单芯片无源红外线(IR)MEMS温度传感器

合集下载

浅谈MEMS热电堆红外传感器

浅谈MEMS热电堆红外传感器

浅谈MEMS热电堆红外传感器随着科技的进步,MEMS热电堆红外传感器逐渐成为红外测温技术的重要组成部分。

MEMS热电堆红外传感器是利用微机电系统(MEMS)技术将热电堆传感器集成在芯片上制作而成的红外传感器。

MEMS热电堆红外传感器的工作原理是基于热电效应。

当被测物体的温度与传感器所处环境的温度不传感器产生热电效应,即产生微小的热电压。

通过测量热电压的变化,可以计算出被测物体的温度。

红外传感器在非接触式测量中具有很大的优势,可以准确测量物体的温度,并且不会对被测物体产生任何影响。

传统的红外传感器主要是基于热电偶原理制作的,体积大,响应速度慢,易受环境温度变化的影响。

而MEMS热电堆红外传感器通过利用MEMS技术将传感器集成在芯片上,具有体积小,响应速度快,抗干扰能力强的优点。

由于MEMS热电堆红外传感器体积小,可以制作成阵列式的传感器,可以同时测量多个点的温度,应用于红外图像处理、火灾探测、安防监控等领域。

MEMS热电堆红外传感器的制作过程主要包括芯片制作、传感器集成和封装三个步骤。

通过MEMS技术在芯片上制作热电堆传感器,根据不同的应用需求可以制作不同材料和不同结构的热电堆传感器。

然后,在芯片上进行传感器集成,即将电路、信号处理器等元件与热电堆传感器集成在一起,形成完整的红外传感器。

对芯片进行封装,保护芯片并方便与外界连接。

MEMS热电堆红外传感器在红外测温技术和红外图像处理领域具有广泛的应用前景。

在工业生产中可以用于温度监测和控制,提高产品质量和生产效率。

在医疗领域可以用于体温监测和疾病诊断。

在军事领域可以用于目标探测和追踪。

在民用领域可以用于安防监控和火灾探测等方面。

MEMS热电堆红外传感器是红外测温技术的重要组成部分,具有体积小,响应速度快,抗干扰能力强等优点。

随着科技的不断进步,MEMS热电堆红外传感器在各个领域的应用将会越来越广泛。

浅谈MEMS热电堆红外传感器

浅谈MEMS热电堆红外传感器

浅谈MEMS热电堆红外传感器1. 引言1.1 热电堆红外传感器的背景热电堆红外传感器是一种应用于红外光谱领域的传感器,其背景可追溯到20世纪。

在过去,红外传感器的应用范围主要集中在军事领域,用于夜视仪、导弹制导等方面。

随着科技的不断进步,红外传感器的应用也逐渐扩展到了民用领域,如安防监控、工业生产和医疗诊断等方面。

热电堆红外传感器是一种基于热电效应原理的传感器,其工作原理是利用热电堆在受热时产生的微小电流来检测目标物体辐射出的红外光谱信号。

相比于传统光电传感器,热电堆红外传感器具有更高的灵敏度和更广泛的应用范围,特别适用于对低温目标物体的探测。

热电堆红外传感器的出现,为红外探测技术的发展带来了新的可能性,也为红外探测领域的应用提供了更多选择。

随着MEMS技术在红外传感器中的应用不断深化,热电堆红外传感器的性能和功能也将不断提升,进一步推动红外探测技术的发展。

1.2 研究意义研究热电堆红外传感器的工作原理和结构,对于深入理解红外传感器技术和红外辐射原理具有重要意义。

通过研究热电堆红外传感器的优势和发展趋势,可以为传感器技术的改进和升级提供重要参考。

研究热电堆红外传感器的发展趋势,有助于预测未来红外传感器技术的发展方向和潜在应用领域,为相关领域的研究和应用工作提供理论支持和指导。

研究热电堆红外传感器具有着较为重要的研究意义,值得深入探讨和发展。

1.3 发展现状发展现状部分主要讨论了热电堆红外传感器在当前红外探测领域中的应用和发展趋势。

随着红外技术的不断发展和应用领域的拓展,热电堆红外传感器也逐渐成为研究的热点之一。

目前,热电堆红外传感器已经在军事、安防、医疗、工业等领域得到了广泛应用。

其高灵敏度、快速响应、低功耗等优势使其在红外探测中具有独特的优势。

在军事领域中,热电堆红外传感器可以用于夜视仪、导弹制导等领域;在安防领域中,可以用于监控系统、防盗系统等;在医疗领域中,可以用于体温测量、疾病诊断等;在工业领域中,可以用于红外成像、无损检测等。

