初二数学练习卷

合集下载

初二数学下册练习题带答案

初二数学下册练习题带答案

初二数学下册练习题带答案一、选择题1. 下列哪个是勾股定理?a) a² + b² = c²b) a² + b² = d²c) a² + b² = e²d) a² + b² = f²答案:a) a² + b² = c²2. 若一个原本价值10元的东西打6.5折后,价格是多少?a) 5.5元b) 6.3元c) 6.5元d) 6.9元答案:d) 6.9元3. 一个矩形的长是宽的2倍,如果长是8cm,那么宽是多少?a) 2cmb) 4cmc) 6cmd) 8cm答案:b) 4cm4. 下列哪个选项属于不等式?a) 2 + 3 = 5b) 5 × 4 = 20c) 6 - 8 < 10d) 7 ÷ 2 = 3.5答案:c) 6 - 8 < 105. 若a:b = 3:5,且a = 6,则b = ?a) 2b) 7c) 10d) 15答案:d) 15二、填空题1. 计算 3 × (4 + 7) = ____答案:332. 已知一个三角形的底边长为8cm,高为6cm,那么它的面积为____ 平方厘米。

答案:243. 计算 15 ÷ 3 × 2 = ____答案:104. 若一个数的4倍加上3的结果等于19,那么这个数是 ____。

答案:45. 若x + 4 = 9,那么x的值为 ____。

答案:5三、简答题1. 请说明平行线的定义是什么?答:平行线是指不相交且在同一个平面内始终保持相同距离的两条直线。

2. 若正方形的边长为5cm,那么它的周长是多少?面积是多少?答:正方形的周长等于边长的4倍,因此周长为20cm;正方形的面积等于边长的平方,因此面积为25平方厘米。

3. 请列举三种解二次方程的方法。

答:一种解二次方程的方法是因式分解法,另一种是求根公式法,还有一种是配方法。

初二数学寒假练习试卷 三(附答案)

初二数学寒假练习试卷 三(附答案)

