要考查了反比例函数图象的中心对称性,要求同学们要熟练掌握.9.如图,直径为10的⊙A 山经过点C(0,5)和点0(0,0),B 是y 轴右侧⊙A 优弧上一点,则∠OBC 的余弦值为( )A .12B .34C .32D .45【答案】C【分析】连接CD ,由直径所对的圆周角是直角,可得CD 是直径;由同弧所对的圆周角相等可得∠OBC=∠ODC ,在Rt △OCD 中,由OC 和CD 的长可求出sin ∠ODC.【详解】设⊙A 交x 轴于另一点D ,连接CD ,∵∠COD=90°,∴CD 为直径,∵直径为10,∴CD=10,∵点C (0,5)和点O (0,0),∴OC=5,∴sin ∠ODC= OC CD = 12, ∴∠ODC=30°,∴∠OBC=∠ODC=30°,∴cos ∠OBC=cos30°=3 . 故选C.【点睛】此题考查了圆周角定理、锐角三角函数的知识.注意掌握辅助线的作法,注意掌握数形结合思想的应用. 10.如图,ABC ∆中,//,2,3DE BC AD BD ==,则DE AE BC AC =的值为( )A .2:3B .1:2C .3:5D .2:5【答案】D 【解析】根据相似三角形的判定和性质,即可得到答案.【详解】解:∵//DE BC ,∴ADE ∆∽ABC ∆, ∴22235DE AE AD AD BC AC AB AD DB =====++; 故选:D.【点睛】本题考查了相似三角形的判定和性质,解题的关键是掌握相似三角形的判定和性质.11.如图,AD 是⊙O 的直径,以A 为圆心,弦AB 为半径画弧交⊙O 于点C ,连结BC 交AD 于点E ,若DE =3,BC =8,则⊙O 的半径长为( )A .256B .5C .163D .253【答案】A【分析】由作法得AB AC =,根据圆周角定理得到∠ADB =∠ABE ,再根据垂径定理的推论得到AD ⊥BC ,BE =CE =12BC =4,于是可判断Rt △ABE ∽Rt △BDE ,然后利用相似比求出AE ,从而得到圆的直径和半径. 【详解】解:由作法得AC =AB ,∴AB AC =,∴∠ADB =∠ABE ,∵AB 为直径,∴AD ⊥BC ,∴BE =CE =12BC =4,∠BEA =∠BED =90°, 而∠BDE =∠ABE ,∴Rt △ABE ∽Rt △BDE ,∴BE :DE =AE :BE ,即4:3=AE :4,。