浅谈MEMS热电堆红外传感器

浅谈MEMS热电堆红外传感器

浅谈MEMS热电堆红外传感器
MEMS热电堆红外传感器是一种基于MEMS技术的红外传感器,利用热电效应来测量红
外辐射能量。

它具有体积小、响应速度快、功耗低等优点,因此在许多领域被广泛应用。

热电堆是MEMS热电堆红外传感器的核心部件,它由多个由热电材料构成的热电对组成。

当红外辐射照射到热电对上时,吸收的光能量会使得热电对产生温度差,进而产生电势差。

通过测量这个电势差,就可以得到照射物体的红外辐射能量。

MEMS热电堆红外传感器的热电对尺寸是微米级别的,因此可以制造成大规模的阵列,从而实现高分辨率的红外成像。

由于MEMS技术的发展,可以制造出高度集成的红外传感器,将前端的光学元件、MEMS热电堆和后端的信号处理电路集成在一片芯片上,从而降低成本,提高性能。

MEMS热电堆红外传感器在安防监控、工业自动化、环境监测等领域有着广泛的应用。

在安防监控领域,它可以用于夜视摄像机、入侵探测器等设备中,实现对目标的准确检测
和识别。

在工业自动化领域,它可以用于温度检测、火焰检测等应用,提高生产效率和安
全性。

在环境监测领域,它可以用于空气质量监测、温度湿度监测等应用,为环境保护提
供数据支持。

MEMS热电堆红外传感器也存在一些问题。

由于热电堆对温度变化非常敏感,所以在温度变化较大的环境下,传感器的性能可能会受到影响。

MEMS热电堆红外传感器的灵敏度和动态范围相对较低,无法满足一些高端应用的需求。

MEMS热电堆红外传感器在测量过程中也容易受到背景辐射的影响,需要通过设计和算法来进行补偿和消除。

浅谈MEMS传感器的分类及应用领域

浅谈MEMS传感器的分类及应用领域

浅谈MEMS传感器的分类及应用领域MEMS的全称是微型电子机械系统(Micro-ElectroMechanical System),相对于传统的机械,它们的尺寸更小,最大的不超过一个厘米,甚至仅仅为几个微米,其厚度就更加微小。

采用以硅为主的材料,电气性能优良,硅材料的强度、硬度和杨氏模量与铁相当,密度与铝类似,热传导率接近钼和钨。

采用与集成电路(IC)类似的生成技术,可大量利用IC生产中的成熟技术、工艺,进行大批量、低成本生产,使性价比相对于传统机械制造技术大幅度提高。

微机电系统是指可批量制作的,将微型机构、微型传感器、微型执行器以及信号处理和控制电路、直至接口、通信和电源等于一体的微型器件或系统。

你可以把它理解为利用传统的半导体工艺和材料,用微米技术在芯片上制造微型机械,并将其与对应电路集成为一个整体的技术。

所以它是以半导体制造技术为基础发展起来的一种先进的制造技术平台MEMS传感器的分类:MEMS传感器的种类繁多,分类方法也很多。

下面是按照工作原理分类如下:其中每一种MEMS传感器又有很多种细分方法。

如加速度计,按检测质量的运动方式划分,有角振动式和线振动式加速度计等,种类繁多,常见的MEMS传感器有压力传感器、加速度传感器、微机械陀螺仪、惯性传感器、MEMS硅麦克风等等;MEMS传感器的品种多到可以以万为单位,且不同MEMS之间参量较多,没有完全标准的工艺。