初二数学寒假练习试卷(三)一、选择题(共10小题,每小题3分,共30分)1.下列各数中,()是无理数.A.0B.﹣2C.D.0.42.如图,∠ACB=90°,以Rt△ABC的三边为边向外作正方形,其面积分别为S1,S2,S3,且S1=1,S2=3,则S3为()A.3B.4C.5D.93.如图在中国象棋棋盘中,如果将“卒”的位置记作(3,1),那么“相”的位置可记作()A.(2,8)B.(2,4)C.(8,2)D.(4,2)4.已知直线MN∥EF,一个含30°角的直角三角尺ABC(AB>BC)如图叠放在直线MN 上,斜边AC交EF于点D,则∠1的度数为()A.30°B.45°C.50°D.60°5.蝴蝶标本可以近似地看做轴对称图形.如图,将一只蝴蝶标本放在平面直角坐标系中,如果图中点A的坐标为(5,3),则其关于y轴对称的点B的坐标为()A.(5,﹣3)B.(﹣5,3)C.(﹣5,﹣3)D.(3,5)6.某文具超市有A,B,C,D四种水笔销售,它们的单价分别是5元,4元,3元,1.2元.某天的水笔销售情况如图所示,那么这天该文具超市销售的水笔的单价的平均值是()A.4元B.4.5元C.3.2元D.3元7.如图,直线l1、l2的交点坐标可以看做下列方程组()的解.A.B.C.D.8.下列各命题是真命题的是()A.如果a2=b2,那么a=b B.0.3,0.4,0.5是一组勾股数C.两条直线被第三条直线所截,同位角相等D.三角形的任意两边之和大于第三边9.如图,BP、CP是△ABC的外角角平分线,若∠P=60°,则∠A的大小为()A.30°B.60°C.90°D.120°10.如图,等边三角形ABC中,AB=4,有一动点P从点A出发,以每秒一个单位长度的速度沿着折线A﹣B﹣C运动至点C,若点P的运动时间记作t秒,△APC的面积记作S,则S与t的函数关系应满足如下图象中的()A.B.C.D.二、填空题(每小题3分,共15分)11.计算:=.12.已知变量y与x满足一次函数关系,且y随x的增大而减小,若其图象与y轴的交点坐标为(0,2),请写出一个满足上述要求的函数关系式.13.命题“如果两条直线都与第三条直线平行,那么这两条直线也互相平行”中,条件部分是.14.如图,这是一个供滑板爱好者使用的U型池的示意图,该U型池可以看成是长方体去掉一个“半圆柱”而成,中间可供滑行部分的截面是直径为的半圆,其边缘AB=CD=20m,点E在CD上,CE=5m,一滑板爱好者从A点滑到E点,则他滑行的最短距离约为m.(边缘部分的厚度忽略不计)15.如图,矩形OABC在平面直角坐标系内,其中点A(2,0),点C(0,4),点D和点E 分别位于线段AC,AB上,将△ABC沿DE对折,恰好能使点A与点C重合.若x轴上有一点P,能使△AEP为等腰三角形,则点P的坐标为.三、解答题(本大题共7小题,共55分)16.(8分)阅读下列计算过程,回答问题:解方程组:解:①×2,得4x﹣8y=﹣13,③(1)②﹣③,得﹣5y=﹣10,y=2.(2)把y=2代入①,得2x﹣8=﹣13,2x=8﹣13,.(3)∴该方程组的解是以上过程有两处关键性错误,第一次出错在第步(填序号),第二次出错在第步(填序号),以上解法采用了消元法.17.(8分)如图,在平面直角坐标系中,正方形网格的每个小方格都是边长为1的正方形,△ABC的顶点都在格点上.(1)直接写出点A,B,C的坐标;(2)试判断△ABC是不是直角三角形,并说明理由.18.(7分)某校兴趣小组在创客嘉年华活动中组织了计算机编程比赛,八年级每班派25名学生参加,成绩分别为A、B、C、D四个等级.其中相应等级的得分依次记为10分、9分、8分、7分.将八年级的一班和二班的成绩整理并绘制成如下统计图表:班级平均数(分)中位数(分)众数(分)方差一班8.7699二班8.76810请根据本学期所学过的《数据的分析》相关知识分析上述数据,帮助计算机编程老师选择一个班级参加校级比赛,并阐述你选择的理由.19.(8分)已知二元一次方程x+y=5,通过列举将方程的解写成下列表格的形式:x﹣1m56y650n 如果将二元一次方程的解所包含的未知数x的值对应直角坐标系中一个点的横坐标,未知数y的值对应这个点的纵坐标,这样每一个二元一次方程的解,就可以对应直角坐标系中的一个点,例如:方程x+y=5的解的对应点是(2,3).(1)表格中的m=,n=;(2)通过以上确定对应点坐标的方法,将表格中给出的五个解依次转化为对应点的坐标,并在所给的直角坐标系中画出这五个点;根据这些点猜想方程x+y=5的解的对应点所组成的图形是,并写出它的两个特征①,②;(3)若点P(﹣2a,a﹣1)恰好落在x+y=5的解对应的点组成的图形上,求a的值.20.(8分)郑州市自2019年12月1日起推行垃圾分类,广大市民对垃圾桶的需求剧增.为满足市场需求,某超市花了7900元购进大小不同的两种垃圾桶共800个,其中,大桶和小桶的进价及售价如表所示.大桶小桶进价(元/个)185售价(元/个)208(1)该超市购进大桶和小桶各多少个?(2)当小桶售出了300个后,商家决定将剩下的小桶的售价降低1元销售,并把其中一定数量的小桶作为赠品,在顾客购买大桶时,买一赠一(买一个大桶送一个小桶),送完即止.请问:超市要使这批垃圾桶售完后获得的利润为1550元,那么小桶作为赠品送出多少个?21.(8分)中国移动某套餐推出了如下两种流量计费方式:月租费/元流量费(元/G)方式一81方式二280.5(1)设一个月内用移动电话使用流量为xG(x>0),方式一总费用y1元,方式二总费用y2元(总费用不计通话费及其它服务费).写出y1和y2关于x的函数关系式(不要求写出自变量x的取值范围);(2)如图为在同一平面直角坐标系中画出(1)中的两个函数图象的示意图,记它们的交点为点A,求点A的坐标,并解释点A坐标的实际意义;(3)根据(2)中函数图象,结合每月使用的流量情况,请直接写出选择哪种计费方式更合算.22.(8分)问题情景:如图1,在同一平面内,点B和点C分别位于一块直角三角板PMN 的两条直角边PM,PN上,点A与点P在直线BC的同侧,若点P在△ABC内部,试问∠ABP,∠ACP与∠A的大小是否满足某种确定的数量关系?(1)特殊探究:若∠A=55°,则∠ABC+∠ACB=度,∠PBC+∠PCB=度,∠ABP+∠ACP=度;(2)类比探索:请猜想∠ABP+∠ACP与∠A的关系,并说明理由;(3)类比延伸:改变点A的位置,使点P在△ABC外,其它条件都不变,判断(2)中的结论是否仍然成立?若成立,请说明理由;若不成立,请直接写出∠ABP,∠ACP与∠A满足的数量关系式.初二数学寒假练习试卷(三)参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.下列各数中,()是无理数.A.0B.﹣2C.D.0.4【解答】解:A.0是整数,属于有理数;B.﹣2是整数,属于有理数;C.是无理数;D.0.4是有限小数,属于有理数.故选:C.2.如图,∠ACB=90°,以Rt△ABC的三边为边向外作正方形,其面积分别为S1,S2,S3,且S1=1,S2=3,则S3为()A.3B.4C.5D.9【解答】解:设Rt△ABC的三边分别为a、b、c,∴S1=a2=1,S2=b2=3,S3=c2,∵△ABC是直角三角形,∴a2+b2=c2,即S1+S2=S3,∴S3=S1+S2=1+3=4,故选:B.3.如图,在中国象棋棋盘中,如果将“卒”的位置记作(3,1),那么“相”的位置可记作()A.(2,8)B.(2,4)C.(8,2)D.(4,2)【解答】解:∵将“卒”的位置记作(3,1),∴“相”的位置可记作(8,2).故选:C.4.已知直线MN∥EF,一个含30°角的直角三角尺ABC(AB>BC)如图叠放在直线MN 上,斜边AC交EF于点D,则∠1的度数为()A.30°B.45°C.50°D.60°【解答】解:∠ACB=90°﹣30°=60°,∵MN∥EF,∴∠1=∠ACB=60°.故选:D.5.蝴蝶标本可以近似地看做轴对称图形.如图,将一只蝴蝶标本放在平面直角坐标系中,如果图中点A的坐标为(5,3),则其关于y轴对称的点B的坐标为()A.(5,﹣3)B.(﹣5,3)C.(﹣5,﹣3)D.(3,5)【解答】解:∵A,B关于y轴对称,A(5,3),∴B(﹣5,3),故选:B.6.某文具超市有A,B,C,D四种水笔销售,它们的单价分别是5元,4元,3元,1.2元.某天的水笔销售情况如图所示,那么这天该文具超市销售的水笔的单价的平均值是()A.4元B.4.5元C.3.2元D.3元【解答】解:这天该文具超市销售的水笔的单价的平均值为5×10%+4×25%+3×40%+1.2×25%=3(元),故选:D.7.如图,直线l1、l2的交点坐标可以看做下列方程组()的解.A.B.C.D.【解答】解:由图可知:直线l2过(2,3),(0,﹣1),因此直线l2的函数解析式为:y=2x﹣1;直线l1过(2,3),(0,1),因此直线l1的函数解析式为:y=x+1;因此所求的二元一次方程组为:.故选:A.8.下列各命题是真命题的是()A.如果a2=b2,那么a=b B.0.3,0.4,0.5是一组勾股数C.两条直线被第三条直线所截,同位角相等D.三角形的任意两边之和大于第三边【解答】解:A、如果a2=b2,那么a=±b,本选项说法是假命题;B、0.3,0.4,0.5都不是正整数,不是一组勾股数,本选项说法是假命题;C、两条平行线被第三条直线所截,同位角相等,本选项说法是假命题;D、三角形的任意两边之和大于第三边,是真命题;故选:D.9.如图,BP、CP是△ABC的外角角平分线,若∠P=60°,则∠A的大小为()A.30°B.60°C.90°D.120°【解答】证明:∵BP、CP是△ABC的外角的平分线,∴∠PCB=∠ECB,∠PBC=∠DBC,∵∠ECB=∠A+∠ABC,∠DBC=∠A+∠ACB,∴∠PCB+∠PBC=(∠A+∠ABC+∠A+∠ACB)=(180°+∠A)=90°+∠A,∴∠P=180°﹣(∠PCB+∠PBC)=180°﹣(90°+∠A)=90°﹣∠A=60°,∴∠A=60°,故选:B.10.