{3套试卷汇总}2018年北京市九年级上学期期末联考数学试题

{3套试卷汇总}2018年北京市九年级上学期期末联考数学试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下列方程是一元二次方程的是( )A .2x 2-5x+3B .2x 2-y+1=0C .x 2=0D .21x + x=2 【答案】C【解析】一元二次方程必须满足四个条件:(1)未知数的最高次数是1;(1)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【详解】A 、不是方程,故本选项错误;B 、方程含有两个未知数,故本选项错误;C 、符合一元二次方程的定义,故本选项正确;D 、不是整式方程,故本选项错误.故选:C .【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是1.2.下列成语所描述的事件是不可能事件的是( )A .日行千里B .守株待兔C .水涨船高D .水中捞月 【答案】D【分析】事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的.【详解】解:A 、日行千里是随机事件,故本选项错误;B 、守株待兔是随机事件,故本选项错误;C 、水涨船高是必然事件,故本选项错误;D 、水中捞月是不可能事件,故本选项正确.故选:D .【点睛】此题考查是不可能事件的判断,掌握不可能事件的定义是解决此题的关键.3.如图,该几何体的主视图是( )A .B .C .D .【解析】试题分析:根据主视图是从正面看到的图形,因此可知从正面看到一个长方形,但是还得包含看不到的一天线(虚线表示),因此第四个答案正确.故选D考点:三视图4.反比例函数2k y x -=的图象,当x >0时,y 随x 的增大而减小,则k 的取值范围是( ) A .2k <B .k 2≤C .2k >D .2k ≥ 【答案】C【分析】根据反比例函数的性质直接判断即可得出答案.【详解】∵反比例函数y=2k x -中,当x >0时,y 随x 的增大而减小, ∴k-1>0,解得k >1.故选C .【点睛】本题考查的是反比例函数的性质,熟知反比例函数y=k x(k≠0)中,当k >0时,双曲线的两支分别位于第一、第三象限,在每一象限内y 随x 的增大而减小是解答此题的关键.5.抛物线y =ax 2+bx+c (a≠0)的图象如图,则下列结论中正确的是( )A .ab <0B .a+b+2c ﹣2>0C .b 2﹣4ac <0D .2a ﹣b >0【答案】D 【解析】利用抛物线开口方向得到a >0,利用抛物线的对称轴在y 轴的左侧得到b >0,则可对A 选项进行判断;利用x =1时,y =2得到a+b =2﹣c ,则a+b+2c ﹣2=c <0,于是可对B 选项进行判断;利用抛物线与x 轴有2个交点可对C 选项进行判断;利用﹣1<﹣2b a<0可对D 选项进行判断. 【详解】∵抛物线开口向上,∴a >0,∵抛物线的对称轴在y 轴的左侧,∴a 、b 同号,即b >0,∴ab >0,故A 选项错误;∵抛物线与y 轴的交点在x 轴下方,∵x =1时,y =2,∴a+b+c =2,∴a+b+2c ﹣2=2+c ﹣2=c <0,故B 选项错误;∵抛物线与x 轴有2个交点,∴△=b 2﹣4ac >0,故 C 选项错误;∵﹣1<﹣2b a<0, 而a >0,∴﹣2a <﹣b ,即2a ﹣b >0,所以D 选项正确.故选:D .【点睛】本题主要考查二次函数解析式的系数的几何意义,掌握二次函数解析式的系数与图象的开口方向,对称轴,图象与坐标轴的交点的位置关系,是解题的关键.6.如图,正六边形ABCDEF 内接于⊙O ,若直线PA 与⊙O 相切于点A ,则∠PAB=( )A .30°B .35°C .45°D .60°【答案】A 【解析】试题分析:连接OA ,根据直线PA 为切线可得∠OAP=90°,根据正六边形的性质可得∠OAB=60°,则∠PAB=∠OAP -∠OAB=90°-60°=30°.考点:切线的性质7.如图,在△ABC 中,DE ∥BC ,DE 分别与AB 、AC 相交于点D 、E ,若AD =4,DB =2,则EC :AE 的值为( )A .12 B .23 C .34 D .16【答案】A【分析】根据平行线截线段成比例定理,即可得到答案.【详解】∵DE∥BC,∴BD EC AD AE=,∵AD=4,DB=2,∴12 ECAE=,故选:A.【点睛】本题主要考查平行线截线段成比例定理,,掌握平行线截线段成比例,是解题的关键.8.某校九年级(1)班在举行元旦联欢会时,班长觉得快要毕业了,决定临时增加一个节目:班里面任意两名同学都要握手一次.小张同学统计了一下,全班同学共握手了465次.你知道九年级(1)班有多少名同学吗?设九年级(1)班有x名同学,根据题意列出的方程是()A.(1)2x x-=465 B.(1)2x x+=465 C.x(x﹣1)=465 D.x(x+1)=465【答案】A【解析】因为每位同学都要与除自己之外的(x﹣1)名同学握手一次,所以共握手x(x﹣1)次,由于每次握手都是两人,应该算一次,所以共握手x(x﹣1)÷2次,解此方程即可.【详解】解:设九年级(1)班有x名同学,根据题意列出的方程是(1)2x x-=465,故选A.【点睛】本题主要考查一元二次方程在实际生活中的应用,明白两人握手应该只算一次并据此列出方程是解题的关键.9.下列图形中,既是中心对称图形,又是轴对称图形的是( )A.B.C.D.【答案】B【解析】根据中心对称图形的定义“是指在平面内,把一个图形绕着某个点旋转180︒,如果旋转后的图形能与原来的图形重合的图形”和轴对称图形的定义“是指平面内,一个图形沿着一条直线折叠,直线两旁的部分能够完全重合的图形”逐项判断即可.【详解】A、既不是中心对称图形,也不是轴对称图形,此项不符题意B、既是中心对称图形,又是轴对称图形,此项符合题意C 、是轴对称图形,但不是中心对称图形,此项不符题意D 、是中心对称图形,但不是轴对称图形,此项不符题意故选:B.【点睛】本题考查了中心对称图形的定义和轴对称图形的定义,这是常考点,熟记定义是解题关键.10.如图,AB 为O 的直径延长AB 到点P ,过点P 作O 的切线,切点为C ,连接,40AC P ∠=,D 为圆上一点,则D ∠的度数为( )A .25B .30C .35D .40【答案】A 【分析】连接OC,根据切线的性质和直角三角形两锐角互余求出COB ∠ 的度数,然后根据圆周角定理即可求出D ∠的度数.【详解】连接OC∵PC 为O 的切线∴90OCP ∠=︒∵40P ∠=︒90904050COB P ∴∠=︒-∠=︒-︒=︒1252D COB ∴∠=∠=︒ 故选:A .【点睛】本题主要考查切线的性质,直角三角形两锐角互余和圆周角定理,掌握切线的性质,直角三角形两锐角互余和圆周角定理是解题的关键.11.从一个装有3个红球、2个白球的盒子里(球除颜色外其他都相同),先摸出一个球,不再放进盒子里,然后又摸出一个球,两次摸到的都是红球的概率是( )A .12B .35C .16D .310【答案】D【分析】画树状图得出所有等可能的情况数,找出两次都是红球的情况数,即可求出所求的概率.【详解】解:画树状图得:∵共有20种等可能的结果,两次摸到的球的颜色都是红球的有6种情况,∴两次摸到的球的颜色相同的概率为:310. 故选:D .【点睛】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.12.如图,⊙O 是正△ABC 的外接圆,点D 是弧AC 上一点,则∠BDC 的度数( ).A .50°B .60°C .100°D .120°【答案】B 【分析】根据等边三角形的性质和圆周角定理的推论解答即可.【详解】解:∵△ABC 是正三角形,∴∠A=60°,∴∠BDC=∠A=60°.故选:B .【点睛】本题考查了等边三角形的性质和圆周角定理的推论,属于基础题型,熟练掌握上述基本知识是解题的关键.二、填空题(本题包括8个小题)13.菱形ABCD 边长为4,60ABC ∠=︒,点E 为边AB 的中点,点F 为AD 上一动点,连接EF 、BF ,并将BEF ∆沿BF 翻折得BE F ∆',连接E C ',取E C '的中点为G ,连接DG ,则122DG E C +'的最小值为_____.97【分析】取BC 的中点为H ,在HC 上取一点I 使~HIG HGC ,相似比为12,由相似三角形的性质可得12222()2DG CE DG GI DG GI '+=+=+,即当点D 、G 、I 三点共线时,DG GI +最小,由点D 作BC 的垂线交BC 延长线于点P ,由锐角三角函数和勾股定理求得DI 的长度,即可根据19722()22972DH CE DG GI DI '+=+≥== 【详解】取BC 的中点为H ,在HC 上取一点I 使~HIG HGC ,相似比为12 ∵G 为CE '的中点 ∴12CG CE '= ∵~HIG HGC 且相似比为12 2CG GI ∴=,1122HI HG == 得122CE GI '= 12222()2DG CE DG GI DG GI '∴+=+=+ 当点D 、G 、I 三点共线时,DG GI +最小 1,22HI CH == 13222CI CH HI ∴=-=-= 由点D 作BC 的垂线交BC 延长线于点P60ABC ︒∠=60DCP ︒∴∠=即3sin 604232DP DC ︒=⋅=⨯= 1cos60422CP DC ︒=⋅=⨯= 72PI PC CI ∴=+=由勾股定理得 2249971242DI DP PI =+=+= 19722()229722DH CE DG GI DI '∴+=+≥=⨯= 故答案为:97.【点睛】本题考查了线段长度的最值问题,掌握相似三角形的性质以及判定定理、锐角三角函数、勾股定理是解题的关键.14.已知反比例函数32m y x-=,当m _______时,其图象在每个象限内y 随x 的增大而增大. 【答案】23m < 【分析】根据反比例函数的性质求出m 的取值范围即可.【详解】∵反比例函数在每个象限内y 随x 的增大而增大∴320m -<解得23m < 故答案为:23m <. 【点睛】本题考查了反比例函数的问题,掌握反比例函数的性质是解题的关键.15.二次函数y =a (x+m )2+n 的图象如图,则一次函数y =mx+n 的图象不经过第_____象限.【答案】一【分析】由二次函数解析式表示出顶点坐标,根据图形得到顶点在第四象限,求出m 与n 的正负,即可作出判断.【详解】根据题意得:抛物线的顶点坐标为(﹣m ,n ),且在第四象限,∴﹣m >0,n <0,即m <0,n <0,则一次函数y =mx+n 不经过第一象限.故答案为:一.【点睛】此题考查了二次函数与一次函数图象与系数的关系,熟练掌握二次函数及一次函数的图象与性质是解本题的关键.16.若一个圆锥的侧面展开图是一个半径为3cm ,圆心角为120°的扇形,则该圆锥的侧面面积为_____cm 2(结果保留π).【答案】3π 【详解】212033360ππ⨯=. 故答案为:3π.17.设x 1,x 2是方程x 2+3x ﹣1=0的两个根,则x 1+x 2=_____.【答案】﹣1.【分析】直接根据一元二次方程根与系数的关系求解即可.【详解】解:∵x 1,x 2是方程x 2+1x ﹣1=0的两个根,∴x 1+x 2=﹣1.故答案为﹣1.【点睛】本题考查了根与系数的关系: x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时,x 1+x 2=- b a ,x 1x 2=c a. 18.一张直角三角形纸片ABC ,90ACB ∠=,10AB =,6AC =,点D 为BC 边上的任一点,沿过点D 的直线折叠,使直角顶点C 落在斜边AB 上的点E 处,当BDE ∆是直角三角形时,则CD 的长为_____.【答案】3或247【分析】依据沿过点D 的直线折叠,使直角顶点C 落在斜边AB 上的点E 处,当△BDE 是直角三角形时,分两种情况讨论:∠DEB=90°或∠BDE=90°,分别依据勾股定理或者相似三角形的性质,即可得到CD 的长【详解】分两种情况:①若90DEB ∠=,则90AED C ∠==∠, CD ED =,连接AD ,则()Rt ACD Rt AEAD HL ∆≅∆,6AE AC ∴==,1064BE =-=,设CD DE x ==,则8BD x =-,Rt BDE ∆中,222DE BE BD +=2224(8)x x ∴+=-,解得3x =,3CD ∴=;②若90BDE ∠=,则90CDE DEF C ∠=∠=∠=,CD DE =,∴四边形CDEF 是正方形,90AFE EDB ∴∠=∠=,AEF B ∠=∠,~AEF EBD ∴∆∆,AF EF ED BD∴=, 设CD x =,则EF DF x ==,6AF x =-,8BD x =-,68x x x x-∴=-, 解得247x =,247CD ∴=, 综上所述,CD 的长为3或247, 故答案为3或247. 【点睛】 此题考查折叠的性质,勾股定理,全等三角形的判定与性质,解题关键在于画出图形三、解答题(本题包括8个小题)19.(1)已知a ,b ,c ,d 是成比例线段,其中a =2cm ,b =3cm ,d =6cm ,求线段c 的长; (2)已知234a b c ==,且a+b ﹣5c =15,求c 的值. 【答案】 (1)1;(2)-1【分析】(1)根据比例线段的定义得到a :b=c :d ,然后把a=2cm ,b=3cm ,d=6cm 代入进行计算即可; (2)设234a b c ===k ,得出a=2k ,b=3k ,c=1k ,代入a+b-5c=15,求出k 的值,从而得出c 的值. 【详解】(1)∵a ,b ,c ,d 是成比例线段∴a cb d =, 即236c =, ∴c=1;(2)设234a b c ===k ,则a=2k ,b=3k ,c=1k , ∵a+b-5c=15∴2k+3k-20k=15解得:k=-1∴c=-1.【点睛】此题考查比例线段,解题关键是理解比例线段的概念,列出比例式,用到的知识点是比例的基本性质. 20.近年来,各地“广场舞”噪音干扰的问题倍受关注.相关人员对本地区15~65岁年龄段的市民进行了随机调查,并制作了如下相应的统计图.市民对“广场舞”噪音干扰的态度有以下五种:A .没影响 B .影响不大 C .有影响,建议做无声运动 D .影响很大,建议取缔 E .不关心这个问题根据以上信息解答下列问题:(1)根据统计图填空:m = ,A 区域所对应的扇形圆心角为 度;(2)在此次调查中,“不关心这个问题”的有25人,请问一共调查了多少人?(3)将条形统计图补充完整;(4)若本地共有14万市民,依据此次调查结果估计本地市民中会有多少人给出建议....? 【答案】(1)32,1;(2)500人;(3)补图见解析;(4)5.88万人.【解析】分析:分析:(1)用1减去A ,D ,B ,E 的百分比即可,运用A 的百分比乘360°即可.(2)用不关心的人数除以对应的百分比可得.(3)求出25-35岁的人数再绘图.(4)用14万市民乘C 与D 的百分比的和求解.本题解析:(1)m%=1-33%-20%-5%-10%=32%,所以m=32,A 区域所对应的扇形圆心角为:360°×20%=1°,故答案为32,1.(2)一共调查的人数为:25÷5%=500(人).(3)(3)500×(32%+10%)=210(人)25−35岁的人数为:210−10−30−40−70=60(人)(4)14×(32%+10%)=5.88(万人)答:估计本地市民中会有5.88万人给出建议.21.在平面直角坐标系中,一次函数y ax b =+(a≠0)的图象与反比例函数(0)k y k x=≠的图象交于第二、第四象限内的A 、B 两点,与y 轴交于点C ,过点A 作AH ⊥y 轴,垂足为点H ,OH=3,tan ∠AOH=43,点B 的坐标为(m ,-2).(1)求该反比例函数和一次函数的解析式;(2)求△AHO 的周长.【答案】(1)一次函数为112y x =-+,反比例函数为12y x=-;(2)△AHO 的周长为12 【解析】分析:(1)根据正切函数可得AH=4,根据反比例函数的特点k=xy 为定值,列出方程,求出k 的值,便可求出反比例函数的解析式;根据k 的值求出B 两点的坐标,用待定系数法便可求出一次函数的解析式.(2)由(1)知AH 的长,根据勾股定理,可得AO 的长,根据三角形的周长,可得答案.详解:(1)∵tan ∠AOH=AH OH =43 ∴AH=43OH=4 ∴A (-4,3),代入k y x =,得 k=-4×3=-12 ∴反比例函数为12y x =-∴122m-=-∴m=6∴B (6,-2) ∴4362a b a b -+=⎧⎨+=-⎩∴a =12-,b=1 ∴一次函数为112y x =-+ (2)2222345OA AH OH +=+=△AHO 的周长为:3+4+5=12点睛:此题考查的是反比例函数图象上点的坐标特点及用待定系数法求一次函数及反比例函数的解析式. 