这种行业特性让MEMS传感器制造的企业前期的研发投入过大,单品种的销量很难放大。

以惯性传感器为例,其市场盈亏平衡规模为月产1000万只,即企业须至少每月生产1000万只惯性传感器才能保持不亏本状态,根据调查,国内绝大多数企业都远低于这一规模。

国内最大的纯MEMS传感器公司美新至今是亏损的。

所以只有企业做的越大它的赢利能力才越强。

MEMS传感器的应用:MEMS传感器作为获取信息的关键器件,对各种传感装置的微型化起着巨大的推动作用,。

MEMS传感器

MEMS传感器

MEMS传感器MEMS传感器是采用微电子和微机械加工技术制造出来的新型传感器,与传统的传感器相比,它具有:微型化,集成化,低功耗,低成本,高精度,长寿命,动态性能好,可靠性高,适于批量生产,易于集成和实现智能化的特点,在微米量级的特征尺寸使得它可以完成某些传统机械传感器所不能实现的功能。

MEMS传感器的种类有很多,发展很快但在这几年发展速度放缓,MEMS传感器的种类很多导致了其分类方法很多。

按其工作原理, 可分为物理型、化学型和生物型三类M EM S 传感器分类及典型应用。

按照被测的量又可分为加速度、角速度、压力、位移、流量、电量、磁场、红外、温度、气体成分、湿度、pH 值、离子浓度、生物浓度及触觉等类型的传感器。

目前MEMS传感器的工作原理主要有压阻式,电容式,压电式,力平衡式,热对流式,谐振式等。

一.1.MEMS压力传感器MEMS传感器的发展以20世纪60年代霍尼韦尔研究中心和贝尔实验室研制出首硅隔膜压力传感器和应变计为开端。

压力传感器是影响最为深远且应用最广泛的MEMS传感器, 其性能由测量范围、测量精度、非线性和工作温度决定。

从信号检测方式划分, MEMS压力传感器可分为压阻式、电容式和谐振式等; 从敏感膜结构划分, 可分为圆形、方形、矩形和E 形等。

硅压力传感器主要是硅扩散型压阻式压力传感器, 其工艺成熟, 尺寸较小, 且性能优异, 性价比较高。

2.MEMS加速计MEMS加速度计用于测量载体的加速度, 并提供相关的速度和位移信息。

MEMS加速度计的主要性能指标包括测量范围、分辨率、标度因数稳定性、标度因数非线性、噪声、零偏稳定性和带宽等。

电容式、压电式和压阻式MEMS加速度计的性能比技术指标电容式压电式压阻式尺寸大小中等温度范围非常宽宽中等线形度误差高中等低直流响应有无有灵敏度高中等中等冲击造成的零位漂移无有无电路复杂程度高中等低成本高高低3.MEMS陀螺仪MEMS陀螺仪是一种振动式角速率传感器,其特点是几何结构复杂和精准度较高。

敏源传感科技有限公司单总线数字温度传感芯片产品手册(V3.5)说明书

敏源传感科技有限公司单总线数字温度传感芯片产品手册(V3.5)说明书

单总线数字温度传感芯片 MY18E20/MY1605/MY605产 品 手 册(V3.5)©敏源传感科技有限公司2019/12概述敏源传感数字温度传感芯片系列为高集成度的数字模拟混合信号的智能传感芯片,感温原理基于半导体PN节温度与带隙电压的特性关系,经过小信号放大、模数转换、数字校准补偿、输出数字温度,具有精度高、一致性好、寿命长、功耗低、可编程配置灵活等优点。

每颗芯片都有唯一的64位ID序列号,并在出厂前根据温度误差特性进行校准系数的拟合,芯片内部自动进行补偿计算。

为了简化系统应用,芯片的ID搜索、测温数据内存访问、功能配置等均基于数字单总线协议指令,上位机微处理器只需要一个GPIO端口便可进行读写访问。

单总线通信接口通过共用一根数据总线来实现了多节点传感采集与组网的低成本方案,传输距离远、支持节点数多,便于空间分布式传感组网。

芯片内置非易失性EEPROM存储单元,用于保存芯片ID号、高低温报警阈值、温度校准修正值以及用户自定义信息,如传感器节点编号、位置信息等。

温度传感芯片具有-55°C到+125°C的工业级工作范围,内置14-bit ADC,最高分辨率0.015°C;针对不同行业应用,产品分为0.1~1.0°C等不同精度等级。