如图,等边三角形ABC中,AB=4,有一动点P从点A出发,以每秒一个单位长度的速度沿着折线A﹣B﹣C运动至点C,若点P的运动时间记作t秒,△APC的面积记作S,则S与t的函数关系应满足如下图象中的()A.B.C.D.【解答】解:等边三角形ABC中,AB=4,则△ABC的高h=2,当点P在AB上运动时,S=AP×h=x×=x,图象为一次函数,x=4时,S=4;当点P在BC上运动时,同理可得:S=(8﹣x)×,同样为一次函数,故选:A.二、填空题(每小题3分,共15分)11.计算:=﹣2.【解答】解:=﹣3+1=﹣2故答案为:﹣2.12.已知变量y与x满足一次函数关系,且y随x的增大而减小,若其图象与y轴的交点坐标为(0,2),请写出一个满足上述要求的函数关系式y=﹣x+2(答案不唯一).【解答】解:由y与x满足一次函数关系,且y随x的增大而减小,则k<0,∵其图象与y轴的交点坐标为(0,2),∴b=2,∴满足上述要求的函数关系式可以为:y=﹣x+2(答案不唯一).故答案为:y=﹣x+2(答案不唯一).13.命题“如果两条直线都与第三条直线平行,那么这两条直线也互相平行”中,条件部分是两条直线都与第三条直线平行.【解答】解:命题“如果两条直线都与第三条直线平行,那么这两条直线也互相平行”中,条件部分是两条直线都与第三条直线平行,故答案为:两条直线都与第三条直线平行.14.如图,这是一个供滑板爱好者使用的U型池的示意图,该U型池可以看成是长方体去掉一个“半圆柱”而成,中间可供滑行部分的截面是直径为的半圆,其边缘AB=CD=20m,点E在CD上,CE=5m,一滑板爱好者从A点滑到E点,则他滑行的最短距离约为25m.(边缘部分的厚度忽略不计)【解答】解:如图是其侧面展开图:AD=π=20m,AB=CD=20m.DE=CD﹣CE =20﹣5=15(m),在Rt△ADE中,AE===25(m).故他滑行的最短距离约为25m.故答案为:25.15.如图,矩形OABC在平面直角坐标系内,其中点A(2,0),点C(0,4),点D和点E 分别位于线段AC,AB上,将△ABC沿DE对折,恰好能使点A与点C重合.若x轴上有一点P,能使△AEP为等腰三角形,则点P的坐标为(﹣,0)或(,0).【解答】解:∵矩形OABC,且点A(2,0),点C(0,4),∴BC=2=OA,AB=OC=4,∠B=90°=∠OAE,∵将△ABC沿DE对折,恰好能使点A与点C重合.∴AE=CE,∵CE2=BC2+BE2,∴CE2=4+(4﹣CE)2,∴CE=,∴AE=,∵△AEP为等腰三角形,且∠EAP=90°,∴AE=AP=,∴点E坐标(﹣,0)或(,0)故答案为:(﹣,0)或(,0)三、解答题(本大题共7小题,共55分)16.(8分)阅读下列计算过程,回答问题:解方程组:解:①×2,得4x﹣8y=﹣13,③(1)②﹣③,得﹣5y=﹣10,y=2.(2)把y=2代入①,得2x﹣8=﹣13,2x=8﹣13,.(3)∴该方程组的解是以上过程有两处关键性错误,第一次出错在第(1)步(填序号),第二次出错在第(2)步(填序号),以上解法采用了加减消元法.【解答】解:①×2,得4x﹣8y=﹣13,③②﹣③,得﹣5y=﹣10,y=2.把y=2代入①,得2x﹣8=﹣13,2x=8﹣13,.∴该方程组的解是以上过程有两处关键性错误,第一次出错在第1步(填序号),应该是:4x﹣8y=﹣26;第二次出错在第2步(填序号),应该是:②﹣③,得11y=29,以上解法采用了加减消元法.故答案为:(1)、(2)、加减.17.(8分)如图,在平面直角坐标系中,正方形网格的每个小方格都是边长为1的正方形,△ABC的顶点都在格点上.(1)直接写出点A,B,C的坐标;(2)试判断△ABC是不是直角三角形,并说明理由.【解答】解:(1)A(﹣1,5),B(﹣5,2),C(﹣3,1);(2)△ABC是直角三角形.证明:∵AB=,BC=,AC=,∴.由勾股定理的逆定理可知,△ABC是直角三角形,∠ACB=90°.18.(7分)某校兴趣小组在创客嘉年华活动中组织了计算机编程比赛,八年级每班派25名学生参加,成绩分别为A、B、C、D四个等级.其中相应等级的得分依次记为10分、9分、8分、7分.将八年级的一班和二班的成绩整理并绘制成如下统计图表:班级平均数(分)中位数(分)众数(分)方差一班8.7699二班8.76810请根据本学期所学过的《数据的分析》相关知识分析上述数据,帮助计算机编程老师选择一个班级参加校级比赛,并阐述你选择的理由.【解答】解:选择一班参加校级比赛.理由:由表格中数据可知,两个班级的平均分一样,而从中位数、众数、方差上看,一班在中位数和方差上面均优于二班,因此可以选择一班参加校级比赛.19.(8分)已知二元一次方程x+y=5,通过列举将方程的解写成下列表格的形式:x﹣1m56y650n 如果将二元一次方程的解所包含的未知数x的值对应直角坐标系中一个点的横坐标,未知数y的值对应这个点的纵坐标,这样每一个二元一次方程的解,就可以对应直角坐标系中的一个点,例如:方程x+y=5的解的对应点是(2,3).(1)表格中的m=0,n=﹣1;(2)通过以上确定对应点坐标的方法,将表格中给出的五个解依次转化为对应点的坐标,并在所给的直角坐标系中画出这五个点;根据这些点猜想方程x+y=5的解的对应点所组成的图形是直线,并写出它的两个特征①图象经过一、二、四象限,②图象从左向右呈下降趋势;(3)若点P(﹣2a,a﹣1)恰好落在x+y=5的解对应的点组成的图形上,求a的值.【解答】解:(1)①将x=m,y=5代入x+y=5得5+m=5,∴m=0,将x=6,y=n代入x+y=5得6+n=5∴n=﹣1故答案为:0,﹣1;(2)猜想x+y=5的解对应的点所组成的图形为直线它有这样两个特征:①图象经过一、二、四象限;②图象从左向右呈下降趋势.故答案为:直线,图象经过一、二、四象限,图象从左向右呈下降趋势;(3)由题意得:﹣2a+a﹣1=5,解得:a=﹣6.20.(8分)郑州市自2019年12月1日起推行垃圾分类,广大市民对垃圾桶的需求剧增.为满足市场需求,某超市花了7900元购进大小不同的两种垃圾桶共800个,其中,大桶和小桶的进价及售价如表所示.大桶小桶进价(元/个)185售价(元/个)208(1)该超市购进大桶和小桶各多少个?(2)当小桶售出了300个后,商家决定将剩下的小桶的售价降低1元销售,并把其中一定数量的小桶作为赠品,在顾客购买大桶时,买一赠一(买一个大桶送一个小桶),送完即止.请问:超市要使这批垃圾桶售完后获得的利润为1550元,那么小桶作为赠品送出多少个?【解答】解:(1)设购进大桶x个,小桶y个,依题意,得:,解得:.答:该超市购进大桶300个,小桶500个.(2)设小桶作为赠品送出m个,依题意,得:300×(20﹣18)+300×(8﹣5)+(500﹣300﹣m)(8﹣5﹣1)﹣5m=1550,解得:m=50.答:小桶作为赠品送出50个.21.(8分)中国移动某套餐推出了如下两种流量计费方式:月租费/元流量费(元/G)方式一81方式二280.5(1)设一个月内用移动电话使用流量为xG(x>0),方式一总费用y1元,方式二总费用y2元(总费用不计通话费及其它服务费).写出y1和y2关于x的函数关系式(不要求写出自变量x的取值范围);(2)如图为在同一平面直角坐标系中画出(1)中的两个函数图象的示意图,记它们的交点为点A,求点A的坐标,并解释点A坐标的实际意义;(3)根据(2)中函数图象,结合每月使用的流量情况,请直接写出选择哪种计费方式更合算.【解答】解:(1)y1=x+8,;(2)由题意得,解之,得即点A的坐标为(40,48).点A的坐标的实际意义为当每月使用的流量为40G时,两种计费方式的总费用一样多,都为48元.(3)当每月使用的流量少于40G时,选择方式一更省钱;当每月使用的流量等于40G时,两种方式的总费用都一样;当每月使用的流量大于40G时,选择方式二更省钱.22.(8分)问题情景:如图1,在同一平面内,点B和点C分别位于一块直角三角板PMN 的两条直角边PM,PN上,点A与点P在直线BC的同侧,若点P在△ABC内部,试问∠ABP,∠ACP与∠A的大小是否满足某种确定的数量关系?(1)特殊探究:若∠A=55°,则∠ABC+∠ACB=125度,∠PBC+∠PCB=90度,∠ABP+∠ACP=35度;(2)类比探索:请猜想∠ABP+∠ACP与∠A的关系,并说明理由;(3)类比延伸:改变点A的位置,使点P在△ABC外,其它条件都不变,判断(2)中的结论是否仍然成立?若成立,请说明理由;若不成立,请直接写出∠ABP,∠ACP与∠A满足的数量关系式.【解答】解:(1)由题意:∠ABC+∠ACB=125度,∠PBC+∠PCB=90度,∠ABP+∠ACP=35度.故答案为125,90,35.(2)猜想:∠ABP+∠ACP=90°﹣∠A.理由:在△ABC中,∠ABC+∠ACB=180°﹣∠A,∵∠ABC=∠ABP+∠PBC,∠ACB=∠ACP+∠PCB,∴(∠ABP+∠PBC)+(∠ACP+∠PCB)=180°﹣∠A,∴(∠ABP+∠ACP)+(∠PBC+∠PCB)=180°﹣∠A,又∵在Rt△PBC中,∠P=90°,∴∠PBC+∠PCB=90°,∴(∠ABP+∠ACP)+90°=180°﹣∠A,∴∠ABP+∠ACP=90°﹣∠A.(3)判断:(2)中的结论不成立.①如图3﹣1中,结论:∠A+∠ACP﹣∠ABP=90°.理由:设AB交PN于O.∵∠AOC=∠BOP,∴∠A+∠ACP=90°+∠ABP,∴∠A+∠ACP﹣∠ABP=90°.②如图3﹣2中,结论:∠A+∠ABP﹣∠ACP=90°.证明方法类似①③如图3﹣3中,结论:∠A﹣∠ABP﹣∠ACP=90°.理由:∵∠A+∠ABC+∠ACB=180°,∠P+∠ABP+∠ACP+∠ABC+∠ACB=180°,∴∠A=∠P+∠ABP+∠ACP,∴∠A﹣∠ABP﹣∠ACP=90°.。