22.已知,二次函数2y x bx c =-++的图象,如图所示,解决下列问题:(1)关于x 的一元二次方程20x bx c -++=的解为;(2)求出抛物线的解析式;y .(3)x为何值时0【答案】(1)-1或2;(2)抛物线解析式为y=-x2+2x+2;(2)x>2或x<-1.【分析】(1)直接观察图象,抛物线与x轴交于-1,2两点,所以方程的解为x1=-1,x2=2.(2)设出抛物线的顶点坐标形式,代入坐标(2,0),即可求得抛物线的解析式.(2)若y<0,则函数的图象在x轴的下方,找到对应的自变量取值范围即可.【详解】解:(1)观察图象可看对称轴出抛物线与x轴交于x=-1和x=2两点,∴方程的解为x1=-1,x2=2,故答案为:-1或2;(2)设抛物线解析式为y=-(x-1)2+k,∵抛物线与x轴交于点(2,0),∴(2-1)2+k=0,解得:k=4,∴抛物线解析式为y=-(x-1)2+4,即:抛物线解析式为y=-x2+2x+2;(2)抛物线与x轴的交点(-1,0),(2,0),当y<0时,则函数的图象在x轴的下方,由函数的图象可知:x>2或x<-1;【点睛】本题主要考查了二次函数与一元二次方程、不等式的关系,以及求函数解析式的方法,能从图像中得到关键信息是解决此题的关键.23.东东玩具商店用500元购进一批悠悠球,很受中小学生欢迎,悠悠球很快售完,接着又用900元购进第二批这种悠悠球,所购数量是第一批数量的1.5倍,但每套进价多了5元.(1)求第一批悠悠球每套的进价是多少元;(2)如果这两批悠悠球每套售价相同,且全部售完后总利润不低于25%,那么每套悠悠球的售价至少是多少元?【答案】(1)第一批悠悠球每套的进价是25元;(2)每套悠悠球的售价至少是1元.【解析】分析:(1)设第一批悠悠球每套的进价是x元,则第二批悠悠球每套的进价是(x+5)元,根据数量=总价÷单价结合第二批购进数量是第一批数量的1.5倍,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设每套悠悠球的售价为y 元,根据销售收入-成本=利润结合全部售完后总利润不低于25%,即可得出关于y 的一元一次不等式,解之取其中的最小值即可得出结论.详解:(1)设第一批悠悠球每套的进价是x 元,则第二批悠悠球每套的进价是(x+5)元,根据题意得: 9005001.55x x=⨯+, 解得:x=25,经检验,x=25是原分式方程的解.答:第一批悠悠球每套的进价是25元.(2)设每套悠悠球的售价为y 元,根据题意得:500÷25×(1+1.5)y-500-900≥(500+900)×25%,解得:y≥1.答:每套悠悠球的售价至少是1元.点睛:本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程是解题的关键;(2)根据各数量之间的关系,正确列出一元一次不等式.24.已知二次函数y=﹣x 2+2x+m .(1)如果二次函数的图象与x 轴有两个交点,求m 的取值范围;(2)如图,二次函数的图象过点A (-1,0),与y 轴交于点C ,求直线BC 与这个二次函数的解析式; (3)在直线BC 上方的抛物线上有一动点D ,DE ⊥x 轴于E 点,交BC 于F ,当DF 最大时,求点D 的坐标,并写出DF 最大值.【答案】(1)m>-1;(2)y=-x+3,y=-x 2+2x+3;(3)D (315,24),DF=94 【分析】(1)利用判别式解答即可; (2)将点A 的坐标代入抛物线y=-x 2+2x+m 即可求出解析式,由抛物线的解析式求出点B (3,0),设直线BC 的解析式为y=kx+b ,将B(3,0),C(0,3)代入y=kx+b 中即可求出直线BC 的解析式;(3)由点D 在抛物线上,设坐标为(x ,-x 2+2x+3),F 在直线AB 上,坐标为(x ,-x+3) ,得到DF=-x 2+2x+3-(-x+3)=-x 2+3x=239()24x --+,利用顶点式解析式的性质解答即可. 【详解】(1)当抛物线与x 轴有两个交点时,∆>0,即4+4m>0,∴m>-1;(2)∵点A(-1,0)在抛物线y=-x 2+2x+m 上,∴-1-2+m=0,∴m=3,∴抛物线解析式为y=-x 2+2x+3,且C(0,3),当x=0时,-x 2+2x+3=0,解得x=-1,或x=3,∴B (3,0),设直线BC 的解析式为y=kx+b ,将B(3,0),C(0,3)代入y=kx+b 中,得:303k b b +=⎧⎨=⎩ , 解得13k b =-⎧⎨=⎩, ∴直线AB 的解析式为y=-x+3;(3)点D 在抛物线上,设坐标为(x ,-x 2+2x+3),F 在直线AB 上,坐标为(x ,-x+3) ,∴DF=-x 2+2x+3-(-x+3)=-x 2+3x=239()24x --+, ∴当32x =时,DF 最大,为94,此时D 的坐标为(315,24). 【点睛】此题考查了利用判别式已知抛物线与坐标轴的交点个数求未知数的取值范围,利用待定系数法求函数解析式,利用顶点式解析式的性质求出线段的最值.25.如图,在Rt △ABC 中,∠C=90°,AC=8,BC=6,P 为边BC 上一个动点(可以包括点C 但不包括点B ),以P 为圆心PB 为半径作⊙P 交AB 于点D 过点D 作⊙P 的切线交边AC 于点E ,(1)求证:AE=DE ;(2)若PB=2,求AE 的长;(3)在P 点的运动过程中,请直接写出线段AE 长度的取值范围.【答案】(1)详见解析;(3)AE=194;(3)74≤AE <254. 【解析】(1)首先得出∠ADE+∠PDB=90°,进而得出∠B+∠A=90°,利用PD=PB 得∠EDA=∠A 进而得出答案;(3)利用勾股定理得出ED3+PD3=EC3+CP3=PE3,求出AE即可;(3)分别根据当D(P)点在B点时以及当P与C重合时,求出AE的长,进而得出AE的取值范围.【详解】(1)证明:如图1,连接PD.∵DE切⊙O于D.∴PD⊥DE.∴∠ADE+∠PDB=90°.∵∠C=90°.∴∠B+∠A=90°.∵PD=PB.∴∠PDB=∠B.∴∠A=∠ADE.∴AE=DE;(3)解:如图1,连接PE,设DE=AE=x,则EC=8-x,∵PB=PD=3,BC=1.∴PC=3.∵∠PDE=∠C=90°,∴ED3+PD3=EC3+CP3=PE3.∴x3+33=(8-x)3+33.解得x=194.∴AE=194;(3)解:如图3,当P点在B点时,此时点D也在B点,∵AE=ED,设AE=ED=x,则EC=8-x,∴EC3+BC3=BE3,∴(8-x)3+13=x3,解得:x=254,如图3,当P与C重合时,∵AE=ED,设AE=ED=x,则EC=8-x,∴EC3=DC3+DE3,∴(8-x)3=13+x3,解得:x=74,∵P为边BC上一个动点(可以包括点C但不包括点B),∴线段AE长度的取值范围为:74≤AE<254.【点睛】本题主要考查圆的综合应用、切线的性质与判定以及勾股定理等知识,利用数形结合以及分类讨论的思想得出是解题关键.26.如图1,已知正比例函数和反比例函数的图象都经过点M(﹣2,﹣1),且P(﹣1,﹣2)为双曲线上的一点,Q为坐标平面上一动点,PA垂直于x轴,QB垂直于y轴,垂足分别是A、B.(1)写出正比例函数和反比例函数的关系式;(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ与△OAP面积相等?如果存在,请求出点的坐标,如果不存在,请说明理由;(3)如图2,当点Q 在第一象限中的双曲线上运动时,作以OP 、OQ 为邻边的平行四边形OPCQ ,求平行四边形OPCQ 周长的最小值.【答案】(1)y =12x ,2y x=;(2)存在,Q 1(2,1)和Q 2(﹣2,﹣1);(3)【分析】(1)正比例函数和反比例函数的图象都经过点M (-2,-1),待定系数法可求它们解析式; (2)由点Q 在y =12x 上,设出Q 点坐标,表示△OBQ ,由反比例函数图象性质,可知△OAP 面积为1,则根据面积相等可构造方程,问题可解;(3)因为四边形OPCQ 是平行四边形,所以OP=CQ ,OQ=PC ,而点P (-1,-2)是定点,所以OP 的长也是定长,所以要求平行四边形OPCQ 周长的最小值就只需求OQ 的最小值.【详解】解:(1)设正比例函数解析式为y =kx ,将点M (﹣2,﹣1)坐标代入得k =12,所以正比例函数解析式为y =12x , 同样可得,反比例函数解析式为2y x=; (2)当点Q 在直线OM 上运动时,设点Q 的坐标为Q (m ,12m ), 于是S △OBQ =12OB •BQ =12×12m×m =14m 2, 而S △OAP =|12(﹣1)×(﹣2)|=1, 所以有,14m 2=1,解得m =±2, 所以点Q 的坐标为Q 1(2,1)和Q 2(﹣2,﹣1);(3)因为四边形OPCQ 是平行四边形,所以OP =CQ ,OQ =PC ,而点P (﹣1,﹣2)是定点,所以OP 的长也是定长,所以要求平行四边形OPCQ 周长的最小值就只需求OQ 的最小值,因为点Q 在第一象限中双曲线上,所以可设点Q 的坐标为Q (n ,2n), 由勾股定理可得OQ 2=n 2+24n =(n ﹣2n )2+1, 所以当(n ﹣2n )2=0即n ﹣2n =0时,OQ 2有最小值1, 又因为OQ 为正值,所以OQ 与OQ 2同时取得最小值,所以OQ 有最小值2,由勾股定理得OP所以平行四边形OPCQ 周长的最小值是2(OP+OQ )=2)=.(或因为反比例函数是关于y =x 对称,所以当Q 在反比例函数时候,OQ 最短的时候,就是反比例与y =x 的交点时候,联立方程组即可得到点Q 坐标)【点睛】此题考查一次函数反比例函数的图象和性质,解答关键是运用数形结合思想解决问题.27.已知二次函数y=x2+2mx+(m2﹣1)(m是常数).(1)若它的图象与x轴交于两点A,B,求线段AB的长;(2)若它的图象的顶点在直线y=12-x+3上,求m的值.【答案】AB=2;(2)m=1.【分析】(1)令y=0求得抛物线与x轴的交点,从而求得两交点之间的距离即可;(2)用含m的式子表示出顶点坐标,然后代入一次函数的解析式即可求得m的值.【详解】(1)令y=x2+2mx+(m2﹣1)=0,∴(x+m+1)(x+m﹣1)=0,解得:x1=﹣m﹣1,x2=﹣m+1,∴AB=|x1﹣x2|=|﹣m﹣1﹣(﹣m+1)|=2;(2)∵二次函数y=x2+2mx+(m2﹣1),∴顶点坐标为(﹣2m,()22 4144m m--),即:(﹣2m,﹣1),∵图象的顶点在直线y=12-x+3上,∴﹣12×(﹣2m)+3=﹣1,解得:m=1.【点睛】本题考查了解二次函数的问题,掌握二次函数的性质以及解二次函数的方法是解题的关键.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.计算:tan45°+sin30°=()A.2B.23+C.32D.13+【答案】C【解析】代入45°角的正切函数值和30°角的正弦函数值计算即可.【详解】解:原式=13 122 +=故选C.【点睛】熟记“45°角的正切函数值和30°角的正弦函数值”是正确解答本题的关键.2.正十边形的外角和为()A.180°B.360°C.720°D.1440°【答案】B【分析】根据多边的外角和定理进行选择.【详解】解:因为任意多边形的外角和都等于360°,所以正十边形的外角和等于360°,.故选B.【点睛】本题考查了多边形外角和定理,关键是熟记:多边形的外角和等于360度.3.如图,为了美化校园,学校在一块边角空地建造了一个扇形花圃,扇形圆心角∠AOB=120°,半径OA为3m,那么花圃的面积为()A.6πm2B.3πm2C.2πm2D.πm2【答案】B【分析】利用扇形的面积公式计算即可.【详解】解:∵扇形花圃的圆心角∠AOB=120°,半径OA为3cm,∴花圃的面积为21203360π⨯=3π,故选:B.【点睛】本题考查扇形的面积,解题的关键是记住扇形的面积公式.4.已知反比例函数3m y x -=的图象在二、四象限,则m 的取值范围是( ) A .3m ≥B .3m >C .3m ≤D .3m < 【答案】D【分析】由题意根据反比例函数的性质即可确定3m -的符号,进行计算从而求解.【详解】解:因为反比例函数3m y x -=的图象在二、四象限, 所以30m -<,解得3m <.故选:D.【点睛】本题考查反比例函数的性质,注意掌握反比例函数k y x=(0)k ≠,当 k >0时,反比例函数图象在一、三象限;当k <0时,反比例函数图象在第二、四象限内.5.已知2(0)y ax bx c a =++≠的图象如图,则y ax b =+和c y x=的图象为( )A .B .C .D .【答案】C【解析】根据二次函数y=ax 2+bx+c (a≠0)的图象可以得到a <0,b >0,c <0,由此可以判定y=ax+b 经过一、二、四象限,双曲线c y x=在二、四象限. 【详解】根据二次函数y=ax 2+bx+c (a≠0)的图象,可得a <0,b >0,c <0,∴y=ax+b 过一、二、四象限,双曲线c y x=在二、四象限, ∴C 是正确的.故选C .【点睛】此题考查一次函数,二次函数,反比例函数中系数及常数项与图象位置之间关系.6.下列二次函数的开口方向一定向上的是( )A .23y x =-B .2y ax =C .23y x =D .2(1)y a x =- 【答案】C【分析】利用抛物线开口方向向上,则二次项系数大于0判断即可.【详解】二次函数的开口方向一定向上,则二次项系数大于0,故选:C .【点睛】此题主要考查了二次函数的性质,熟练掌握二次函数y =ax 2+bx +c 中,当a >0,开口向上解题是解题关键.7.已知反比例函数y =﹣3x,下列结论不正确的是( ) A .图象必经过点(﹣1,3) B .若x >1,则﹣3<y <0C .图象在第二、四象限内D .y 随x 的增大而增大 【答案】D【解析】A . ∵(−1)×3=−3,∴图象必经过点(−1,3),故正确;B . ∵k =−3<0,∴函数图象的两个分支分布在第二、四象限,故正确;C . ∵x=1时,y =−3且y 随x 的增大而而增大,∴x>1时,−3<y<0,故正确;D. 函数图象的两个分支分布在第二、四象限,在每一象限内,y 随x 的增大而增大,故错误. 故选D.8.如图,从左边的等边三角形到右边的等边三角形,经过下列一次变化不能得到的是( )A .轴对称B .平移C .绕某点旋转D .先平移再轴对称 【答案】A 【分析】根据对称,平移和旋转的定义,结合等边三角形的性质分析即可.【详解】解:从左边的等边三角形到右边的等边三角形,可以利用平移或绕某点旋转或先平移再轴对称,只轴对称得不到,故选:A .【点睛】本题考查了图形的变换:旋转、平移和对称,等边三角形的性质,掌握图形的变换是解题的关键. 9.二次函数图象上部分点的坐标对应值列表如下:则该函数图象的对称轴是( )x …… -3 -2 -1 0 1 ……y …… -17 -17 -15 -11 -5 ……A .3x =-B . 2.5x =-C .2x =-D .0x = 【答案】B 【分析】当3x =-和2x =-时,函数值相等,所以对称轴为 2.5x =-【详解】解:根据题意得,当3x =-和2x =-时,函数值相等,所以二次函数图象的对称轴为直线32 2.52x --==- 故选B【点睛】本题考查了二次函数的性质.10.如图,在Rt △ABC 中,∠BAC =90°,将Rt △ABC 绕点C 按逆时针方向旋转42°得到Rt △A'B'C',点A 在边B'C 上,则∠B'的大小为( )A .42°B .48°C .52°D .58°【答案】B 【分析】先根据旋转的性质得出∠A ′=∠BAC =90°,∠ACA ′=42°,然后在直角△A ′CB ′中利用直角三角形两锐角互余求出∠B ′=90°﹣∠ACA ′=48°.【详解】解:∵在Rt △ABC 中,∠BAC =90°,将Rt △ABC 绕点C 按逆时针方向旋转42°得到Rt △A ′B ′C ′, ∴∠A ′=∠BAC =90°,∠ACA ′=42°,∴∠B ′=90°﹣∠ACA ′=48°.故选:B .【点睛】此题主要考查角度的求解,解题的关键是熟知旋转的性质.11.某大学生创业团队有研发、管理和操作三个小组,各组的日工资和人数如下表所示.现从管理组分别抽调1人到研发组和操作组,调整后与调整前相比,下列说法中不正确的是( )A .团队平均日工资不变B .团队日工资的方差不变C .团队日工资的中位数不变D .团队日工资的极差不变【答案】B 【解析】根据平均数、方差、中位数和众数的定义分别对每一项进行分析,即可得出答案.。