MY18E20、MY1605、MY1820、MY605为标准版系列,最高测温精度为0.5°C 。

另有高精度可编程数字温度芯片MY605+、MY1605+ 、MY18E20+,可编程高精度0.1~0.3°C 。

根据不同应用需求,封装形式分为TO-92直插型MY18E20、TO-92S小尺寸直插型MY1820、SOT23-3表贴型MY1605、DFN-8表贴型MY605等不同规格。

特点-10°C~+85°C 0.5°C精度-55°C~+125°C 1.0°C精度单总线接口,适用于分布式多节点测温转换温度时间可配置:15ms/114ms/514ms标准版默认12位输出,分辨率0.0625°C【另有高精度系列为14位可编程输出,最高分辨率0.015°C】宽供电电压范围1.8V-5.5V 每颗芯片有可编程的ID 序列号,便于组网寻址 用户可自行设置报警值80-bit 存储空间用于存放用户信息 典型待机功耗0.2µA@5V ,最大测温峰值功耗0.3mA@5V 应用简单,无需额外器件典型应用工业监控、智能家电、智能硬件、智慧农业、仪器仪表封装管脚描述及实物图TO-92直插型 MY18E20SOT 表贴型 MY1605(2.9mm×2.8mm)DFN 表贴型 MY605(2mm*2mm)TO-92S 小直插型MY1820【芯片内部系统构成以MY18E20为例,其他封装型号等同。

mems温度传感器原理

MEMS温度传感器的基本原理MEMS(Micro-Electro-Mechanical Systems)温度传感器是一种基于微机电系统技术的传感器,能够测量周围环境的温度。

它采用微小的传感器结构和微电子技术,具有体积小、功耗低、响应速度快等优点,因此被广泛应用于各种领域,如智能手机、汽车、医疗设备等。

MEMS温度传感器的基本原理涉及热敏效应和微机电系统技术,下面将详细解释。

1. 热敏效应热敏效应是指物质在温度变化下产生的电阻、电压或电流等物理量的变化。

MEMS 温度传感器利用热敏效应来测量温度。

常见的热敏效应有两种:正温度系数(PTC)和负温度系数(NTC)。

PTC材料在温度升高时,电阻值增加;而NTC材料在温度升高时,电阻值减小。

MEMS温度传感器通常采用NTC材料作为敏感元件。

当温度变化时,敏感元件的电阻值也会相应变化。

通过测量电阻值的变化,可以确定温度的变化。

2. 微机电系统技术MEMS温度传感器是利用微机电系统技术制造的传感器。

微机电系统技术是一种将机械结构、电子元件和控制电路集成在一起的技术,通过微小的尺寸和微细加工工艺,实现高度集成的传感器器件。

MEMS温度传感器的微机电系统结构主要包括敏感元件、支撑结构和电子信号处理电路。

敏感元件是温度传感器的核心部分,其电阻值与温度成正相关。

常见的敏感元件有热敏电阻、热电偶和热敏电容等,其中热敏电阻是最常用的。

支撑结构用于支撑和固定敏感元件,保证其工作的稳定性和可靠性。

支撑结构通常采用硅基材料,具有良好的机械强度和热传导性能。

电子信号处理电路用于测量和处理敏感元件的电阻值变化,并将其转换为温度值。

信号处理电路通常包括放大器、模数转换器和数字信号处理器等。

3. MEMS温度传感器的工作原理MEMS温度传感器的工作原理可以分为以下几个步骤:步骤1:温度感知当温度发生变化时,敏感元件的电阻值也会发生变化。

以热敏电阻为例,当温度升高时,热敏电阻的电阻值减小;当温度降低时,电阻值增加。

无源mems tof芯片

无源mems tof芯片
无源MEMS(Micro-Electro-Mechanical Systems)TOF(Time
of Flight)芯片是一种利用MEMS技术和飞行时间原理来实现测距
的芯片。