初二数学二元一次方程练习题100题

初二数学二元一次方程练习题100题

这篇关于初⼆数学⼆元⼀次⽅程练习题100题,是⽆忧考特地为⼤家整理的,希望对⼤家有所帮助!⼆元⼀次⽅程组练习题100道(卷⼀) (范围:代数:⼆元⼀次⽅程组) ⼀、判断 1、是⽅程组的解…………() 2、⽅程组的解是⽅程3x-2y=13的⼀个解() 3、由两个⼆元⼀次⽅程组成⽅程组⼀定是⼆元⼀次⽅程组() 4、⽅程组,可以转化为() 5、若(a2-1)x2+(a-1)x+(2a-3)y=0是⼆元⼀次⽅程,则a的值为±1() 6、若x+y=0,且|x|=2,则y的值为2…………() 7、⽅程组有的解,那么m的值为m≠-5…………() 8、⽅程组有⽆数多个解…………() 9、x+y=5且x,y的绝对值都⼩于5的整数解共有5组…………() 10、⽅程组的解是⽅程x+5y=3的解,反过来⽅程x+5y=3的解也是⽅程组的解………() 11、若|a+5|=5,a+b=1则………() 12、在⽅程4x-3y=7⾥,如果⽤x的代数式表⽰y,则() ⼆、选择: 13、任何⼀个⼆元⼀次⽅程都有() (A)⼀个解;(B)两个解; (C)三个解;(D)⽆数多个解; 14、⼀个两位数,它的个位数字与⼗位数字之和为6,那么符合条件的两位数的个数有() (A)5个(B)6个(C)7个(D)8个 15、如果的解都是正数,那么a的取值范围是() (A)a<2;(B);(C);(D); 16、关于x、y的⽅程组的解是⽅程3x+2y=34的⼀组解,那么m的值是() (A)2;(B)-1;(C)1;(D)-2; 17、在下列⽅程中,只有⼀个解的是() (A)(B) (C)(D) 18、与已知⼆元⼀次⽅程5x-y=2组成的⽅程组有⽆数多个解的⽅程是() (A)15x-3y=6(B)4x-y=7(C)10x+2y=4(D)20x-4y=3 19、下列⽅程组中,是⼆元⼀次⽅程组的是() (A)(B) (C)(D) 20、已知⽅程组有⽆数多个解,则a、b的值等于() (A)a=-3,b=-14(B)a=3,b=-7 (C)a=-1,b=9(D)a=-3,b=14 21、若5x-6y=0,且xy≠0,则的值等于() (A)(B)(C)1(D)-1 22、若x、y均为⾮负数,则⽅程6x=-7y的解的情况是() (A)⽆解(B)有⼀个解 (C)有⽆数多个解(D)不能确定 23、若|3x+y+5|+|2x-2y-2|=0,则2x2-3xy的值是() (A)14(B)-4(C)-12(D)12 24、已知与都是⽅程y=kx+b的解,则k与b的值为() (A),b=-4(B),b=4 (C),b=4(D),b=-4 三、填空: 25、在⽅程3x+4y=16中,当x=3时,y=________,当y=-2时,x=_______ 若x、y都是正整数,那么这个⽅程的解为___________; 26、⽅程2x+3y=10中,当3x-6=0时,y=_________; 27、如果0.4x-0.5y=1.2,那么⽤含有y的代数式表⽰的代数式是_____________; 28、若是⽅程组的解,则; 29、⽅程|a|+|b|=2的⾃然数解是_____________; 30、如果x=1,y=2满⾜⽅程,那么a=____________; 31、已知⽅程组有⽆数多解,则a=______,m=______; 32、若⽅程x-2y+3z=0,且当x=1时,y=2,则z=______; 33、若4x+3y+5=0,则3(8y-x)-5(x+6y-2)的值等于_________; 34、若x+y=a,x-y=1同时成⽴,且x、y都是正整数,则a的值为________; 35、从⽅程组中可以知道,x:z=_______;y:z=________; 36、已知a-3b=2a+b-15=1,则代数式a2-4ab+b2+3的值为__________; 四、解⽅程组 37、;38、; 39、;40、; 41、;42、; 43、;44、; 45、;46、; 五、解答题: 47、甲、⼄两⼈在解⽅程组时,甲看错了①式中的x的系数,解得;⼄看错了⽅程②中的y的系数,解得,若两⼈的计算都准确⽆误,请写出这个⽅程组,并求出此⽅程组的解; 48、使x+4y=|a|成⽴的x、y的值,满⾜(2x+y-1)2+|3y-x|=0,⼜|a|+a=0,求a的值; 49、代数式ax2+bx+c中,当x=1时的值是0,在x=2时的值是3,在x=3时的值是28,试求出这个代数式; 50、要使下列三个⽅程组成的⽅程组有解,求常数a的值。

初二数学下册练习题湘教版

初二数学下册练习题湘教版

初二数学下册练习题湘教版数学是一门需要不断练习的学科,通过练习题可以帮助我们巩固和提高数学知识。

下面是初二数学下册湘教版的一些练习题,希望能够帮助大家更好地掌握数学知识。

一、填空题1. 已知一条直角边长为3,求斜边的长度为______。

2. 一只青蛙在一个深度为20米的井里,白天它每次往上跳3米,夜晚会下滑2米,问它需要跳多少次才能跳出井口?3. 小明家的电费是每度0.5元,上个月共用电100度,应缴纳的电费为______元。

4. 甲、乙两个数的和为75,乙数是甲数的2倍减去10,求甲、乙两个数各是多少?5. 一个正方形的边长为4厘米,它的周长为______厘米。

二、选择题1. 已知点A(2,3),点B(x,5),若AB的距离等于5,则x的值为:A. -1B. 1C. 3D. 72. 一个数减去它的四分之一等于15,这个数是:A. 10B. 20C. 25D. 303. 一个数的一半加上它的四分之一等于15,这个数是:A. 10B. 15C. 20D. 304. 一个长方形的长是宽的2倍,它的周长是24,求长方形的长和宽分别是多少?A. 长:6,宽:12B. 长:4,宽:6C. 长:8,宽:4D. 长:12,宽:65. A、B两个数的和为100,若B大于A,则A、B两个数可能是:A. 20、80B. 30、70C. 40、60D. 50、50三、解答题1. 用竖式计算:(1)345 + 78 = ________(2)789 - 256 = ________(3)23 × 4 = ________(4)78 ÷ 6 = ________(5)136 ÷ 17 = ________(结果保留一位小数)2. 小明每天步行上学,来回共需用时1小时40分钟,若小明来回步行时间的比为5:8,那么小明步行去学校的时间是多少分钟?3. 一个线段长14米,将它分成3段,第一段、第二段和第三段的长度之比为2:3:4,求第一段的长度。

初二数学题(5篇)

初二数学题(5篇)