北京市顺义区2018届初三上学期期末考试数学试卷(解析版)

北京市顺义区2018届初三上学期期末考试数学试卷(解析版)

北京市顺义区2018届初三上学期期末考试数学试卷一、选择题(共8道小题,每小题2分,共16分)下面各题均有四个选项,其中只有一个..是符合题意的.1. 实数a、b、c、d在数轴上的对应点的位置如图所示,在这四个数中,绝对值最小的数是()A. aB. bC. cD. d【答案】C【解析】根据数轴上某个数与原点的距离的大小求得结论.解:由图可知:c到原点O的距离最短,所以在这四个数中,绝对值最小的是c.故选C.“点睛”本题考查了绝对值的定义、实数大小比较问题,熟练掌握绝对值最小的数就是到原点距离最小的数.2. 如图,在△ABC中,∠A=90°.若AB=12,AC=5,则cos C的值为()A. B. C. D.【答案】A【解析】∵∠A=90°,AC=5,AB=12,∴BC==13,∴cosC=,故选A.3. 右图是百度地图中截取的一部分,图中比例尺为1:60000,则卧龙公园到顺义地铁站的实际距离约为()(注:比例尺等于图上距离与实际距离的比)A. 1.5公里B. 1.8公里C. 15公里D. 18公里【答案】B【解析】测得图上距离为3cm,设实际距离为xcm,则有:3:x=1:60000,解得:x=180000cm=1800米=1.8公里,故选B.4. 已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.则用电阻R表示电流I的函数表达式为()A. B. C. D.【答案】D【解析】设解析式为:,则有k=IR ,由图可知当R=2时,I=3,所以k=6,所以解析式为:,故选D.5. 二次函数的部分图象如图所示,对称轴是,则这个二次函数的表达式为()A. B.C. D.【答案】D【解析】抛物线与x轴交于点(-3,0),对称轴为x=-1,由抛物线的对称性可知抛物线与x轴的另一个交点为(1,0)所以设抛物线的解析式为:y=ax2+bx+c,则有,解得:,所以:,故选D.【点睛】本题考查了待定系数法求二次函数的解析式,解题的关键是根据抛物线的对称性确定出抛物线与x 轴的另一个交点.6. 如图,已知⊙O的半径为6,弦AB的长为8,则圆心O到AB的距离为()A. B. C. D.【答案】B【解析】过点O作OC⊥AB于点C,则有AC=AB==4,在Rt△AOC中,∠ACO=90°,∴OC==,故选B.7. 已知△ABC,D,E分别在AB,AC边上,且DE∥BC,AD=2,DB=3,△ADE面积是4则四边形DBCE 的面积是()A. 6B. 9C. 21D. 25【答案】C【解析】∵DE//BC,∴△ADE∽△ABC,∴,∵AD=2,BD=3,AB=AD+BD,∴,∵S△ADE=4,∴S△ABC=25,∴S四边形DBCE=S△ABC-S△ADE=25-4=21,故选C.8. 如图1,点P从△ABC的顶点A出发,沿A-B-C匀速运动,到点C停止运动.点P运动时,线段AP的长度与运动时间的函数关系如图2所示,其中D为曲线部分的最低点,则△ABC的面积是()A. 10B. 12C. 20D. 24【答案】B【解析】过点A作AM⊥BC于点M,由题意可知当点P运动到点M时,AP最小,此时长为4,观察图象可知AB=AC=5,∴BM==3,∴BC=2BM=6,∴S△ABC==12,故选B.【点睛】本题考查了动点问题的函数图象,根据已知和图象能确定出AB、AC的长,以及点P运动到与BC 垂直时最短是解题的关键.二、填空题(共8道小题,每小题2分,共16分)9. 分解因式:a2b-2ab+b=0=__________.【答案】【解析】先提取公因式b,再利用完全平方公式进行二次分解.解:a2b﹣2ab+b,=b(a2﹣2a+1),(提取公因式)=b(a﹣1)2.(完全平方公式)10. 如图,利用成直角的墙角(墙足够长),用10m长的栅栏围成一个矩形的小花园,花园的面积S(m2)与它一边长a(m)的函数关系式是__________,面积S的最大值是__________.【答案】(1). (2). 100【解析】S=a(10-a)=-a2+10a=-(a-5)2+25,所以函数关系式为:S=-a2+10a,面积的最大值是25,故答案为:S= -a2+10a,25.11. 已知∠α,∠β如图所示,则tan∠α与tan∠β的大小关系是__________.【答案】tan∠α<tan∠β【解析】如图:过点F作FE⊥CD交CD于点E,则tan∠α=,tan∠β=,∵CE>DE ,∴<,∴tan∠α<tan∠β,故答案为:tan∠α<tan∠β.12. 如图标记了△ABC与△DEF边、角的一些数据,如果再添加一个条件使△ABC∽△DEF,那么这个条件可以是__________.(只填一个即可)【答案】略【解析】添加:∠C=60°,∵∠A=80°=∠D,∠C=∠F=60°,∴△ABC∽△DEF,故答案为:∠C=60°(答案不唯一)........................ .......13. 已知矩形ABCD中, AB=4,BC=3,以点B为圆心r为半径作圆,且⊙B与边CD有唯一公共点,则r的取值范围是__________.【答案】【解析】连接BD,∵AB=4,AD=2,∴BD=5,∵以点B为圆心r为半径作圆,且⊙B与边CD有唯一公共点,∴⊙B的半径r的取值范围是:3≤r≤5,故答案为:3≤r≤5.14. 已知y与x的函数满足下列条件:①它的图象经过(1,1)点;②当时,y随x的增大而减小.写出一个符合条件的函数:__________.【答案】略【解析】①图象经过(1,1)点;②当x>1时.y随x的增大而减小,这个函数解析式为y=-x+2,故答案为:y=-x+2(答案不唯一).15. 在中,,,,则AC的长为__________.【答案】【解析】过点B作BD⊥AC于点D,则∠ADB=∠DBC=90°,∵BC=2,∴CD==1,∴AC=AD+CD=,或AC′=,故答案为:或.16. 在平面直角坐标系xOy中,抛物线可以看作是抛物线经过若干次图形的变化(平移、翻折、旋转)得到的,写出一种由抛物线y2得到抛物线y1的过程:__________.【答案】略【解析】=(x+1)2+1,=-(x+1)2,抛物线y2先绕点(-1,0)旋转180°,然后再向上平移1个单位长度即可得到抛物线y1,故答案为:抛物线y2先绕点(-1,0)旋转180°,然后再向上平移1个单位长度即可得到抛物线y1(答案了唯一).【点睛】本题考查了抛物线与图形变换,先把解析式变为顶点式,然后根据确定变换的过程是解题的关键.三、解答题(共12道小题,共68分,其中第17-23题每小题5分,第24、25题每小题6分,第26、27、28题每小题7分)17. 解不等式组:.【答案】【解析】试题分析:先分别求出每一个不等式的解集,然后再确定不等式组的解集即可.试题解析:,解不等式①得,解不等式②得,∴不等式组的解集为.18. 计算:.【答案】2【解析】试题分析:先进行绝对值、二次根式的化简,特殊角的三角函数值,然后再按运算顺序进行计算即可.试题解析:原式=.19. 如图,E是□ABCD的边BC延长线上一点,AE交CD于点F,FG∥AD交AB于点G.(1)填空:图中与△CEF相似的三角形有__________;(写出图中与△CEF相似的所有三角形)(2)从(1)中选出一个三角形,并证明它与△CEF相似.【答案】△ADF,△EBA,△FGA;【解析】试题分析:(1)由四边形ABCD是平行四边形,可得AB∥CD,AD∥BC,平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似,即可得;(2)根据∠DAF=∠E,∠FCE=∠D,即可证明△ADF∽△ECF.试题解析:(1)△ADF,△EBA,△FGA;(2)△ADF∽△ECF,∵四边形ABCD为平行四边形,∴BE∥AD ,∴∠DAF=∠E,∠FCE=∠D,∴△ADF∽△ECF.【点睛】此题考查了相似三角形的判定与性质以及平行四边形的性质,解题的关键是要熟练掌握平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似.20. 制造弯形管道时,经常要先按中心线计算“展直长度”,再备料.下图是一段管道,其中直管道部分AB 的长为3 000mm,弯形管道部分BC,CD弧的半径都是1 000mm,∠O=∠O’=90°,计算图中中心虚线的长度.【答案】6140【解析】试题分析:先求出两个弯形管道的弧长,然后再加上直管部分即可.试题解析:,中心虚线的长度为.21. 已知二次函数y=x2-4x+3.(1)在网格中,画出该函数的图象.(2)(1)中图象与轴的交点记为A,B,若该图象上存在一点C,且△ABC的面积为3,求点C的坐标.【答案】(1)见解析;(2)C(0,3)或(4,3).【解析】试题分析:(1)首先利用配方法求得y=x2-4x+3的顶点坐标,然后求得此二次函数与x轴与y 轴的交点坐标,则可画出图象;(2)由(1)可知AB=2,再根据面积可得AB边上的高为3,然后把y=3代入解析式,解方程即可得.试题解析:(1)y=x2-4x+3=(x-2)2-1,顶点坐标为(2,-1),与x轴交于点(1,0)、(3,0),与y 轴交于点(0,3),图象如图所示:(2)令y=0,代入,则x=1,3,∴A(0,1),B(0,3),∴AB=2,∵△ABC的面积为3,∴AB为底的高为3,令y=3,代入,则x=0,4,∴C(0,3)或(4,3).22. 已知:如图,在△ABC的中,AD是角平分线,E是AD上一点,且AB:AC = AE :AD.求证:BE=BD.【答案】见解析【解析】试题分析:如图,根据角平分线的性质、已知条件AB:AC = AE :AD可以证得△ABE∽△ACD,则该相似三角形的对应角相等,即∠3=∠4,然后利用邻补角的定义证得∠BED=∠BDE,则BE=BD.试题解析:∵AD是角平分线,∴∠1=∠2,又∵AB AD = AE AC,∴△ABE∽△ACD,∴∠3=∠4,∴∠BED=∠BDE,∴BE=BD.【点睛】本题考查的是相似三角形的判定与性质,能根据题意判断出△ABE∽△ACD是解答此题的关键.23. 如图所示,某小组同学为了测量对面楼AB的高度,分工合作,有的组员测得两楼间距离为40米,有的组员在教室窗户处测得楼顶端A的仰角为30°,底端B的俯角为10°,请你根据以上数据,求出楼AB 的高度.(精确到0.1米)(参考数据:sin10°≈0.17, cos10°≈0.98, tan10°≈0.18,≈1.41,≈1.73)【答案】30.3米.【解析】试题分析:过点D作DE⊥AB于点E,在Rt△ADE中,求出AE的长,在Rt△DEB中,求出BE 的长即可得.试题解析:过点D作DE⊥AB于点E,在Rt△ADE中,∠AED=90°,tan∠1=,∠1=30°,∴AE=DE× tan∠1=40×tan30°=40×≈40×1.73×≈23.1在Rt△DEB中,∠DEB=90°,tan∠2=,∠2=10°,∴BE=DE× tan∠2=40×tan10°≈40×0.18=7.2∴AB=AE+BE≈23.1+7.2=30.3米.24. 已知:如图,AB为⊙O的直径,CE⊥AB于E,BF∥OC,连接BC,CF.求证:∠OCF=∠ECB.【答案】见解析【解析】试题分析:延长CE交⊙O于点G,连接BG,由垂径定理可得BC=BG,从而可得∠G=∠2,再根据BF∥OC,可得∠1=∠F,再根据圆周角定理可得∠G=∠F,从而得证.试题解析:延长CE交⊙O于点G,连接BG,∵AB为⊙O的直径,CE⊥AB于E,∴BC=BG,∴∠G=∠2,∵BF∥OC,∴∠1=∠F又∵∠G=∠F,∴∠1=∠2.25. 如图,在平面直角坐标系xOy中,直线与双曲线(k≠0)相交于A,B 两点,且点A的横坐标是3.(1)求k的值;(2)过点P(0,n)作直线,使直线与x轴平行,直线与直线交于点M,与双曲线(k≠0)交于点N,若点M在N右边,求n的取值范围.【答案】(1)3;(2)见解析n的取值范围是或.【解析】试题分析:(1)把x=3代入直线y=x-2确定点A的坐标,然后再代入反比例函数解析式即可得;(2)按题意画出图形,根据图形即可得.试题解析:(1)令x=3,代入,则y=1,∴A(3,1),∵点A(3,1),在双曲线(k≠0)上,∴.(2)如图所示,当点M在N右边时,n的取值范围是或.26. 已知:如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作⊙O的切线交AB于点E,交AC的延长线于点F.(1)求证:DE⊥AB;(2)若tan∠BDE=, CF=3,求DF的长.【答案】(1)见解析;(2)6【解析】试题分析:连接OD,则有OD⊥EF,然后证明OD//AB即可得;(2)连接AD,则有∠ADB=90°,通过证明△FCD∽△FDA ,可得 FC:FD=CD:DA,再根据tan∠BDE=,通过推导即可得.试题解析:(1)连接OD.∵EF切⊙O于点D,∴OD⊥EF.又∵OD=OC,∴∠ODC=∠OCD,∵AB=AC,∴∠ABC=∠OCD,∴∠ABC=∠ODC,∴AB∥OD,∴DE⊥AB;(2)连接AD.∵AC为⊙O的直径,∴∠ADB=90°,∴∠B+∠BDE=90°,∠B+∠1=90°,∴∠BDE=∠1,∵AB=AC,∴∠1=∠2,又∵∠BDE =∠3,∴∠2=∠3,∴△FCD∽△FDA,∴,∵tan∠BDE=,∴tan∠2=,∴,∴,∵CF=3,∴FD=6.27. 综合实践课上,某小组同学将直角三角形纸片放到横线纸上(所有横线都平行,且相邻两条平行线的距离为1),使直角三角形纸片的顶点恰巧在横线上,发现这样能求出三角形的边长.(1)如图1,已知等腰直角三角形纸片△ABC,∠ACB=90°,AC=BC,同学们通过构造直角三角形的办法求出三角形三边的长,则AB=__________;(2)如图2,已知直角三角形纸片△DEF,∠DEF=90°,EF=2DE,求出DF的长;(3)在(2)的条件下,若橫格纸上过点E的横线与DF相交于点G,直接写出EG的长.【答案】AB=;【解析】试题分析:(1)如图,过点A、B分别作点C所在横线的垂线,垂足分别为D、E,然后证明△ADC≌△CEB,从而可得CE=AD=3,CD=BE=2,由勾股定理求得AC,BC的长,再由勾股定理即可求得AB的长;(2)如图所示,过点E作横线的垂线,然后证明△DME∽△ENF,再根据相似三角形的性质进行推导即可得;(3)连接DN与EG交于点P,根据相似三角形的性质即可得.试题解析:(1)过点A、B分别作点C所在横线的垂线,垂足分别为D、E,∴∠ADC=∠BEC=90°,AD=3,BE=2,∴∠DAC+∠ACD=90°,∵∠ACB=90°,∴∠ACD+∠BCE=90°,∴∠DAC=∠ECB,∵AC=BC,∴△ADC≌△CEB,∴CE=AD=3,CD=BE=2,∴AC=BC=,∴AB=,故答案为:;(2)过点E作横线的垂线,交l1,l2于点M,N,∴∠DME=∠EDF= 90°,∵∠DEF=90°,∴∠2+∠3=90°,∵∠1+∠3=90°,∴∠1=∠2,∴△DME∽△ENF,∴,∵EF=2DE,∴,∵ME=2,EN=3,∴NF=4,DM=1.5,根据勾股定理得DE=2.5,EF=5,;(3)连接DN,交EG于点P,∵EG//DM,∴△DMN∽△PEN,∴PE:DM=EN:MN,即PE:1.5=3:5,∴PE=0.9,同理PG=1.6,∴EG=PE+PG=2.5.28. 在平面直角坐标系xOy中,抛物线经过点A(-3,4).(1)求b的值;(2)过点A作轴的平行线交抛物线于另一点B,在直线AB上任取一点P,作点A关于直线OP的对称点C;①当点C恰巧落在轴时,求直线OP的表达式;②连结BC,求BC的最小值.【答案】(1)-3;(2)①O P的表达式为或,②BC的最小值为.【解析】试题分析:(1)把点A坐标代入解析式即可得;(2)①由对称性可知OA=OC,AP=CP,由AP∥OC,可得∠1=∠2,再根据轴对称可得∠AOP=∠2,从而得∠AOP=∠1,得到AP=AO,再根据A点坐标即可得AP的长,从而得P点的坐标,利用待定系数法即可得解析式;②以O为圆心,OA长为半径作⊙O,连接BO,交⊙O于点C,此时BC的值最小.试题解析:(1)∵抛物线经过点A(-3,4),令x=-3,代入,则,∴b=-3;(2)①由对称性可知OA=OC,AP=CP,∵AP∥OC,∴∠1=∠2,又∵∠AOP=∠2,∴∠AOP=∠1,∴AP=AO,∵A(-3,4),∴AO=5,∴AP=5,∴P1(2,4),同理可得P2(-8,4),∴O P的表达式为或;②以O为圆心,OA长为半径作⊙O,连接BO,交⊙O于点C,此时BC值最小,把y=4代入,解得:x1=12,x2=-3,∴B(12,4),∴OB=,∴BC的最小值为.【点睛】本题考查了二次函数、轴对称的性质等,解题的关键是根据题意画出符合题意的图形.。