无源MEMS TOF芯片通常由激光发射器、接收器、控制电路
等组成。

激光发射器发射出脉冲激光,激光经过一定距离后被目标
物体反射回来,接收器接收反射回来的光信号,通过测量激光从发
射到接收的时间来计算目标物体与传感器的距离。

从技术角度来看,无源MEMS TOF芯片具有高精度、快速响应和
抗干扰能力强的特点。

由于采用了MEMS技术,芯片本身体积小、功
耗低,适合于集成到各种便携式设备中,如智能手机、平板电脑、
智能家居设备等。

同时,无源MEMS TOF芯片在3D成像、手势识别、环境感知等方面有着广泛的应用前景。

从市场需求角度来看,随着人工智能、自动驾驶、增强现实等
领域的快速发展,对于无源MEMS TOF芯片的需求也在不断增加。


种芯片可以帮助设备实现更精准的环境感知和空间识别,为智能设
备的发展提供了重要支持。

总的来说,无源MEMS TOF芯片在技术和市场上都有着广阔的发展前景,将会在智能设备、自动化系统等领域发挥重要作用。

浅谈MEMS热电堆红外传感器

浅谈MEMS热电堆红外传感器MEMS热电堆红外传感器是一种基于微机电系统(MEMS)技术的红外传感器,它利用热电堆原理来检测目标物体辐射的红外辐射,具有体积小、响应速度快、功耗低的特点。

本文将从MEMS热电堆红外传感器的工作原理、技术特点、应用领域等方面进行浅谈,希望能够为读者提供一些关于MEMS热电堆红外传感器方面的基础知识和应用前景。

一、工作原理MEMS热电堆红外传感器利用热电效应来实现红外辐射的探测。

其主要由红外辐射探测单元和信号处理单元两部分组成。

红外辐射探测单元通常由多个微型热电堆阵列组成,这些微型热电堆由微纳米加工工艺制成,并且被喷涂上红外辐射吸收涂层,用于吸收目标物体辐射的红外光能。

当被测物体的红外辐射照射到热电堆上时,热电堆吸收并转换为热能,产生温度差,从而产生热电流。

这一微小的热电流通过电极直接输出到信号处理单元。

信号处理单元通常由模拟前端电路和数字后端电路组成。

模拟前端电路负责放大和滤波热电堆产生的微小信号,并将其转换为数字信号;数字后端电路则负责对信号进行数字处理和解码,并最终输出数字化的红外图像。

MEMS热电堆红外传感器能够通过对微型热电堆产生的微小热电流进行处理,实现对目标物体辐射的红外图像的拍摄和分析。

二、技术特点1. 小型化:MEMS热电堆红外传感器采用微纳米加工技术,可以将红外辐射探测单元制作成微小的尺寸,体积小、重量轻,便于集成到各种便携式设备中,如智能手机、智能家居设备等。

2. 响应速度快:由于MEMS热电堆红外传感器采用微小热电堆进行红外辐射探测,其响应速度比传统红外传感器更快,能够实时捕获目标物体的红外图像,适用于快速移动目标的监测和识别。

3. 低功耗:MEMS热电堆红外传感器采用微型热电堆作为传感器元件,热电堆本身无需外部电源激励,只需要微小的热能输入就能产生微小的热电流,因此功耗较低,适用于便携式设备和长时间连续工作的场景。