初二数学题(5篇)初二数学题(5篇)初二数学题范文第1篇一、选择题(每题3分,共30分)1、下列函数关系中表示一次函数的有( )① ② ③ ④ ⑤A.1个B.2个C.3个D.4个2、下列函数中,图象经过原点的为( )A.y=5x+1B.y=-5x-1C.y=-D.y=3、一水池蓄水20 m3,打开阀门后每小时流出5 m3,放水后池内剩下的水的立方数Q (m3)与放水时间t(时)的函数关系用图表示为( )4、已知点(-4,y1),(2,y2)都在直线y= - 12 x+b上,则y1 、y2大小关系是( )(A)y1 >y2 (B)y1 =y2 (C)y1 5、每上5个台阶上升1米,上升米数h 是台阶数S 的函数关系式是( )A. h=5SB. h=S+5C.h=D.h=S-56、直线 , , 共同具有的特征是 ( )A.经过原点B.与轴交于负半轴C.随增大而增大D.随增大而减小初二数学题范文第2篇1、下列语句中,正确的是( )A.一个实数的平方根有两个,它们互为相反数B.负数没有立方根C.一个实数的立方根不是正数就是负数D.立方根是这个数本身的数共有三个2、下列图案是轴对称图形的有( )A.1个B.2个C.3个D.4个3、如图:D、E是ABC的边AC、BC上的点,ADB≌EDB≌EDC,下列结论:①AD=ED;②BC=2AB;③∠1=∠2=∠3;④∠4=∠5=∠6.其中正确的有( )A.4个B.3个C.2个D.1个4、如图是一个台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔.若一个球按图中所示的方向被击出(球可以经过多次反射),则该球最终将落入的球袋是( )A.1 号袋B.2 号袋C.3 号袋D.4 号袋5、下列实数、、1.4142、、1.2021020002…、、中,有理数的个数有( )A.2个B. 3个C. 4个D. 以上都不正确6、如图,在ABC中,AB= AC,点D、E在BC上,BD = CE,图中全等的三角形有 ( )对A、0B、1C、2 D 、37、如图,在ABC与DEF中,已有条件AB=DE,还需添加两个条件才能使ABC≌DEF,不能添加的一组条件是( ).A.∠B=∠E,BC=EFB.BC=EF,AC=DFC.∠A=∠D,∠B=∠ED.∠A=∠D,BC=EF8、假如等腰三角形的两边长是10cm和5cm,那么它的周长为( ).A.20cmB.25cmC.20cm或25cmD.15cm9、的平方根是( ).A.9B.±9C.3D.±310、若等腰三角形腰上的高是腰长的一半,则这个等腰三角形的底角是( ).A.75°或15°B.75°C.15°D.75°和30°二、填空题(每小题4分,共24分)11、用直尺和圆规作一个角等于已知角的示意图如图所示,则说明的依据是 .12、一辆汽车的车牌号在水中的倒影是:,那么它的实际车牌号是: .13、使有意义的的取值范围是 .14、已知点A(a,2)和B(-3,b),点A和点B关于y轴对称,则 .15、若的立方根是4,则的平方根是 .16、直线 l1、 l2、 l3 表示三条两两相互交叉的大路,现在拟建一个货物中转站,要求它到三条大路的距离都相等,则可供选择的地址有处. 2021-2021学年度上期(初2021级)八班级数学期中测试题(总分:150分考试时间:100分钟)卷Ⅱ(答题卷)题号一二三四五总分得分一、选择题(每小题4分,共40分)题号 1 2 3 4 5 6 7 8 9 10答案二、填空题(每小题4分,共24分)11、 .12、 .13、 .14、 . 15、 . 16、 .三、解答题(每小题6分,共24分,解答题应出必要过程、步骤)17、计算:(1) (2)18、作图:请你在下图中用尺规作图法作出一个以线段AB为一边的等边三角形.(要求:写出已知、求作,保留作图痕迹,下结论,不写作法) 已知:求作:19、如图,AB、CD相交于点O,AO=BO,AC∥DB.求证:AC=BD..20、如图,已知ABC中,AB四、解答题(每小题10分,共40分,解答题应出必要过程、步骤)21、已知、是实数,且 .解关于x的方程: .22、假如等腰三角形的两个内角之比为1︰4,求这个三角形三个内角各是多少度?23、如图,在平面直角坐标系中,A(-1,5)、B(-1,0)、C(-4,3).(1)在图中作出ABC关于轴的对称图形A1B1C1.(2)写出点A1、B1、C1的坐标.24、已知:∠A=90°,AB=AC,BD平分∠ABC,CEBD,垂足为E. 求证:BD=2CE.五、解答题(25题10分,26题12分,共22分,解答题应出必要过程、步骤)25、阅读下列材料:,即,的整数部分为2,小数部分为 .请你观看上述的规律后试解下面的问题:假如的小数部分为a,的小数部分为b,求的值.初二数学题范文第3篇18. (本小题6分)解方程:19.(本小题12分,每小题6分)把下列各式因式分解:(1)(2)20.(本小题7分)先化简,再求值:,其中满意.2 1. (本小题7分)某试验中学为初二住宿的男同学支配宿舍。

2024-2025学年沪科版初二数学下册暑假练习试卷及答案

2024-2025学年沪科版初二数学下册暑假练习试卷及答案

2024-2025学年沪科版初二数学下册暑假练习试卷一、单选题(每题3分)1.展开并化简((x+2)(x−3))A.(x2−x−6)B.(x2−5x+6)C.(x2+x−6)D.(x2−5x−6)正确答案:A2.解方程(2x−3=5x+2))A.(x=−53)B.(x=53C.(x=−1)3)D.(x=13正确答案:A3.如果一个正方形的周长是(20cm),那么它的面积是多少?A.(25cm2)B.(100cm2)C.(50cm2)D.(20cm2)正确答案:A4.若(a:b=2:3)且(b:c=4:5),则(a:c)等于多少?A.(8:15)B.(2:5)C.(4:9)D.(1:2)正确答案:A5.从装有3个红球和2个蓝球的袋子里随机抽取一个球,抽到红球的概率是多少?)A.(35)B.(25)C.(12)D.(34正确答案:A总分:15分二、多选题(每题4分)1. 关于整数的加减运算,下列哪些说法是正确的?A. 两个正数相加的结果一定是正数B. 两个负数相加的结果一定是负数C. 一个正数和一个负数相加,结果可能是正数,也可能是负数D. 减去一个正数等于加上一个负数E. 减去一个负数等于加上一个正数答案: A, B, C, D, E解析:整数的加减运算是初一数学的基本概念。

上述所有选项都是关于整数加减法的正确描述。

2. 在代数式中,下列哪些表达式是多项式?A.(3x2+2x−5)+2)B.(1xC.(x3−3x2+x−1)D.(2xy+3y2)E.(√x+1)答案: A, C, D解析:多项式是由变量的幂次方与系数相乘并相加形成的表达式。

选项B和E中分别含有(x)的负指数和根号,因此不是多项式。

3. 下列哪组数能够构成直角三角形的三边?A. 3, 4, 5B. 5, 12, 13C. 6, 8, 10D. 7, 24, 25E. 9, 16, 21答案: A, B, C, D解析:直角三角形的三边长满足勾股定理,即(a2+b2=c2)。