[试卷合集5套]北京市2018年九年级上学期期末数学学业质量监测试题

[试卷合集5套]北京市2018年九年级上学期期末数学学业质量监测试题
(2)先画树状图展示所有12种等可能的结果数,再找出恰好选中“①舞蹈、③声乐”两项活动的结果数,然后根据概率公式计算.
【详解】(1)抽查的人数=8÷16%=50(名);
喜欢“戏曲”活动项目的人数=50﹣12﹣16﹣8﹣10=4(人);
扇形统计图中“戏曲”部分对应的扇形的圆心角为360°× =28.8°;
九年级上学期期末数学试卷
一、选择题(本题包括10个小题,每小题只有一个选项符合题意)
1.正比例函数y=2x和反比例函数 的一个交点为(1,2),则另一个交点为( )
A.(﹣1,﹣2)B.(﹣2,﹣1)C.(1,2)D.(2,1)
【答案】A
【详解】∵正比例函数y=2x和反比例函数y= 的一个交点为(1,2),
【详解】解:∵∠BCA=90°,∠BAC=30°,AB=4,∴BC=2,∠CBC′=120°,∠A′BA=120°,
由旋转知△A′BC′≌△ABC∴S△A′BC′=S△ABC,
∴S阴影=S△A′BC′+S扇形ABA′-S扇形CBC′-S△ABC= S扇形ABA′-S扇形CBC′= ×(42-22)=4π(cm2).
【点睛】
本题考查概率公式.
12.抛物线 的图像与坐标轴的交点个数是( )
A.无交点B.1个C.2个D.3个
【答案】B
【分析】已知二次函数的解析式,令x=0,则y=1,故与y轴有一个交点,令y=0,则x无解,故与x轴无交点,题目求的是与坐标轴的交点个数,故得出答案.
【详解】解:∵
∴令x=0,则y=1,故与y轴有一个交点
【点睛】
本题考查切线的性质,三角形内角和定理,等腰三角形的性质,根据题意添加辅助线正确推理论证是本题的解题关键.
16.设 分别为一元二次方程 的两个实数根,则 ______.