4. 高灵敏度:由于采用了微纳米加工技术和红外辐射吸收涂层技术,MEMS热电堆红外传感器具有较高的灵敏度和分辨率,能够对微弱的红外辐射进行探测和测量。

无源传感器

无源传感器1.介绍无源传感器是指能够感知和检测环境变化,但无需外部电源供电的传感器。

相比有源传感器,无源传感器由于无需外部电源,因此更加灵活和便捷,在无法提供外部电源的场景下具有很大的优势。

本文将介绍无源传感器的原理、种类以及应用领域。

2.原理无源传感器主要依靠环境变化产生的能源进行工作。

其中最常见的无源传感器是压电传感器和热电传感器。

2.1 压电传感器压电传感器基于压电效应,当外界施加压力或力量时,传感器内部的压电材料会产生电荷或电压的变化。

这些压电材料可以是陶瓷、聚合物等。

压电传感器主要用于测量压力、力量、加速度等参数。

2.2 热电传感器热电传感器则利用热电效应,当两个材料的接触点温度差异产生时,会在材料之间产生热电流。

这些材料可以是金属、半导体等。

热电传感器通常用于测量温度和温差。

3.种类无源传感器根据其感知和检测的参数可以分为多种不同类型。

3.1 压力传感器压力传感器是一种常见的无源传感器,用于测量压力的大小。

它通常使用压电材料或弹性材料作为敏感元件,当外界施加压力时,传感器内部压电材料或弹性材料的形变会导致电阻、电容、电感等特性发生变化,进而测量出压力的值。

3.2 位移传感器位移传感器用于测量物体的位置或位移。

它通常利用压电材料或磁敏材料作为敏感元件,当外界物体有位移时,传感器内部的敏感元件也会相应发生形变或变化,从而测量出物体的位移信息。

3.3 温度传感器温度传感器用于测量环境或物体的温度。

它通常利用热电材料或半导体材料作为敏感元件,当温度发生变化时,敏感元件内部的热电效应或半导体的电阻变化会导致电压或电流的变化,从而测量出温度值。

3.4 加速度传感器加速度传感器是一种用于测量物体加速度的无源传感器。

它通常利用压电材料或微机械敏感元件作为敏感元件,当物体受力或加速度时,传感器内部的敏感元件会产生电荷变化或形变,进而测量出物体的加速度。

4.应用领域无源传感器在很多领域都有广泛的应用。

以下是几个常见的应用领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单芯片无源红外线(IR)MEMS温度传感器
单芯片无源红外线 (IR) MEMS温度传感器,首次为便携式消费类电子产品实现非接触温度测量功能。

该数字温度传感器可帮助智能电话、平板电脑以及笔记本电脑等移动设备制造商使用 IR 技术准确测量设备外壳温度。

该技术与当前根据系统温度粗略估算外壳温度的方法相比取得了新的进展,将帮助系统设计人员在提供更舒适用户体验的同时优化性能。

此外,还可用于测量设备外部温度,从而支持全新的特性与用户应用。

该数字温度传感器不但可解决处理器高级热管理需求问题,而且还可在处理功能提高、外形不断缩小的同时优化系统性能与安全性。

随着该数字温度传感器推出,移动设备制造商将首次实现对电话外部物体进行温度测量,可为应用开发人员进行创新开发提供完整的全新功能。

该数字温度传感器在 1.6 毫米 x 1.6 毫米单芯片上高度集成各种器件,其中包括片上 MEMS 热电堆传感器、信号调节功能、16 位模数转换器 (ADC)、局部温度传感器以及各种电压参考,可为非接触温度测量提供比任何其它热电堆传感器小 95% 的完整数字解决方案。

主要特性与优势:
·集成 MEMS 传感器并支持模拟电路,与同类竞争产品相比可将解决方案尺寸缩小95%;
·静态电流仅为 240 uA,关断模式下电流仅为 1 uA,功耗比同类竞争解决方案低 90%;
·支持 -40℃ 至+125℃宽泛工作温度,局部传感器误差精度为 +/- 0.5℃(典型值),无源 IR 传感器误差精度为 +/- 1 ℃(典型值);
·提供 I2C/SMBus 数字接口;
·可对 TI 适用于便携式应用的广泛系列业界领先超小型低功耗模拟与嵌入式处理产品形成有力互补,包括电池管理、接口、音频编解码器以及等器件。

工具与支持
适用于 TMP006 的评估板现已开始提供。

同步提供的还有验证电路板信号完整性需求的 IBIS 模型、计算物体温度的所有源代码以及应用手册。

供货情况与封装,采用 1.6 毫米 x 1.6 毫米 WCSP 封装的。

更多相关技术请查看电子电器频道
/jishu-dianzidianqi-cp-isp-mat。

相关文档
最新文档