(完整版)初二下学期数学练习题含答案及解析

初二放学期数学练习题一、选择题(每题 3 分)1.以下各数是无理数的是()A.B.﹣C.πD.﹣2.以下对于四边形的说法,正确的选项是()A.四个角相等的菱形是正方形B.对角线相互垂直的四边形是菱形C.有两边相等的平行四边形是菱形D.两条对角线相等的四边形是菱形3.使代数式存心义的x 的取值范围()A. x> 2B. x≥ 2C. x>3D. x≥2 且 x≠3 4.如图,将△ABC绕着点 C顺时针旋转50°后获取△ A′B′C′,若∠ A=45°,∠B′=110°,则∠ BCA′的度数是()A.55°B.75°C.95°D.110°5.已知点(﹣ 3, y ),( 1, y2)都在直线y=kx+2 ( k< 0)上,则 y ,y大小关系是()112A. y1> y2B. y1=y 2C. y1<y2D.不可以比较6.如图,在四边形ABCD中,对角线 AC, BD订交于点 E,∠ CBD=90°, BC=4, BE=ED=3, AC=10,则四边形 ABCD 的面积为()A. 6B. 12C. 20D. 247.不等式组的解集是x > 2,则 m的取值范围是()A. m< 1B. m≥ 1C. m≤1D. m>18.若+|2a ﹣ b+1|=0 ,则( b﹣ a)2016的值为()A.﹣ 1B. 1C.52015D.﹣ 520159.如图,在方格纸中选择标有序号①②③④的一个小正方形涂黑,使它与图中暗影部分构成的新图形为中心对称图形,该小正方形的序号是()A.①B.②C.③D.④10.按序连结一个四边形的各边中点,获取了一个矩形,则以下四边形中知足条件的是()①平行四边形;②菱形;③矩形;④对角线相互垂直的四边形.A.①③B.②③C.③④11.如图,在□ABCD中,已知AD= 8 ㎝, AB =6 ㎝,DE均分∠ ADC交BC边于点E,则BE等于()A. 2cm B. 4cm C. 6 cm D. 8cmD.②④A D BE C第11 题图12.一果农贩卖的西红柿,其重量与价钱成一次函数关系.小华向果农买一竹篮的西红柿,含竹篮称得总重量为15 公斤,付西红柿的钱26 元,若再加买0.5 公斤的西红柿,需多付 1 元,则空竹篮的重量为多少?()A.1.5B. 2C. 2.5D. 313.如图,在 ?ABCD中,对角线 AC与 BD订交于点 O,过点 O作 EF⊥ AC交 BC于点 E,交 AD于点 F,连结 AE、CF.则四边形 AECF是()A.梯形B.矩形C.菱形D.正方形14.已知 xy> 0,化简二次根式x的正确结果为()A.B.C.﹣D.﹣15.某商品原价 500 元,销售时标价为900 元,要保持收益不低于26%,则起码可打()A.六折B.七折C.八折D.九折16.已知 2+的整数部分是 a,小数部分是b,则 a2+b2=()A. 13﹣ 2B. 9+2C. 11+D. 7+417.某礼拜天下午,小强和同学小颖相约在某公共汽车站一同搭车回学校,小强从家出发先步行到车站,等小颖到了后两人一同乘公共汽车回学校,图中折线表示小强走开家的行程y(公里)和所用时间x(分)之间的函数关系,以下说法中错误的选项是()A.小强乘公共汽车用了20 分钟B.小强在公共汽车站等小颖用了10 分钟C.公共汽车的均匀速度是30 公里 / 小时D.小强从家到公共汽车站步行了 2 公里17.如图,直线 y=﹣ x+m与 y=x+3 的交点的横坐标为﹣2,则对于 x 的不等式﹣ x+m> x+3> 0 的取值范围为()A. x>﹣ 2B. x<﹣ 2C.﹣ 3< x<﹣ 2D.﹣ 3< x<﹣ 119.如图,四边形ABCD是菱形, AC=8, DB=6,DH⊥ AB于 H,则 DH=()A.B.C. 12D. 2420.如图,正方形 ABCD中,点 E、F 分别在 BC、CD上,△AEF是等边三角形,连结 AC交 EF 于 G,以下结论:①BE=DF;②∠ DAF=15°,③ AC 垂直均分 EF,④ BE+DF=EF,⑤S△AEC=S△ABC,此中正确结论有()个.A. 5B. 4C. 3D. 2二、填空题(本大题共 4 小题,满分12 分)21.已知直线y=2x+( 3﹣ a)与 x 轴的交点在A( 2, 0)、 B( 3, 0)之间(包含 A、 B 两点),则a 的取值范围是.22.以下图,正方形ABCD的面积为 12,△ ABE是等边三角形,点 E 在正方形ABCD内,在对角线AC上有一点P,使 PD+PE的和最小,则这个最小值为.23.在下边的网格图中,每个小正方形的边长均为1,△ ABC的三个极点都是网格线的交点,已知B,C 两点的坐标分被为(﹣ 1,﹣ 1),( 1,﹣ 2),将△ ABC绕着点 C 顺时针旋转90°,则点 A 的对应点的坐标为.24.若对于x 的不等式组有4个整数解,则 a 的取值范围是.三、解答题(本大题共 5 个小题,共48 分)25.( 1)计算(+1)(﹣ 1) + +﹣ 3( 2)解不等式组,并在数轴上表示它的解集解不等式组,并把它们的解集表示在数轴上.26.如图,直线l 1的分析式为y=﹣ x+2,l 1与 x 轴交于点B,直线 l 2经过点 D( 0, 5),与直线l 1交于点C(﹣ 1, m),且与x 轴交于点A(1)求点 C的坐标及直线 l 2的分析式;(2)求△ ABC的面积.27.如图,在△ABC中, D 是 BC边上的一点, E 是 AD的中点,过A 点作 BC的平行线交CE的延伸线于点F,且AF=BD,连结 BF.(1)证明: BD=CD;(2)当△ ABC知足什么条件时,四边形 AFBD是矩形?并说明原因.28.如图,点 P 是正方形 ABCD内一点,点 P 到点 A、 B 和 D 的距离分别为1, 2,,△ ADP沿点 A 旋转至△ABP′,连结 PP′,并延伸 AP与 BC订交于点 Q.(1)求证:△ APP′是等腰直角三角形;(2)求∠ BPQ的大小.29.小颖到运动鞋店参加社会实践活动,鞋店经理让小颖帮助解决以下问题:运动鞋店准备购进甲乙两种运动鞋,甲种每双进价80 元,售价120 元;乙种每双进价60 元,售价 90 元,计划购进两种运动鞋共100 双,此中甲种运动鞋许多于65 双.( 1)若购进这100 双运动鞋的花费不得超出7500 元,则甲种运动鞋最多购进多少双?( 2)在( 1)条件下,该运动鞋店在 6 月 19 日“父亲节”当日对甲种运动鞋以每双优惠a( 0<a< 20)元的价格进行优惠促销活动,乙种运动鞋价钱不变,请写出总收益w 与 a 的函数关系式,若甲种运动鞋每双优惠11 元,那么该运动鞋店应怎样进货才能获取最大收益?2015-2016 学年山东省泰安市新泰市八年级(下)期末数学试卷参照答案与试题分析一、选择题(每题 3 分)1.以下各数是无理数的是()A.B.﹣C.πD.﹣【考点】无理数.【剖析】依据无理数的判断条件判断即可.【解答】解:=2 ,是有理数,﹣= ﹣ 2 是有理数,∴只有π 是无理数,应选 C.【评论】本题是无理数题,熟记无理数的判断条件是解本题的要点.2.以下对于四边形的说法,正确的选项是()A.四个角相等的菱形是正方形B.对角线相互垂直的四边形是菱形C.有两边相等的平行四边形是菱形D.两条对角线相等的四边形是菱形【考点】多边形.【剖析】依据菱形的判断方法、正方形的判断方法逐项剖析即可.【解答】解: A、四个角相等的菱形是正方形,正确;B、对角线相互均分且垂直的四边形是菱形,错误;C、邻边相等的平行四边形是菱形,错误;D、两条对角线均分且垂直的四边形是菱形,错误;应选 A【评论】本题考察了对菱形、正方形性质与判断的综合运用,特别四边形之间的相互关系是考察要点.3.