北京市顺义区届初三上学期期末考试数学试卷

北京市顺义区2018届初三上学期期末考试数学试卷考生须知1.本试卷共6页,共三道大题,28道小题,满分100分.考试时间120分钟.2.在试卷和答题卡上准确填写学校名称、班级、姓名和准考证号.3.试题答案一律填涂或书写在答题纸上,在试卷上作答无效.4.在答题纸上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答.5.考试结束,将本试卷和答题纸一并交回.一、选择题(共8道小题,每小题2分,共16分)下面各题均有四个选项,其中只有一个..是符合题意的.1.实数a、b、c、d在数轴上的对应点的位置如图所示,在这四个数中,绝对值最小的数是A. a B. b ﻩC.cD.d2.如图,在△ABC中,∠A=90°.若AB=12,AC=5,则cosC的值为A.513ﻩﻩB.1213C.512ﻩﻩﻩ D.1253.右图是百度地图中截取的一部分,图中比例尺为1:60000,则卧龙公园到顺义地铁站的实际距离约为(注:比例尺等于图上距离与实际距离的比)A.1.5公里B.1.8公里C.15公里D.18公里4.已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.则用电阻R表示电流I的函数表达式为A.3IR=ﻩﻩB.IR=-6C.3IR=-ﻩﻩD.IR=65.二次函数的部分图象如图所示,对称轴是1x=-,则这个二次函数的表达式为A.223y x x=-++B.223y x x=++ﻩC.223y x x=-+-D.223y x x=--+6.如图,已知⊙O的半径为6,弦AB的长为8,则圆心O到AB的距离为A.5B.25 C.27D.107.已知△ABC,D,E分别在AB,AC边上,且DE∥BC,AD=2,DB=3,△ADE面积是4,则四边形DBCE的面积是A.6 B.9C.21 D.258.如图1,点P从△ABC的顶点A出发,沿A-B-C匀速运动,到点C停止运动.点P运动时,线段AP的长度与运动时间的函数关系如图2所示,其中D为曲线部分的最低点,则△ABC的面积是A.10 B.12C.20 D.24二、填空题(共8道小题,每小题2分,共16分)9.分解因式:22a b ab b-+=.y x10.如图,利用成直角的墙角(墙足够长),用10m 长的栅栏围成一个矩形的小花园,花园的面积S (m 2)与它一边长a (m )的 函数关系式是 ,面积S的最大值是 .11.已知∠α,∠β如图所示,则tan ∠α与ta n∠β的大小关系是 .12.如图标记了 △ABC 与△D EF 边、角的一些数据,如果再添加一个条件使△A BC∽△DEF ,那么这个条件可以是 .(只填一个即可)13.已知矩形A BCD 中, AB =4,BC =3,以点B 为圆心r为半径作圆,且⊙B 与边C D有唯一公共点,则r的取值范围是 .14.已知y 与x 的函数满足下列条件:①它的图象经过(1,1)点;②当1x >时,y 随x 的增大而减小.写出一个符合条件的函数: .15.在ABC △中,45A ∠=,6AB =,2BC =,则AC 的长为 .16.在平面直角坐标系xOy 中,抛物线2122y x x =++可以看作是抛物线2221y x x =---经过若干次图形的变化(平移、翻折、旋转)得到的,写出一种由抛物线y 2得到抛物线y 1的过程: .三、解答题(共12道小题,共68分,其中第17-23题每小题5分,第24、25题每小题6分,第26、27、28题每小题7分)17.解不等式组:()52365142x xxx-≤+⎧⎪⎨-<+⎪⎩.18.计算:2212sin458tan60-+︒-+︒.19.如图,E是□ABCD的边BC延长线上一点,AE交CD于点F,FG∥AD交AB于点G.(1)填空:图中与△CEF相似的三角形有;(写出图中与△CEF相似的所有三角形)(2)从(1)中选出一个三角形,并证明它与△CEF相似.20.制造弯形管道时,经常要先按中心线计算“展直长度”,再备料.下图是一段管道,其中直管道部分AB的长为3 000mm,弯形管道部分BC,CD弧的半径都是1 000mm,∠O=∠O’=90°,计算图中中心虚线的长度.21. 已知二次函数243y x x=-+.(1)在网格中,画出该函数的图象.(2)(1)中图象与x轴的交点记为A,B,若该图象上存在一点C,且△ABC的面积为3,求点C的坐标.22.已知:如图,在△ABC的中,AD是角平分线,E是AD上一点,且AB:AC =AE :AD.求证:BE=BD.23.如图所示,某小组同学为了测量对面楼AB的高度,分工合作,有的组员测得两楼间距离为40米,有的组员在教室窗户处测得楼顶端A的仰角为30°,底端B的俯角为10°,请你根据以上数据,求出楼AB 的高度.(精确到0.1米) (参考数据:sin10°≈0.17, cos10°≈0.98, tan10°≈0.18,2≈1.41,3≈1.73)24.已知:如图, AB 为⊙O 的直径,CE ⊥AB 于E ,B F∥OC ,连接BC ,C F.求证:∠OCF =∠EC B.25.如图,在平面直角坐标系xOy 中,直线2y x =-与双曲线k y x=(k ≠0)相交于A ,B 两点,且点A的横坐标是3. (1)求k 的值;(2)过点P(0,n)作直线,使直线与x轴平行,直线与直线2y x =-交于点M ,与双曲线ky x=(k≠0)交于点N,若点M 在N 右边,求n 的取值范围.26.已知:如图,在△ABC 中,AB =AC,以AC 为直径作⊙O 交BC 于点D ,过点D作⊙O 的切线交A B于点E ,交AC 的延长线于点F. (1)求证:DE ⊥AB; (2)若t an ∠B DE =12, C F=3,求DF 的长.27.综合实践课上,某小组同学将直角三角形纸片放到横线纸上(所有横线都平行,且相邻两条平行线的距离为1),使直角三角形纸片的顶点恰巧在横线上,发现这样能求出三角形的边长.(1)如图1,已知等腰直角三角形纸片△A BC,∠AC B=90°,AC=BC ,同学们通过构造直角三角形的办法求出三角形三边的长,则AB = ;(2)如图2,已知直角三角形纸片△DEF ,∠D EF=90°,EF =2DE ,求出DF 的长;(3)在(2)的条件下,若橫格纸上过点E 的横线与DF 相交于点G,直接写出EG的长. 28.在平面直角坐标系xOy 中,抛物线219y x bx =+经过点A (-3,4). (1)求b的值;(2)过点A 作x 轴的平行线交抛物线于另一点B ,在直线AB 上任取一点P,作点A 关于直线OP 的对称点C;①当点C 恰巧落在x 轴时,求直线OP 的表达式; ②连结BC ,求BC 的最小值.顺义区2017——2018学年度第一学期期末九年级教学质量检测数学答案一、选择题(共8道小题,每小题2分,共16分)下面各题均有四个选项,其中只有一个..是符合题意的. 答案 1 2 3 4 5 6 7 8CABDDBCB二、填空题(共8道小题,每小题2分,共16分)9.()21b a -; 10.220S a a =-+; 11.ta n∠α<tan ∠β; 12.略;13.35r ≤≤; 14.略; 15.221+ 16.略 .三、解答题(共12道小题,共68分,其中第17-23题每小题5分,第24、25题每小题6分,第26、27、28题每小题7分)17.解不等式1得8x ≤…………………………………………………………….2分解不等式2得1x >-......................................................................4分 ∴不等式组的解集为18x -<<. (5)18.计算:2212sin 458tan 60-+︒-+︒.22122232=-+⨯-+ 212223=-+-+………………………………………………….4分(每项1分)2=………………………………………………………………………….5分19.(1)△AD F,△EB A,△FG A;………………………….3分(每个一分) (2)证明:△AD F∽△ECF ∵四边形ABCD 为平行四边形∴BE ∥AD…………………………………………………….4分 ∴∠1=∠E,∠2=∠D∴△ADF ∽△ECF (5)(其它证明过程酌情给分)20. 901000500180180n r l πππ⨯===…………………………….…….……….3分中心虚线的长度为 3000500230001000ππ+⨯=+…………………4分=30001000 3.14=6140+⨯……………………………………………..…5分21. (1)…………………………….……….,…….2分(2)令y =0,代入243y x x =-+,则x =1,3,∴A (0,1),B (0,3),∴AB =2,……….……….,.………………..…….….3分∵△ABC 的面积为3,∴A B为底的高为3,令y =3,代入243y x x =-+,则x =0,4,∴C (0,3)或(4,3).…………….……….,…………………….….……….5分(各1分)22.证明:∵AD 是角平分线,∴∠1=∠2,……………………………………….1分又∵A B AD = AE A C,……………………….2分∴△ABE ∽△ACD ,………………………………………..…….3分 ∴∠3=∠4,……………………………………………………….4分 ∴∠ BED =∠BDE ,∴BE =BD .………………………………………………………..5分23.解:过点D作DE⊥AB于点E,在Rt△ADE中,∠AED=90°,tan∠1=AEDE,∠1=30°,………………………….…..1分∴AE=DE×tan∠1=40×tan30°=40×33≈40×1.73×13≈23.1……………………..2分在Rt△DEB中,∠DEB=90°,tan∠2=BEDE,∠2=10°,……………………………...3分∴BE=DE×tan∠2=40×tan10°≈40×0.18=7.2………………………………..………..4分∴AB=AE+BE≈23.1+7.2=30.3米.………………………………………………………..5分24.证明:延长CE交⊙O于点G.∵AB为⊙O的直径,CE⊥AB于E,∴BC=BG,∴∠ﻩG=∠2, (2)∵BF∥OC,∴∠1=∠F,………………………………………………3分又∵∠G=∠F,………………………………………..….5分∴∠1=∠2.…………………………………………….…6分(其它方法对应给分)25.解:(1)令x=3,代入2y x =-,则y =1,∴A (3,1),…………………………………………………………….....1分 ∵点A (3,1),在双曲线ky x=(k ≠0)上, ∴3k =.………………………..………………..………………………...3分 (2)………………………………….…..4分(画图)如图所示,当点M 在N 右边时,n的取值范围是1n >或30n -<<.………6分 26. (1)证明: 连接OD.………………………………………..1分 ∵EF 切⊙O于点D ,∴OD ⊥E F.……………………………………….……..2分 又∵O D=O C,∴∠O DC =∠OCD , ∵AB =AC ,∴∠ABC =∠OCD , ∴∠A BC =∠ODC , ∴A B∥OD ,∴DE ⊥AB .…………………………………….………..3分 (2)解:连接A D.…………………………….…………….…4分∵AC 为⊙O 的直径,∴∠ADB=90°,…………………………………..…5分∴∠B+∠BDE=90°,∠B+∠1=90°,∴∠BDE=∠1,∵AB=AC,∴∠1=∠2.又∵∠BDE=∠3,∴∠2=∠3.∴△FCD∽△FDA…………………………………….6分∴FC CD FD DA=,∵tan∠BDE=12,∴tan∠2=12,∴1=2CDDA,∴1=2FCFD,∵CF=3,∴FD=6.……………………………….…7分27.(1)AB=26;……………………….2分(2)解:过点E作横线的垂线,交l1,l2于点M,N,……………………………..….3分∴∠DME=∠EDF= 90°,∵∠DEF=90°,∴∠2+∠3=90°,∵∠1+∠3=90°,∴∠1=∠2,∴△DME∽△ENF ,………….…….4分∴DM ME DE EN NF EF==,∵EF=2DE,∴12 DM ME DEEN NF EF===,∵ME=2,EN=3,∴NF=4,DM=1.5,根据勾股定理得DE=2.5,EF=5,552DF=.……………………….5分(3)EG =2.5.…………………………………………………………..…….7分28.(1)∵抛物线219y x bx =+经过点A (-3,4) 令x =-3,代入219y x bx =+,则()14939b =⨯+⨯-, ∴b =-3.………………………………………………………………………....2分(2)①…………………………………….....3分由对称性可知O A=OC ,AP =CP ,∵AP ∥O C,∴∠1=∠2,又∵∠A OP=∠2,∴∠AOP =∠1,∴AP =AO ,∵A(-3,4),∴AO =5,∴AP =5,∴P1(2,4),同理可得P 2(-8,4),∴O P 的表达式为2y x =或12y x =-. ………………………………….5分(各1分)…………………………………….....6分②以O 为圆心,OA长为半径作⊙O,连接B O,交⊙O于点C∵B (12,4),∴OB=410, ∴BC 的最小值为4105-. ………………………….7分。

北京市各区2018届九年级上期末数学试卷分类汇编:几何综合(数学试卷 新课标人教版)

几何综合1.(昌平18期末27)已知,△ABC 中,∠ACB =90°,AC =BC ,点D 为BC 边上的一点.(1)以点C 为旋转中心,将△ACD 逆时针旋转90°,得到△BCE ,请你画出旋转后的图形;(2)延长AD 交BE 于点F ,求证:AF ⊥BE ;(3)若,BF=1,连接CF ,则CF 的长度为 .27.(1)补全图形…………………… 2分(2)证明:∵ΔCBE 由ΔCAD 旋转得到,∴ΔCBE ≌ΔCAD ,……………… 3分∴∠CBE =∠CAD ,∠BCE =∠ACD =90°,……………4分∴∠CBE +∠E =∠CAD +∠E ,∴∠BCE =∠AFE =90°,∴AF ⊥BE .……………………………………5分(37分2.(朝阳18期末25)△ACB 中,∠C =90°,以点A 为中心,分别将线段AB ,AC 逆时针旋转60°得到线段AD ,AE ,连接DE ,延长DE 交CB 于点F .(1)如图1,若∠B =30°,∠CFE 的度数为 ;(2)如图2,当30°<∠B <60°时,①依题意补全图2;②猜想CF 与AC 的数量关系,并加以证明.图1 图23.(西城18期末27)如图1,在Rt△AOB中,∠AOB=90°,∠OAB=30°,点C在线段OB 上,OC=2BC,AO边上的一点D满足∠OCD=30°.将△OCD绕点O逆时针旋转α度(90°<α<180°)得到△OC D'',C,D两点的对应点分别为点C',D',连接AC',BD',取AC'的中点M,连接OM.(1)如图2,当C D''∥AB时,α=°,此时OM 和BD'之间的位置关系为;(2)画图探究线段OM和BD'之间的位置关系和数量关系,并加以证明.4.(丰台18期末27)如图,∠BAD=90°,AB=AD,CB=CD,一个以点C为顶点的45°角绕点C旋转,角两边与BA,DA交于点M,N,与BA,DA延长线交于点E,F,连接AC.(1)在∠FCE旋转的过程中,当∠FCA=∠ECA时,如图1,求证:AE=AF;(2)在∠FCE旋转的过程中,当∠FCA≠∠ECA时,如图2,如果∠B=30°,CB=2,用等式表示线段AE,AF之间的数量关系,并证明.图1 图227.解:(1)证明:∵AB=AD ,BC=CD ,AC=AC ,∴△ABC ≌△ADC . …1分∴∠BAC =∠DAC =45°,可证∠FAC =∠EAC =135°. ……2分又∵∠FCA =∠ECA ,∴△ACF ≌△ACE . ∴AE =AF . ……3分其他方法相应给分.(2)过点C 作CG ⊥AB 于点G ,求得AC =2.……4分∵∠FAC =∠EAC =135°,∴∠ACF +∠F =45°.又∵∠ACF +∠ACE =45°,∴∠F =∠ACE .∴△ACF ∽△AEC. ……5分 ∴ACAF AE AC =,即AF AE AC ⋅=2. ……6分 ∴2=⋅AFAE . ……7分5.(怀柔18期末27)在等腰△ABC 中,AB =AC ,将线段BA 绕点B 顺时针旋转到BD ,使BD ⊥AC 于H ,连结AD 并延长交BC 的延长线于点P .(1)依题意补全图形;(2)若∠BAC =2α,求∠BDA 的大小(用含α的式子表示);(3)小明作了点D 关于直线BC 的对称点点E ,从而用等式表示线段DP 与BC 之间的数量关系.请你用小明的思路补全图形并证明线段DP 与BC 之间的数量关系.27.解:(1)如图……………………………………………1分(2) ∵∠BAC =2α,∠AHB =90°∴∠ABH =90°-2α …………………………………………………………………………… 2分∵BA =BD∴∠BDA =45°+α………………………………………………………………………………3分(3)补全图形,如图………………4分证明过程如下:∵D 关于BC 的对称点为E ,且DE 交BP 于G∴DE ⊥BP ,DG =GE ,∠DBP =∠EBP ,BD =BE ;…………………………………………5分∵AB=AC ,∠BAC=2α∴∠ABC=90°-α由(2)知∠ABH =90°-2α∠DBP =90°-α-(90°-2α)=α∴∠DBP =∠EBP =α∴∠BDE =2α∵AB =BD∴△ABC ≌△BDE ………………………………………………………………………………6分∴BC =DE∴∠DPB =∠ADB -∠DBP =45°+α-α=45° ∴DP DG =21, ∴DPDE =2, ∴DP BC =2, ∴BC =2DP .………………………………………………………………………………7分6.(平谷18期末27)如图,在Rt △ABC 中,∠BAC =90°,AB=AC .在平面内任取一点D ,连结AD (AD <AB ),将线段AD 绕点A 逆时针旋转90°得到线段AE ,连结DE ,CE ,BD .(1)请根据题意补全图1;(2)猜测BD 和CE 的数量关系并证明;(3)作射线BD ,CE 交于点P ,把△ADE 绕点A 旋转,当∠EAC =90°,AB =2,AD =1时,补全图形,直接写出PB 的长.27.解:(1)如图 (1)B 图1 B 备用图(2)BD 和CE 的数量是:BD =CE ; (2)∵∠DAB +∠BAE =∠CAE +∠BAE =90°,∴∠DAB=∠CAE . (3)∵AD=AE ,AB=AC ,∴△ABD ≌△ACE .∴BD =CE . (4)(3)PB (7)7.(密云18期末27)如图,已知Rt ABC ∆中,90ACB ∠=︒,AC=BC ,D 是线段AB 上的一点(不与A 、B 重合). 过点B 作BE ⊥CD ,垂足为E.将线段CE 绕点C 顺时针旋转90︒,得到线段CF ,连结EF.设BCE ∠度数为α.(1)①补全图形; ②试用含α的代数式表示CDA ∠.(2)若2EF AB = ,求α的大小. (3)直接写出线段AB 、BE 、CF 之间的数量关系.27.(1)①补全图形.……………………………..1分②45α︒+ ……………………………..3分(2)在FCE ∆和ACB ∆中,45CFE CAB ∠=∠=︒ ,90FCE ACB ∠=∠=︒∴ FCE ∆∽ ACB ∆∴CF EF AC AB =EF AB =∴CF AC = ………………………………..5分 连结FA.90,ECB 90FCA ACE ACE ∠=︒-∠∠=︒-∠∴ECB FCA ∠=∠=α在Rt CFA ∆中,90CFA ∠=︒,cos FCA ∠= ∴30FCA ∠=︒即30α=︒. ………………………………6分(3)22222AB CF BE =+ …………………………………………8分8.(石景山18期末27)在正方形ABCD中,点P在射线AC上,作点P关于直线CD的对称点Q,作射线BQ交射线DC于点E,连接BP.(1)当点P在线段AC上时,如图1.①依题意补全图1;②若EQ=BP,则∠PBE的度数为,并证明;(2)当点P在线段AC的延长线上时,如图2.若EQ=BP,正方形ABCD的边长为1,请写出求BE长的思路.(可以不写出计算结果)27.(本小题满分7分)(1)解:①正确作图………………………1分②45°………………………2分连接PD,PE易证△CPD≌△CPB∴DP=BP,∠CDP=∠CBP∵P、Q关于直线CD对称∴EQ=EP∵EQ=BP∴DP=EP∴∠C D P=∠D E P………………………………………………3分∵∠CEP+∠DEP=180°∴∠CEP+∠CBP=180°∵∠BCD=90°∴∠BPE=90°∵BP=EP∴∠PBE=45°.…………………………………………………………4分(2)解:连接PD,PE易证△CPD≌△CPB∴DP=BP,∠1=∠2∵P、Q关于直线CD对称,∴EQ=EP,∠3=∠4∵EQ=BP,∴DP=EP∴∠3=∠1,∴∠3=∠2∴∠5=∠BCE=90°∵BP=EP,∴∠PEB=45°∴∠3=∠4=22.5°,在△BCE中,已知∠4=22.5°,BC=1,可求BE长.……………7分9.(东城18期末27)如图1,在△ABC中,∠ACB=90°,AC=2,BC=B为圆心,'⊥,使点P'落在直线BC的P为B上的动点,连接PC,作P C PC'=BP ,AP'.上方,且满足:P C PC(1)求∠BAC的度数,并证明△AP C'∽△BPC;(2)若点P在AB上时,①在图2中画出△AP’C;②连接BP',求BP'的长;图1 图2(3)点P在运动过程中,BP'是否有最大值或最小值?若有,请直接写出BP'取得最大值或最小值时∠PBC的度数;若没有,请说明理由.备用图10.(顺义18期末27)综合实践课上,某小组同学将直角三角形纸片放到横线纸上(所有横线都平行,且相邻两条平行线的距离为1),使直角三角形纸片的顶点恰巧在横线上,发现这样能求出三角形的边长.(1)如图1,已知等腰直角三角形纸片△ABC,∠ACB=90°,AC=BC,同学们通过构造直角三角形的办法求出三角形三边的长,则AB= ;(2)如图2,已知直角三角形纸片△DEF,∠DEF=90°,EF=2DE,求出DF的长;(3)在(2)的条件下,若橫格纸上过点E的横线与DF相交于点G,直接写出EG的长.27.(1)AB ;……………………….2分(2)解:过点E 作横线的垂线,交l 1,l 2于点M ,N ,……………………………..….3分∴∠DME =∠EDF = 90°,∵∠DEF =90°,∴∠2+∠3=90°,∵∠1+∠3=90°,∴∠1=∠2,∴△DME ∽△ENF ,………….…….4分 ∴DM ME DE EN NF EF==, ∵EF =2DE , ∴12DM ME DE EN NF EF ===, ∵ME =2,EN =3,∴NF =4,DM =1.5,根据勾股定理得DE =2.5,EF =5,DF =……………………….5分 (3)EG=2.5.…………………………………………………………..…….7分11.(门头沟18期末27)如图1有两条长度相等的相交线段AB 、CD ,它们相交的锐角中有一个角为60°,为了探究AD 、CB 与CD (或AB )之间的关系,小亮进行了如下尝试:(1)在其他条件不变的情况下使得AD BC ∥,如图2,将线段AB 沿AD 方向平移AD 的长度,得到线段DE ,然后联结BE ,进而利用所学知识得到AD 、CB 与CD (或AB )之间的关系:____________________;(直接写出结果)(2)根据小亮的经验,请对图27-1的情况(AD 与CB 不平行)进行尝试,写出AD 、CB 与CD (或AB )之间的关系,并进行证明;图1 图2(3)综合(1)、(2)的证明结果,请写出完整的结论: __________________________.27.(本小题满分7分)(1) AD CB AB += ……………………………………………1分(2)补全图形正确 ………………………………………2分结论:AD CB AB +>………………………………………3分理由:如图:将线段AB 沿AD 方向平移AD 的长度,得到线段DE ,联结BE 、CE ,且可得AB DE ∥且AB DE =∴四边形A 、B 、E 、D 是平行四边形………………………4分∴AD BE =∵AB CD =∴DE CD =∵AB DE ∥,60AOD ∠=︒∴DCE △是等边三角形……………………………………5分∴CE AB =由于AD 与CB 不平行,所以C 、B 、E 构成三角形∴BE CB CE +>……………………………………………6分∴AD CB AB +>(3)AD CB AB +≥ …………………………………………7分12.(通州18期末24)如图1,在矩形ABCD 中,点E 为AD 边中点,点F 为BC 边中点;点G ,H 为AB 边三等分点,I ,J 为CD 边三等分点.小瑞分别用不同的方式连接矩形对边上的点,如图2,图3所示.那么,图2中四边形GKLH 的面积与图3中四边形KPOL 的面积相等吗?(1)小瑞的探究过程如下在图2中,小瑞发现, ABCD G KLH S S _______=;在图3中,小瑞对四边形KPOL 面积的探究如下. 请你将小瑞的思路填写完整: 设a S DEP =△,b S AKG =△∵AF EC ∥∴DAK DEP ∽△△,且相似比为2:1,得到a S DAK 4=△∵BI GD ∥∴ABM AGK ∽△△,且相似比为3:1,得到b S ABM 9=△又∵ABCD DAG S b a S 614=+=△,ABCD ABF S a b S 419=+=△ ∴a b b a S ABCD 436624+=+=∴b a ____=,b S ABCD _____=,b S KPOL _____=∴ABCD KPO L S S _____=,则G KLH KPO L S S ____(填写“>”,“<”或“=”)(2)小瑞又按照图4的方式连接矩形ABCD 对边上的点.则ABCD ANML S S _____=.13.(海淀18期末28)在△ABC 中,∠A =90°,AB =AC .(1)如图1,△ABC 的角平分线BD ,CE 交于点Q ,请判断“QB =”是否正确:_______(填“是”或“否”);(2)点P 是△ABC 所在平面内的一点,连接P A ,PB ,且PB =A .①如图2,点P 在△ABC 内,∠ABP =30°,求∠P AB 的大小;②如图3,点P 在△ABC 外,连接PC ,设∠APC =α,∠BPC =β,用等式表示α,β之间的数量关系,并证明你的结论.图1 图2图3 28.解:(1)否. ………………1分(2)① 作PD ⊥AB 于D ,则∠PDB =∠PDA =90°,∵ ∠ABP =30°,∴ 12PD BP =. ………………2分∵ PB =,∴ 2PD PA =.∴ sin 2PD PAB PA ∠==. 由∠P AB 是锐角,得∠P AB =45°. ………………3分 另证:作点P 关于直线AB 的对称点'P ,连接',',B P P A P P ,则',',','P B A P B A P A B P A B B PB P A P A P∠=∠∠=∠==. ∵∠ABP =30°,∴'60P BP ∠=︒.∴△'P BP 是等边三角形.∴'P P BP =.∵PB =,∴'P P =. ………………2分 ∴222''P P PA P A =+.∴'90PAP ∠=︒.∴45PAB ∠=︒. ………………3分② 45αβ+=︒,证明如下: ………………4分作AD ⊥AP ,并取AD =AP ,连接DC ,DP .∴ ∠DAP =90°.∵ ∠BAC =90°,∴ ∠BAC +∠CAP =∠DAP +∠CAP ,即 ∠BAP =∠CAD .∵ AB =AC ,AD =AP ,∴ △BAP ≌△CAD .∴ ∠1=∠2,PB =CD . ………………5分∵ ∠DAP =90°,AD =AP ,∴ PD =,∠ADP =∠APD =45°.∵ PB =,∴ PD =PB =CD .∴ ∠DCP =∠DPC .∵ ∠APC =α,∠BPC =β, ∴ 45DPC α∠=+︒,12αβ∠=∠=-. ∴ 31802902DPC α∠=︒-∠=︒-. ∴ 139045ADP αβ∠=∠+∠=︒--=︒. ∴ 45αβ+=︒. ………………7分。

顺义区九年级上期末考试数学试卷有答案精品

北京市顺义区2018届初三上学期期末考试数学试卷一、选择题(共8道小题,每小题2分,共16分)下面各题均有四个选项,其中只有一个..是符合题意的.1.实数a、b、c、d在数轴上的对应点的位置如图所示,在这四个数中,绝对值最小的数是A. aB. bC.cD. d2.如图,在△ABC中,∠A=90°.若AB=12,AC=5,则cosC的值为A.513B.1213C.512D.1253.右图是百度地图中截取的一部分,图中比例尺为1:60000,则卧龙公园到顺义地铁站的实际距离约为(注:比例尺等于图上距离与实际距离的比)A.1.5公里 B.1.8公里C.15公里 D.18公里4.已知蓄电池的电压为定值,使用蓄电池时,电流I(单位A)与电阻R(单位Ω)是反比例函数关系,它的图象如图所示.则用电阻R表示电流I的函数表达式为A.3IR=B.IR=-6C .3I R=- D .I R=65.二次函数的部分图象如图所示,对称轴是1x =-, 则这个二次函数的表达式为A. 223y x x =-++B. 223y x x =++C. 223y x x =-+-D. 223y x x =--+6. 如图,已知⊙O 的半径为6,弦AB 的长为8, 则圆心O 到AB 的距离为A .5B .25C .27D .107.已知△ABC ,D ,E 分别在AB ,AC 边上,且DE ∥BC , AD=2,DB=3,△ADE 面积是4,则四边形DBCE 的面积 是A .6B .9C .21D .258.如图1,点P 从△ABC 的顶点A 出发,沿A-B-C 匀速运动,到点C 停止运动.点P 运动时,线段AP 的长度与运动时间的函数关系如图2所示,其中D 为曲线部分的最低点,则△ABC 的面积是A .10B .12C .20D .24二、填空题(共8道小题,每小题2分,共16分) 9.分解因式:22a b ab b -+= .10.如图,利用成直角的墙角(墙足够长),用10m 长的栅栏围成y x一个矩形的小花园,花园的面积S (m 2)与它一边长a (m )的 函数关系式是 ,面积S 的最大值是 .11.已知∠α,∠β如图所示,则tan ∠α与tan ∠β的大小关系是 .12.如图标记了 △ABC 与△DEF 边、角的一些数据,如果再添加一个条件使△ABC ∽△DEF , 那么这个条件可以是 .(只填一个即可)13.已知矩形ABCD 中, AB=4,BC=3,以点B 为圆心 r 为半径作圆,且⊙B 与边CD 有唯一公共点,则r 的取值 范围是 .14.已知y 与x 的函数满足下列条件:①它的图象经过(1,1)点;②当1x >时,y 随x 的增大而减小.写出一个符合条件的函数: .15.在ABC △中,45A ∠=,6AB =,2BC =,则AC 的长为 .16.在平面直角坐标系xOy 中,抛物线2122y x x =++可以看作是抛物线2221y x x =---经过若干次图形的变化(平移、翻折、旋转)得到的,写出一种由抛物线y 2得到抛物线y 1的过程: .三、解答题(共12道小题,共68分,其中第17-23题每小题5分,第24、25题每小题6分,第26、27、28题每小题7分)17.解不等式组:()52365142x xxx-≤+⎧⎪⎨-<+⎪⎩.18.计算:2212sin458tan60-+︒-+︒.19.如图,E是□ABCD的边BC延长线上一点,AE交CD于点F,FG∥AD交AB于点G.(1)填空:图中与△CEF相似的三角形有;(写出图中与△CEF相似的所有三角形)(2)从(1)中选出一个三角形,并证明它与△CEF相似.20.制造弯形管道时,经常要先按中心线计算“展直长度”,再备料.下图是一段管道,其中直管道部分AB的长为3 000mm,弯形管道部分BC,CD弧的半径都是1 000mm,∠O=∠O’=90°,计算图中中心虚线的长度.21.已知二次函数243y x x=-+.(1)在网格中,画出该函数的图象.(2)(1)中图象与x轴的交点记为A,B,若该图象上存在一点C,且△ABC的面积为3,求点C的坐标.22.已知:如图,在△ABC的中,AD是角平分线,E是AD上一点,且AB :AC = AE :AD.求证:BE=BD.23.如图所示,某小组同学为了测量对面楼AB 的高度,分工合作,有的组员测得两楼间距离为40米,有的组员在教室窗户处测得楼顶端A 的仰角为30°,底端B 的俯角为10°,请你根据以上数据,求出楼AB 的高度.(精确到0.1米) (参考数据:sin10°≈0.17, cos10°≈0.98, tan10°≈0.18,2≈1.41,3≈1.73)24.已知:如图, AB 为⊙O 的直径,CE ⊥AB 于E ,BF ∥OC ,连接BC ,CF . 求证:∠OCF =∠ECB .25.如图,在平面直角坐标系xOy 中,直线2y x =-与双曲线ky x=(k ≠0)相交于A ,B 两点,且点A 的横坐标是3. (1)求k 的值;(2)过点P (0,n )作直线,使直线与x 轴平行, 直线与直线2y x =-交于点M ,与双曲线ky x =(k ≠0)交于点N ,若点M 在N 右边, 求n 的取值范围.26.已知:如图,在△ABC 中,AB=AC ,以AC 为直径作⊙O 交BC 于点D ,过点D 作⊙O 的切线交AB 于点E ,交AC 的延长线于点F .(1)求证:DE ⊥AB ; (2)若tan ∠BDE=12, CF=3,求DF 的长.27.综合实践课上,某小组同学将直角三角形纸片放到横线纸上(所有横线都平行,且相邻两条平行线的距离为1),使直角三角形纸片的顶点恰巧在横线上,发现这样能求出三角形的边长.(1)如图1,已知等腰直角三角形纸片△ABC,∠ACB=90°,AC=BC ,同学们通过构造直角三角形的办法求出三角形三边的长,则AB= ;(2)如图2,已知直角三角形纸片△DEF ,∠DEF =90°,EF=2DE ,求出DF 的长;(3)在(2)的条件下,若橫格纸上过点E 的横线与DF 相交于点G ,直接写出EG 的长. 28.在平面直角坐标系xOy 中,抛物线219y x bx =+经过点A (-3,4). (1)求b 的值;(2)过点A 作x 轴的平行线交抛物线于另一点B ,在直线AB 上任取一点P ,作点A 关于直线OP 的对称点C ;①当点C 恰巧落在x 轴时,求直线OP 的表达式;②连结BC ,求BC 的最小值.顺义区2017——2018学年度第一学期期末九年级教学质量检测数学答案一、选择题(共8道小题,每小题2分,共16分)下面各题均有四个选项,其中只有一个..是符合题意的.二、填空题(共8道小题,每小题2分,共16分)9.()21b a -; 10.220S a a =-+; 11.tan ∠α<tan ∠β; 12.略;13.35r ≤≤; 14.略; 15.1 16.略 .三、解答题(共12道小题,共68分,其中第17-23题每小题5分,第24、25题每小题6分,第26、27、28题每小题7分)17.解不等式1得8x ≤…………………………………………………………….2分解不等式2得1x >-…………………………………………………………….4分 ∴不等式组的解集为18x -<<.………………………………………………….5分18.212sin 45tan 60+︒-︒.1232=+⨯-13=………………………………………………….4分(每项1分) 2=………………………………………………………………………….5分 19.(1)△ADF ,△EBA ,△FGA ;………………………….3分(每个一分)(2)证明:△ADF ∽△ECF ∵四边形ABCD 为平行四边形∴BE ∥AD …………………………………………………….4分 ∴∠1=∠E ,∠2=∠D∴△ADF ∽△ECF …………………………………………….5分 (其它证明过程酌情给分)20. 901000500180180n r l πππ⨯===…………………………….…….……….3分 中心虚线的长度为 3000500230001000ππ+⨯=+…………………4分=30001000 3.14=6140+⨯……………………………………………..…5分 21. (1)…………………………….……….,…….2分(2)令y=0,代入243y x x =-+,则x=1,3,∴A (0,1),B (0,3),∴AB=2,……….……….,.………………..…….….3分 ∵△ABC 的面积为3,∴AB 为底的高为3, 令y=3,代入243y x x =-+,则x=0,4,∴C (0,3)或(4,3).…………….……….,…………………….….……….5分(各1分) 22.证明:∵AD是角平分线,∴∠1=∠2,……………………………………….1分又∵AB AD = AE AC,……………………….2分∴△ABE∽△ACD,………………………………………..…….3分∴∠3=∠4,……………………………………………………….4分∴∠BED=∠BDE,∴BE=BD.………………………………………………………..5分23.解:过点D作DE⊥AB于点E,在Rt△ADE中,∠AED=90°,tan∠1=AEDE,∠1=30°,………………………….…..1分∴AE=DE× tan∠1=40×tan30°=40×3≈40×1.73×13≈23.1……………………..2分在Rt△DEB中,∠DEB=90°,tan∠2=BEDE,∠2=10°,……………………………...3分∴BE=DE× tan∠2=40×tan10°≈40×0.18=7.2………………………………..………..4分∴AB=AE+BE≈23.1+7.2=30.3米.………………………………………………………..5分24.证明:延长CE交⊙O于点G.∵AB为⊙O的直径,CE⊥AB于E,∴BC=BG,∴∠ G=∠2,……………………………………………..2分∵BF ∥OC ,∴∠1=∠F ,………………………………………………3分 又∵∠G=∠F ,………………………………………..….5分 ∴∠1=∠2.…………………………………………….…6分(其它方法对应给分) 25.解:(1)令x=3,代入2y x =-,则y=1,∴A (3,1),…………………………………………………………….....1分∵点A (3,1),在双曲线ky x=(k ≠0)上,∴3k =.………………………..………………..………………………...3分 (2)………………………………….…..4分(画图)如图所示,当点M在N右边时,n的取值范围是1n>或30n-<<.………6分26.(1)证明:连接OD.………………………………………..1分∵EF切⊙O于点D,∴OD⊥EF.……………………………………….……..2分又∵OD=OC,∴∠ODC=∠OCD,∵AB=AC,∴∠ABC=∠OCD,∴∠ABC=∠ODC,∴AB∥OD,∴DE⊥AB.…………………………………….………..3分(2)解:连接AD.…………………………….…………….…4分∵AC为⊙O的直径,∴∠ADB=90°,…………………………………..…5分∴∠B+∠BDE=90°,∠B+∠1=90°,∴∠BDE=∠1,∵AB=AC,∴∠1=∠2.又∵∠BDE =∠3,∴∠2=∠3.∴△FCD∽△FDA…………………………………….6分∴FC CD FD DA=,∵tan∠BDE=12,∴tan∠2=12,∴1=2CD DA ,∴1=2FC FD , ∵CF=3,∴FD=6.……………………………….…7分27.(1)AB=26;……………………….2分(2)解:过点E 作横线的垂线,交l 1,l 2于点M ,N ,……………………………..….3分∴∠DME=∠EDF= 90°,∵∠DEF=90°,∴∠2+∠3=90°,∵∠1+∠3=90°,∴∠1=∠2,∴△DME ∽△ENF ,………….…….4分∴DM ME DE EN NF EF==, ∵EF=2DE ,∴12DM ME DE EN NF EF ===, ∵ME=2,EN=3,∴NF=4,DM=1.5,根据勾股定理得DE=2.5,EF=5,552DF =.……………………….5分 (3)EG=2.5.…………………………………………………………..…….7分28.(1)∵抛物线219y x bx =+经过点A (-3,4) 令x=-3,代入219y x bx =+,则()14939b =⨯+⨯-, ∴b=-3.………………………………………………………………………....2分(2)①…………………………………….....3分由对称性可知OA=OC,AP=CP,∵AP∥OC,∴∠1=∠2,又∵∠AOP=∠2,∴∠AOP=∠1,∴AP=AO,∵A(-3,4),∴AO=5,∴AP=5,∴P1(2,4),同理可得P2(-8,4),∴OP的表达式为2y x=或12y x=-.………………………………….5分(各1分)…………………………………….....6分②以O为圆心,OA长为半径作⊙O,连接BO,交⊙O于点C∵B(12,4),∴OB=∴BC的最小值为5.………………………….7分。