使代数式存心义的x 的取值范围()A. x> 2B. x≥ 2C. x>3D. x≥2 且 x≠3【考点】二次根式存心义的条件;分式存心义的条件.【剖析】分式存心义:分母不为0;二次根式存心义,被开方数是非负数.【解答】解:依据题意,得,解得, x≥2 且 x≠ 3.应选 D.( a≥ 0)叫二次根式.性质:【评论】本题考察了二次根式存心义的条件、分式存心义的条件.观点:式子二次根式中的被开方数一定是非负数,不然二次根式无心义.4.如图,将△ ABC绕着点 C 顺时针旋转50°后获取△ A′B′C′,若∠ A=45°,∠ B′=110°,则∠ BCA′的度数是()A.55°B.75°C.95°D.110°【考点】旋转的性质.【剖析】依据旋转的性质可得∠ B=∠B′,而后利用三角形内角和定理列式求出∠ ACB,再依据对应边 AC、A′C的夹角为旋转角求出∠ ACA′,而后依据∠ BCA′=∠ ACB+∠ACA′计算即可得解.【解答】解:∵△ ABC绕着点 C 顺时针旋转 50°后获取△ A′B′C′,∴∠ B=∠B′=110°,∠ ACA′=50°,在△ ABC中,∠ ACB=180°﹣∠ A﹣∠ B=180°﹣ 45°﹣ 110°=25°,∴∠ BCA′=∠ ACB+∠ACA′=50° +25°=75°.应选 B.【评论】本题考察了旋转的性质,三角形的内角和定理,熟记旋转变换的对应的角相等,以及旋转角确实定是解题的要点.5.已知点(﹣3, y1),(1, y2)都在直线y=kx+2 ( k< 0)上,则y1,y2大小关系是()A. y1> y2B. y1=y 2C. y1<y2D.不可以比较【考点】一次函数图象上点的坐标特色.【剖析】直线系数k< 0,可知 y 随 x 的增大而减小,﹣3< 1,则 y1> y2.【解答】解:∵直线y=kx+2 中 k< 0,∴函数 y 随 x 的增大而减小,∵﹣ 3< 1,∴ y1> y2.应选 A.y=kx+b :当k> 0 时, y 随x 的增大而增大;【评论】本题考察的是一次函数的性质.解答本题要熟知一次函数当 k< 0 时, y 随 x 的增大而减小.6.如图,在四边形ABCD中,对角线AC, BD订交于点 E,∠ CBD=90°, BC=4, BE=ED=3, AC=10,则四边形ABCD的面积为()A. 6B. 12C. 20D. 24【考点】平行四边形的判断与性质;全等三角形的判断与性质;勾股定理.【剖析】依据勾股定理,可得 EC的长,依据平行四边形的判断,可得四边形 ABCD的形状,依据平行四边形的面积公式,可得答案.【解答】解:在 Rt △ BCE中,由勾股定理,得CE===5.∵ BE=DE=3, AE=CE=5,∴四边形ABCD是平行四边形.四边形 ABCD的面积为BCBD=4×( 3+3) =24,应选: D.CE的长,又利用对角线相互均分的四边形【评论】本题考察了平行四边形的判断与性质,利用了勾股定理得出是平行四边形,最后利用了平行四边形的面积公式.7.不等式组的解集是x > 2,则 m的取值范围是()A. m< 1B. m≥ 1C. m≤1D. m>1【考点】解一元一次不等式组;不等式的性质;解一元一次不等式.【剖析】依据不等式的性质求出不等式的解集,依据不等式组的解集获取2≥m+1,求出即可.【解答】解:,由①得: x> 2,由②得: x> m+1,∵不等式组的解集是 x >2,∴2≥ m+1,∴m≤ 1,应选 C.【评论】本题主要考察对解一元一次不等式(组),不等式的性质等知识点的理解和掌握,能依据不等式的解集和已知得出 2≥ m+1是解本题的要点.8.若+|2a ﹣ b+1|=0 ,则( b﹣ a)2016的值为()A.﹣ 1B. 1C. 52015D.﹣ 52015【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【剖析】第一依据非负数的性质,几个非负数的和是 0,则每个非负数等于 0 列方程组求得 a 和 b 的值,而后辈入求解.【解答】解:依据题意得:,解得:,20162016则( b﹣ a)=(﹣ 3+2)=1.【评论】本题考察了非负数的性质,几个非负数的和是 0,则每个非负数等于 0,正确解方程组求得 a 和 b 的值是要点.9.如图,在方格纸中选择标有序号①②③④的一个小正方形涂黑,使它与图中暗影部分构成的新图形为中心对称图形,该小正方形的序号是()A.①B.②C.③D.④【考点】中心对称图形.【剖析】依据中心对称图形的特色进行判断即可.【解答】解:应当将②涂黑.应选 B.【评论】本题考察了中心对称图形的知识,中心对称图形是要找寻对称中心,旋转180 度后与原图重合.10.按序连结一个四边形的各边中点,获取了一个矩形,则以下四边形中知足条件的是()①平行四边形;②菱形;③矩形;④对角线相互垂直的四边形.A.①③B.②③C.③④D.②④【考点】中点四边形.【剖析】有一个角是直角的平行四边形是矩形,依据此可知按序连结对角线垂直的四边形是矩形.【解答】解: AC⊥ BD, E, F, G, H 是 AB, BC,CD, DA的中点,∵EH∥ BD,FG∥BD,∴ EH∥ FG,同理; EF∥HG,∴四边形 EFGH是平行四边形.∵AC⊥ BD,∴EH⊥ EF,∴四边形EFGH是矩形.因此按序连结对角线垂直的四边形是矩形.而菱形、正方形的对角线相互垂直,则菱形、正方形均切合题意.应选: D.【评论】本题考察矩形的判断定理和三角形的中位线的定理,从而可求解.11.已知 a, b, c 为△ ABC三边,且知足(a2﹣ b2)( a2+b2﹣ c2) =0,则它的形状为()A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形【考点】等腰直角三角形.【剖析】第一依据题意可得(a2﹣ b2)( a2+b2﹣ c2) =0,从而获取a2+b2=c2,或 a=b,依据勾股定理逆定理可得△ABC的形状为等腰三角形或直角三角形.【解答】解:( a2﹣b2)( a2+b2﹣ c2) =0,22∴ a +b ﹣ c2,或a﹣ b=0,解得: a2+b2=c2,或 a=b,∴△ ABC的形状为等腰三角形或直角三角形.应选 D.【评论】本题主要考察了勾股定理逆定理以及非负数的性质,要点是掌握勾股定理的逆定理:假如三角形的三边长 a, b, c 知足a2+b2=c2,那么这个三角形就是直角三角形.12.已知果农贩卖的西红柿,其重量与价钱成一次函数关系.今小华向果农买一竹篮的西红柿,含竹篮称得总重量为 15 公斤,付西红柿的钱26 元,若他再加买0.5 公斤的西红柿,需多付 1 元,则空竹篮的重量为多少公斤?()A. 1.5B. 2C. 2.5D. 3【考点】一次函数的应用.【剖析】设价钱 y 与重量 x 之间的函数关系式为y=kx+b ,由( 15, 26)、( 15.5 ,27)利用待定系数法即可求出该一次函数关系式,令y=0 求出 x 值,即可得出空蓝的重量.【解答】解:设价钱 y与重量 x 之间的函数关系式为y=kx+b ,将( 15, 26)、( 15.5, 27)代入 y=kx+b 中,得:,解得:,∴ y 与 x 之间的函数关系式为y=2x ﹣ 4.令y=0,则 2x﹣ 4=0,解得: x=2.应选 B.【评论】本题考察了待定系数法求函数分析式,解题的要点是求出价钱y 与重量x 之间的函数关系式.本题属于基础题,难度不大,依据给定条件利用待定系数法求出函数关系式是要点.13.如图,在 ?ABCD中,对角线 AC与 BD订交于点 O,过点 O作 EF⊥ AC交 BC于点 E,交 AD于点 F,连结 AE、CF.则四边形 AECF是()A.梯形B.矩形C.菱形D.正方形【考点】菱形的判断;平行四边形的性质.