-学年北京市顺义区届初三上学期期末数学试卷(含答案)

北京市顺义区2018届初三上学期期末考试数学试卷考生须知1.本试卷共6页,共三道大题,28道小题,满分100分.考试时间120分钟.2.在试卷和答题卡上准确填写学校名称、班级、姓名和准考证号.3.试题答案一律填涂或书写在答题纸上,在试卷上作答无效.4.在答题纸上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答.5.考试结束,将本试卷和答题纸一并交回.一、选择题(共8道小题,每小题2分,共16分)下面各题均有四个选项,其中只有一个..是符合题意的.1.实数a、b、c、d在数轴上的对应点的位置如图所示,在这四个数中,绝对值最小的数是A. aB.b C.c ﻩD. d2.如图,在△ABC中,∠A=90°.若AB=12,AC=5,则cos C的值为A.513ﻩﻩB.1213C.512ﻩD.1253.右图是百度地图中截取的一部分,图中比例尺为1:60000,则卧龙公园到顺义地铁站的实际距离约为(注:比例尺等于图上距离与实际距离的比)ﻩA.1.5公里B.1.8公里C.15公里D.18公里4.已知蓄电池的电压为定值,使用蓄电池时,电流I (单位:A)与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示.则用电阻R表示电流I 的函数表达式为A .3I R =ﻩB.I R=-6 C .3I R=- ﻩﻩD .I R=65.二次函数的部分图象如图所示,对称轴是1x =-, 则这个二次函数的表达式为A . 223y x x =-++ﻩ B . 223y x x =++ C . 223y x x =-+- D . 223y x x =--+6. 如图,已知⊙O 的半径为6,弦AB 的长为8,则圆心O 到AB 的距离为A .5B .25 C.27 D.107.已知△ABC ,D,E分别在A B,A C边上,且DE ∥BC , AD =2,DB =3,△A DE 面积是4,则四边形DBCE 的面积 是A .6 B.9 C .21 D.258.如图1,点P从△A BC 的顶点A 出发,沿A -B-C 匀速运动,到点C 停止运动.点P 运动时,线段AP 的长度y 与运动时间x 的函数关系如图2所示,其中D 为曲线部分的最低点,则△AB C 的面积是A.10 B.12 C .20 D .24二、填空题(共8道小题,每小题2分,共16分) 9.分解因式:22a b ab b -+= .10.如图,利用成直角的墙角(墙足够长),用10m长的栅栏围成一个矩形的小花园,花园的面积S(m2)与它一边长a (m )的 函数关系式是 ,面积S 的最大值是 .11.已知∠α,∠β如图所示,则tan ∠α与tan ∠β的大小关系是 .12.如图标记了 △ABC 与△DEF 边、角的一些数据,如果再添加一个条件使△ABC ∽△DEF ,那么这个条件可以是 .(只填一个即可)13.已知矩形AB CD 中, A B=4,BC =3,以点B 为圆心r为半径作圆,且⊙B 与边C D有唯一公共点,则r的取值范围是 .14.已知y 与x的函数满足下列条件:①它的图象经过(1,1)点;②当1x >时,y 随x 的增大而减小.写出一个符合条件的函数: .15.在ABC △中,45A ∠=,6AB =,2BC =,则AC 的长为 .16.在平面直角坐标系xOy 中,抛物线2122y x x =++可以看作是抛物线2221y x x =---经过若干次图形的变化(平移、翻折、旋转)得到的,写出一种由抛物线y2得到抛物线y1的过程: .三、解答题(共12道小题,共68分,其中第17-23题每小题5分,第24、25题每小题6分,第26、27、28题每小题7分)17.解不等式组:()52365142x xxx-≤+⎧⎪⎨-<+⎪⎩.18.计算:2212sin458tan60-+︒-+︒.19.如图,E是□ABCD的边BC延长线上一点,AE交CD于点F,FG∥AD交AB于点G.(1)填空:图中与△CEF相似的三角形有;(写出图中与△CEF相似的所有三角形)(2)从(1)中选出一个三角形,并证明它与△CEF相似.20.制造弯形管道时,经常要先按中心线计算“展直长度”,再备料.下图是一段管道,其中直管道部分AB的长为3 000mm,弯形管道部分BC,CD弧的半径都是1 000mm,∠O=∠O’=90°,计算图中中心虚线的长度.21. 已知二次函数243y x x =-+.(1)在网格中,画出该函数的图象.(2)(1)中图象与x 轴的交点记为A ,B ,若该图象上存在一点C,且△ABC 的面积为3,求点C 的坐标.22.已知:如图,在△AB C的中,AD是角平分线,E是AD 上一点, 且AB :AC = AE :AD . 求证:BE =BD .23.如图所示,某小组同学为了测量对面楼AB 的高度,分工合作,有的组员测得两楼间距离为40米,有的组员在教室窗户处测得楼顶端A 的仰角为30°,底端B的俯角为10°,请你根据以上数据,求出楼A B的高度.(精确到0.1米) (参考数据:sin10°≈0.17, cos10°≈0.98, t an10°≈0.18,2≈1.41,3≈1.73)24.已知:如图, AB为⊙O 的直径,CE ⊥A B于E ,BF ∥OC ,连接BC ,CF .求证:∠OCF =∠ECB .25.如图,在平面直角坐标系xO y中,直线2y x =-与双曲线k y x=(k ≠0)相交于A,B 两点,且点A 的横坐标是3. (1)求k的值;(2)过点P(0,n )作直线,使直线与x轴平行,直线与直线2y x =-交于点M,与双曲线ky x=(k ≠0)交于点N ,若点M在N右边,求n 的取值范围.26.已知:如图,在△A BC 中,AB=AC ,以AC 为直径作⊙O 交BC于点D ,过点D 作⊙O 的切线交AB 于点E ,交AC 的延长线于点F . (1)求证:DE ⊥AB ; (2)若tan ∠BDE =12, CF =3,求DF的长.27.综合实践课上,某小组同学将直角三角形纸片放到横线纸上(所有横线都平行,且相邻两条平行线的距离为1),使直角三角形纸片的顶点恰巧在横线上,发现这样能求出三角形的边长.(1)如图1,已知等腰直角三角形纸片△ABC,∠ACB=90°,AC=BC,同学们通过构造直角三角形的办法求出三角形三边的长,则AB=;(2)如图2,已知直角三角形纸片△DEF,∠DEF=90°,EF=2DE,求出DF的长;(3)在(2)的条件下,若橫格纸上过点E的横线与DF相交于点G,直接写出EG的长.28.在平面直角坐标系xOy 中,抛物线219y x bx =+经过点A(-3,4). (1)求b 的值;(2)过点A 作x 轴的平行线交抛物线于另一点B ,在直线AB 上任取一点P ,作点A关于直线OP 的对称点C ;①当点C恰巧落在x 轴时,求直线OP 的表达式; ②连结BC ,求BC 的最小值.顺义区2017——2018学年度第一学期期末九年级教学质量检测数学答案一、选择题(共8道小题,每小题2分,共16分)下面各题均有四个选项,其中只有一个..是符合题意的. 答案 1 2 3 4 5 6 7 8CABDDBCB二、填空题(共8道小题,每小题2分,共16分)9.()21b a -; 10.220S a a =-+; 11.tan ∠α<tan ∠β; 12.略;13.35r ≤≤; 14.略; 15.221+ 16.略 .三、解答题(共12道小题,共68分,其中第17-23题每小题5分,第24、25题每小题6分,第26、27、28题每小题7分)17.解不等式1得8x ≤ (2)解不等式2得1x >-…………………………………………………………….4分 ∴不等式组的解集为18x -<<.………………………………………………….5分18.计算:2212sin 458tan 60-+︒-+︒. 22122232=-+⨯-+ 212223=-+-+………………………………………………….4分(每项1分)2=………………………………………………………………………….5分19.(1)△ADF ,△E BA ,△F GA ;………………………….3分(每个一分) (2)证明:△ADF ∽△ECF∵四边形A BCD 为平行四边形∴BE ∥AD…………………………………………………….4分 ∴∠1=∠E,∠2=∠D∴△A DF ∽△EC F…………………………………………….5分(其它证明过程酌情给分)20. 901000500180180n r l πππ⨯===…………………………….…….……….3分 中心虚线的长度为 3000500230001000ππ+⨯=+…………………4分=30001000 3.14=6140+⨯……………………………………………..…5分21.(1)…………………………….……….,…….2分(2)令y =0,代入243y x x =-+,则x =1,3,∴A(0,1),B (0,3),∴AB =2,……….……….,.………………..…….….3分∵△AB C的面积为3,∴AB 为底的高为3,令y =3,代入243y x x =-+,则x=0,4,∴C (0,3)或(4,3).…………….……….,…………………….….……….5分(各1分)22.证明:∵AD 是角平分线,∴∠1=∠2,……………………………………….1分又∵A B AD = A E AC , (2)∴△A BE ∽△A CD ,………………………………………..…….3分 ∴∠3=∠4,……………………………………………………….4分 ∴∠ B ED =∠BDE ,∴BE=BD. (5)23.解:过点D作DE⊥AB于点E,在Rt△ADE中,∠AED=90°,tan∠1=AEDE,∠1=30°, (1)分∴AE=DE×tan∠1=40×tan30°=40×3≈40×1.73×13≈23.1 (2)在Rt△DEB中,∠DEB=90°,tan∠2=BEDE, ∠2=10°,……………………………...3分∴BE=DE×tan∠2=40×tan10°≈40×0.18=7.2………………………………..………..4分∴AB=AE+BE≈23.1+7.2=30.3米.………………………………………………………..5分24.证明: 延长CE交⊙O于点G.∵AB为⊙O的直径,CE⊥AB于E,∴BC=BG,∴∠ﻩG=∠2,……………………………………………..2分∵BF∥OC,∴∠1=∠F,………………………………………………3分又∵∠G=∠F,………………………………………..….5分∴∠1=∠2.…………………………………………….…6分(其它方法对应给分)25.解:(1)令x=3,代入2y x =-,则y =1,∴A (3,1),…………………………………………………………….....1分 ∵点A (3,1),在双曲线k y x=(k ≠0)上, ∴3k =.………………………..………………..………………………...3分(2)………………………………….…..4分(画图)如图所示,当点M 在N右边时,n 的取值范围是1n >或30n -<<.………6分26.(1)证明: 连接OD .………………………………………..1分∵E F切⊙O 于点D ,∴OD ⊥EF .……………………………………….……..2分又∵OD =O C,∴∠ODC =∠OCD ,∵AB =AC ,∴∠ABC =∠OC D,∴∠ABC=∠ODC,∴AB∥OD,∴DE⊥AB.…………………………………….………..3分(2)解:连接AD.…………………………….…………….…4分∵AC为⊙O的直径,∴∠ADB=90°,…………………………………..…5分∴∠B+∠BDE=90°,∠B+∠1=90°,∴∠BDE=∠1,∵AB=AC,∴∠1=∠2.又∵∠BDE=∠3,∴∠2=∠3.∴△FCD∽△FDA…………………………………….6分∴FC CD FD DA=,∵tan∠BDE=12,∴tan∠2=12,∴1=2CDDA,∴1=2FCFD,∵CF=3,∴FD=6.……………………………….…7分27.(1)AB=26;……………………….2分(2)解:过点E作横线的垂线,交l1,l2于点M,N,……………………………..….3分∴∠DME=∠EDF= 90°,∵∠DEF=90°,∴∠2+∠3=90°,∵∠1+∠3=90°,∴∠1=∠2,∴△DME∽△ENF,………….…….4分∴DM ME DE EN NF EF==,∵EF=2DE , ∴12DM ME DE EN NF EF ===, ∵ME =2,E N=3,∴NF =4,DM =1.5,根据勾股定理得DE =2.5,EF =5,552DF =.……………………….5分 (3)EG=2.5.…………………………………………………………..…….7分28.(1)∵抛物线219y x bx =+经过点A(-3,4) 令x =-3,代入219y x bx =+,则()14939b =⨯+⨯-, ∴b=-3.………………………………………………………………………....2分(2)①…………………………………….....3分由对称性可知OA =OC ,A P=CP ,∵AP ∥O C,∴∠1=∠2,又∵∠AO P=∠2,∴∠A OP =∠1,∴AP =AO ,∵A (-3,4),∴AO =5,∴AP =5,∴P1(2,4),同理可得P 2(-8,4),∴O P 的表达式为2y x =或12y x =-. ………………………………….5分(各1分)…………………………………….....6分②以O为圆心,OA长为半径作⊙O,连接BO,交⊙O于点C∵B(12,4),∴OB=,∴BC的最小值为5.………………………….7分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018北京市顺义区初三(上)期末数学 2018.1考生须知1.本试卷共6页,共三道大题,28道小题,满分100分.考试时间120分钟.2.在试卷和答题卡上准确填写学校名称、班级、姓名和准考证号.3.试题答案一律填涂或书写在答题纸上,在试卷上作答无效.4.在答题纸上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答.5.考试结束,将本试卷和答题纸一并交回.一、选择题(共8道小题,每小题2分,共16分)下面各题均有四个选项,其中只有一个..是符合题意的.1.实数a、b、c、d在数轴上的对应点的位置如图所示,在这四个数中,绝对值最小的数是A. aB. bC.cD. d2.如图,在△ABC中,∠A=90°.若AB=12,AC=5,则cos C的值为A.513B.1213C.512D.1253.右图是百度地图中截取的一部分,图中比例尺为1:60000,则卧龙公园到顺义地铁站的实际距离约为(注:比例尺等于图上距离与实际距离的比)A.1.5公里 B.1.8公里C.15公里 D.18公里4.已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.则用电阻R表示电流I的函数表达式为A.3IR=B.IR=-6C.3IR=- D .IR=65.二次函数的部分图象如图所示,对称轴是1x =-, 则这个二次函数的表达式为A. 223y x x =-++ B. 223y x x =++ C. 223y x x =-+- D. 223y x x =--+6. 如图,已知⊙O 的半径为6,弦AB 的长为8,则圆心O 到AB 的距离为A .5B .25C .27D .107.已知△ABC ,D ,E 分别在AB ,AC 边上,且DE ∥BC ,AD =2,DB =3,△ADE 面积是4,则四边形DBCE 的面积是A .6B .9C .21D .258.如图1,点P 从△ABC 的顶点A 出发,沿A -B -C 匀速运动,到点C 停止运动.点P 运动时,线段AP 的长度y 与运动时间x 的函数关系如图2所示,其中D 为曲线部分的最低点,则△ABC 的面积是 A .10 B .12 C .20 D .24二、填空题(共8道小题,每小题2分,共16分) 9.分解因式:22a b ab b -+= .10.如图,利用成直角的墙角(墙足够长),用10m 长的栅栏围成一个矩形的小花园,花园的面积S (m 2)与它一边长a (m )的 函数关系式是 ,面积S 的最大值是 .11.已知∠α,∠β如图所示,则tan ∠α与tan ∠β的大小关系是 .12.如图标记了 △ABC 与△DEF 边、角的一些数据,如果再添加一个条件使△ABC ∽△DEF , 那么这个条件可以是 .(只填一个即可)13.已知矩形ABCD 中, AB =4,BC =3,以点B 为圆心r 为半径作圆,且⊙B 与边CD 有唯一公共点,则r 的取值范围是 .14.已知y 与x 的函数满足下列条件:①它的图象经过(1,1)点;②当1x >时,y 随x 的增大而减小.写出一个符合条件的函数: .15.在ABC △中,45A ∠=o ,6AB =,2BC =,则AC 的长为 .16.在平面直角坐标系xOy 中,抛物线2122y x x =++可以看作是抛物线2221y x x =---经过若干次图形的变化(平移、翻折、旋转)得到的,写出一种由抛物线y 2得到抛物线y 1的过程: .三、解答题(共12道小题,共68分,其中第17-23题每小题5分,第24、25题每小题6分,第26、27、28题每小题7分)17.解不等式组:()52365142x x x x -≤+⎧⎪⎨-<+⎪⎩.18.计算:2212sin 458tan 60-+︒-+︒.19.如图,E 是□ABCD 的边BC 延长线上一点,AE 交CD 于点F ,FG ∥AD 交AB 于点G .(1)填空:图中与△CEF 相似的三角形有 ;(写出图中与△CEF 相似的所有三角形) (2)从(1)中选出一个三角形,并证明它与△CEF 相似.20.制造弯形管道时,经常要先按中心线计算“展直长度”,再备料.下图是一段管道,其中直管道部分AB 的长为3 000mm ,弯形管道部分BC ,CD 弧的半径都是1 000mm ,∠O =∠O ’=90°,计算图中中心虚线的长度.21. 已知二次函数243y x x =-+.(1)在网格中,画出该函数的图象. (2)(1)中图象与x 轴的交点记为A ,B ,若该图象上存在一点C ,且△ABC 的面积为3,求点C 的坐标.22.已知:如图,在△ABC 的中,AD 是角平分线,E 是AD 上一点, 且AB :AC = AE :AD . 求证:BE =BD .23.如图所示,某小组同学为了测量对面楼AB 的高度,分工合作,有的组员测得两楼间距离为40米,有的组员在教室窗户处测得楼顶端A 的仰角为30°,底端B 的俯角为10°,请你根据以上数据,求出楼AB 的高度.(精确到0.1米)(参考数据:sin10°≈0.17, cos10°≈0.98, tan10°≈0.18,2≈1.41,3≈1.73)24.已知:如图, AB 为⊙O 的直径,CE ⊥AB 于E ,BF ∥OC ,连接BC ,CF .求证:∠OCF =∠ECB .25.如图,在平面直角坐标系xOy 中,直线2y x =-与双曲线ky x=(k ≠0)相交于A ,B 两点,且点A 的横坐标是3.(1)求k 的值;(2)过点P (0,n )作直线,使直线与x 轴平行,直线与直线2y x =-交于点M ,与双曲线ky x=(k ≠0)交于点N ,若点M 在N 右边, 求n 的取值范围.26.已知:如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作⊙O 的切线交AB于点E,交AC的延长线于点F.(1)求证:DE⊥AB;(2)若tan∠BDE=12, CF=3,求DF的长.27.综合实践课上,某小组同学将直角三角形纸片放到横线纸上(所有横线都平行,且相邻两条平行线的距离为1),使直角三角形纸片的顶点恰巧在横线上,发现这样能求出三角形的边长.(1)如图1,已知等腰直角三角形纸片△ABC,∠ACB=90°,AC=BC,同学们通过构造直角三角形的办法求出三角形三边的长,则AB= ;(2)如图2,已知直角三角形纸片△DEF,∠DEF=90°,EF=2DE,求出DF的长;(3)在(2)的条件下,若橫格纸上过点E的横线与DF相交于点G,直接写出EG的长.28.在平面直角坐标系xOy 中,抛物线219y x bx =+经过点A (-3,4). (1)求b 的值;(2)过点A 作x 轴的平行线交抛物线于另一点B ,在直线AB 上任取一点P ,作点A 关于直线OP 的对称点C ;①当点C 恰巧落在x 轴时,求直线OP 的表达式; ②连结BC ,求BC 的最小值.数学试题答案一、选择题(共8道小题,每小题2分,共16分)下面各题均有四个选项,其中只有一个..是符合题意的. 答案 1 2 3 4 5 6 7 8CABDDBCB二、填空题(共8道小题,每小题2分,共16分)9.()21b a -; 10.220S a a =-+; 11.tan ∠α<tan ∠β; 12.略;13.35r ≤≤; 14.略; 15.221+ 16.略 .三、解答题(共12道小题,共68分,其中第17-23题每小题5分,第24、25题每小题6分,第26、27、28题每小题7分)17.解不等式1得8x ≤…………………………………………………………….2分 解不等式2得1x >-…………………………………………………………….4分 ∴不等式组的解集为18x -<<.………………………………………………….5分 18.计算:2212sin 458tan 60-+︒-+︒. 2212223=-+⨯-+ 212223=-+-+………………………………………………….4分(每项1分)2=………………………………………………………………………….5分19.(1)△ADF ,△EBA ,△FGA ;………………………….3分(每个一分) (2)证明:△ADF ∽△ECF ∵四边形ABCD 为平行四边形∴BE ∥AD …………………………………………………….4分 ∴∠1=∠E ,∠2=∠D∴△ADF ∽△ECF …………………………………………….5分 (其它证明过程酌情给分)20. 901000500180180n r l πππ⨯===…………………………….…….……….3分 中心虚线的长度为 3000500230001000ππ+⨯=+…………………4分=30001000 3.14=6140+⨯……………………………………………..…5分21. (1)…………………………….……….,…….2分(2)令y =0,代入243y x x =-+,则x =1,3,∴A (0,1),B (0,3),∴AB =2,……….……….,.………………..…….….3分 ∵△ABC 的面积为3,∴AB 为底的高为3, 令y =3,代入243y x x =-+,则x =0,4,∴C (0,3)或(4,3).…………….……….,…………………….….……….5分(各1分)22.证明:∵AD 是角平分线,∴∠1=∠2,……………………………………….1分 又∵AB AD = AE AC ,……………………….2分∴△ABE ∽△ACD ,………………………………………..…….3分 ∴∠3=∠4,……………………………………………………….4分 ∴∠ BED =∠BDE ,∴BE =BD .………………………………………………………..5分 23.解:过点D 作DE ⊥AB 于点E ,在Rt △ADE 中,∠AED =90°,tan ∠1=AEDE, ∠1=30°,………………………….…..1分 ∴AE =DE × tan ∠1=40×tan30°=40×33≈40×1.73×13≈23.1……………………..2分 在Rt △DEB 中,∠DEB =90°,tan ∠2=BEDE, ∠2=10°,……………………………...3分 ∴BE =DE × tan ∠2=40×tan10°≈40×0.18=7.2………………………………..………..4分 ∴AB =AE +BE ≈23.1+7.2=30.3米.………………………………………………………..5分 24.证明: 延长CE 交⊙O 于点G . ∵AB 为⊙O 的直径,CE ⊥AB 于E , ∴BC =BG ,∴∠ G =∠2,……………………………………………..2分 ∵BF ∥OC ,∴∠1=∠F ,………………………………………………3分 又∵∠G =∠F ,………………………………………..….5分 ∴∠1=∠2.…………………………………………….…6分(其它方法对应给分)25.解:(1)令x =3,代入2y x =-,则y =1,∴A (3,1),…………………………………………………………….....1分 ∵点A (3,1),在双曲线ky x=(k ≠0)上, ∴3k =.………………………..………………..………………………...3分(2)………………………………….…..4分(画图)如图所示,当点M 在N 右边时,n 的取值范围是1n >或30n -<<.………6分26.(1)证明: 连接OD .………………………………………..1分∵EF 切⊙O 于点D ,∴OD ⊥EF .……………………………………….……..2分又∵OD =OC ,∴∠ODC =∠OCD ,∵AB =AC ,∴∠ABC =∠OCD ,∴∠ABC =∠ODC ,∴AB ∥OD ,∴DE ⊥AB .…………………………………….………..3分(2)解:连接AD .…………………………….…………….…4分∵AC 为⊙O 的直径,∴∠ADB =90°,…………………………………..…5分∴∠B +∠BDE =90°,∠B +∠1=90°,∴∠BDE =∠1,∵AB =AC ,∴∠1=∠2.又∵∠BDE =∠3,∴∠2=∠3.∴△FCD ∽△FDA …………………………………….6分 ∴FC CD FD DA =, ∵tan ∠BDE =12,∴tan ∠2=12,∴1=2CD DA ,∴1=2FC FD , ∵CF =3,∴FD =6.……………………………….…7分27.(1)AB =26;……………………….2分(2)解:过点E 作横线的垂线,交l 1,l 2于点M ,N ,……………………………..….3分∴∠DME =∠EDF = 90°,∵∠DEF =90°,∴∠2+∠3=90°,∵∠1+∠3=90°,∴∠1=∠2,∴△DME ∽△ENF ,………….…….4分∴DM ME DE EN NF EF==, ∵EF =2DE , ∴12DM ME DE EN NF EF ===, ∵ME =2,EN =3,∴NF =4,DM =1.5,根据勾股定理得DE =2.5,EF =5,552DF =.……………………….5分 (3)EG=2.5.…………………………………………………………..…….7分28.(1)∵抛物线219y x bx =+经过点A (-3,4) 令x =-3,代入219y x bx =+,则()14939b =⨯+⨯-, ∴b =-3.………………………………………………………………………....2分(2)①…………………………………….....3分由对称性可知OA =OC ,AP =CP ,∵AP ∥OC ,∴∠1=∠2,又∵∠AOP =∠2,∴∠AOP =∠1,∴AP =AO ,∵A (-3,4),∴AO =5,∴AP =5,∴P 1(2,4),同理可得P 2(-8,4),∴OP 的表达式为2y x =或12y x =-. ………………………………….5分(各1分)…………………………………….....6分②以O 为圆心,OA 长为半径作⊙O ,连接BO ,交⊙O 于点C∵B (12,4),∴OB =410, ∴BC 的最小值为4105-. ………………………….7分。

相关文档
最新文档