【剖析】第一利用平行四边形的性质得出AO=CO,∠ AFO=∠CEO,从而得出△ AFO≌△ CEO,再利用平行四边形和菱形的判断得出即可.【解答】解:四边形AECF是菱形,原因:∵在 ?ABCD中,对角线AC与 BD订交于点 O,∴AO=CO,∠ AFO=∠ CEO,∴在△ AFO和△ CEO中,∴△ AFO≌△ CEO( AAS),∴FO=EO,∴四边形AECF平行四边形,∵EF⊥ AC,∴平行四边形AECF是菱形.应选: C.【评论】本题主要考察了菱形的判断以及平行四边形的判断与性质,依据已知得出EO=FO是解题要点.14.已知 xy> 0,化简二次根式x的正确结果为()A.B.C.﹣D.﹣【考点】二次根式的性质与化简.【剖析】二次根式存心义,y<0,联合已知条件得y< 0,化简即可得出最简形式.【解答】解:依据题意,xy> 0,得 x 和 y 同号,又 x中,≥ 0,得y< 0,故x< 0, y< 0,因此原式 ====﹣.故答案选D.【评论】主要考察了二次根式的化简,注意开平方的结果为非负数.15.某礼拜天下午,小强和同学小颖相约在某公共汽车站一同搭车回学校,小强从家出发先步行到车站,等小颖到了后两人一同乘公共汽车回学校,图中折线表示小强走开家的行程y(公里)和所用时间x(分)之间的函数关系,以下说法中错误的选项是()A.小强乘公共汽车用了20 分钟B.小强在公共汽车站等小颖用了10 分钟C.公共汽车的均匀速度是30 公里 / 小时D.小强从家到公共汽车站步行了 2 公里【考点】函数的图象.【剖析】直接利用函数图象从而剖析得出切合题意跌答案.【解答】解: A、小强乘公共汽车用了60﹣ 30=30(分钟),故此选项错误;B、小强在公共汽车站等小颖用了30﹣20=10(分钟),正确;C、公共汽车的均匀速度是:15÷ 0.5=30 (公里 / 小时),正确;2 公里,正确.D、小强从家到公共汽车站步行了应选: A.【评论】本题主要考察了函数图象,正确利用图象得出正确信息是解题要点.16.某商品原价500 元,销售时标价为900 元,要保持收益不低于26%,则起码可打()A.六折B.七折C.八折D.九折【考点】由实质问题抽象出一元一次不等式.【剖析】由题意知保持收益不低于26%,就是收益大于等于26%,列出不等式.【解答】解:设打折为x,由题意知,解得 x≥ 7,故起码打七折,应选B.【评论】要抓住要点词语,弄清不等关系,把文字语言的不等关系转变为用数学符号表示的不等式.17.如图,直线 y=﹣ x+m与 y=x+3 的交点的横坐标为﹣2,则对于 x 的不等式﹣ x+m> x+3> 0 的取值范围为()A. x>﹣ 2B. x<﹣ 2C.﹣ 3< x<﹣ 2D.﹣ 3< x<﹣ 1【考点】一次函数与一元一次不等式.【剖析】解不等式x+3> 0,可得出x>﹣ 3,再依据两函数图象的上下地点关系联合交点的横坐标即可得出不等式﹣ x+m> x+3 的解集,联合两者即可得出结论.【解答】解:∵ x+3> 0∴ x>﹣ 3;察看函数图象,发现:当 x<﹣ 2 时,直线y=﹣ x+m的图象在y=x+3 的图象的上方,∴不等式﹣ x+m> x+3 的解为 x<﹣ 2.综上可知:不等式﹣x+m> x+3> 0 的解集为﹣ 3< x<﹣ 2.应选 C.x+m>【评论】本题考察了一次函数与一元一次不等式,解题的要点是依据函数图象的上下地点关系解不等式﹣x+3.本题属于基础题,难度不大,解集该题型题目时,依据函数图象的上下地点要点解不等式是要点.18.已知 2+的整数部分是 a,小数部分是b,则 a2+b2=()A. 13﹣ 2B. 9+2C. 11+D. 7+4【考点】估量无理数的大小.【剖析】先估量出的大小,从而获取a、 b 的值,最后辈入计算即可.【解答】解:∵ 1< 3< 4,∴ 1<<2.∴ 1+2< 2+<2+2,即3<2+<4.∴a=3, b= ﹣ 1.∴a2+b2=9+3+1﹣ 2 =13﹣ 2 .应选: A.【评论】本题主要考察的是估量无理数的大小,依据题意求得a、 b 的值是解题的要点.19.如图,四边形ABCD是菱形, AC=8, DB=6,DH⊥ AB于 H,则 DH=()A.B.C. 12D. 24【考点】菱形的性质.【剖析】设对角线订交于点O,依据菱形的对角线相互垂直均分求出AO、 BO,再利用勾股定理列式求出AB,然后依据菱形的面积等对角线乘积的一半和底乘以高列出方程求解即可.【解答】解:如图,设对角线订交于点O,∵AC=8, DB=6,∴AO= AC= ×8=4,BO= BD=× 6=3,由勾股定理的,AB===5,∵DH⊥ AB,∴ S 菱形ABCD=ABDH= ACBD,即5DH= × 8× 6,解得 DH=.应选 A.【评论】本题考察了菱形的性质,勾股定理,主要利用了菱形的对角线相互垂直均分的性质,难点在于利用菱形的面积的两种表示方法列出方程.20.如图,正方形 ABCD中,点 E、F 分别在 BC、CD上,△AEF是等边三角形,连结 AC交 EF 于 G,以下结论:①BE=DF;②∠ DAF=15°,③ AC垂直均分EF,④ BE+DF=EF,⑤S△AEC=S△ABC,此中正确结论有()个.A. 5B. 4C. 3D. 2【考点】正方形的性质;全等三角形的判断与性质;等边三角形的性质.【剖析】由正方形和等边三角形的性质得出△ ABE≌△ ADF,从而得出∠ BAE=∠ DAF,BE=DF,①正确;②正确;由正方形的性质就能够得出 EC=FC,就能够得出 AC垂直均分 EF,③正确;设 EC=x,由勾股定理和三角函数就能够表示出BE与 EF,得出④错误;由三角形的面积得出⑤错误;即可得出结论.【解答】解:∵四边形 ABCD是正方形,∴AB=BC=CD=AD,∠ B=∠ BCD=∠D=∠BAD=90°.∵△ AEF等边三角形,∴AE=EF=AF,∠ EAF=60°.∴∠ BAE+∠DAF=30°.在 Rt △ ABE和 Rt △ ADF中,,∴Rt △ ABE≌ Rt △ ADF( HL),∴BE=DF(故①正确).∠BAE=∠ DAF,∴∠ DAF+∠DAF=30°,即∠ DAF=15°(故②正确),∵BC=CD,∴BC﹣ BE=CD﹣ DF,即CE=CF,∵ AE=AF,∴AC垂直均分 EF..设EC=x,由勾股定理,得 EF= x,CG= x,AG=AEsin60°=EFsin60°=2×CGsin60°=x,∴ AC=,∴ AB=,∴ BE=AB﹣ x=,∴ BE+DF= x﹣ x≠x,(故④错误),∵S△AEC=CEAB, S△ABC=BCAB,CE< BC,∴S△AEC<S△ABC,故⑤错误;综上所述,正确的有①②③,应选: C.【评论】本题考察了正方形的性质的运用,全等三角形的判断及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时要点.二、填空题(本大题共 4 小题,满分 12 分)21.已知直线 y=2x+( 3﹣ a)与 x 轴的交点在A( 2, 0)、 B( 3, 0)之间(包含A、 B 两点),则 a 的取值范围是7≤ a≤9.【考点】一次函数图象上点的坐标特色.【剖析】依据题意获取x 的取值范围是值范围来求 a 的取值范围.【解答】解:∵直线y=2x+( 3﹣ a)与2≤ x≤ 3,则经过解对于x 的方程 2x+( 3﹣ a)=0 求得 x 的值,由x 轴的交点在A(2, 0)、 B( 3, 0)之间(包含A、 B 两点),x 的取∴2≤ x≤ 3,令y=0,则 2x+( 3﹣a) =0,解得 x=,则 2≤≤ 3,解得 7≤ a≤ 9.故答案是: 7≤ a≤ 9.【评论】本题考察了一次函数图象上点的坐标特色.依据一次函数分析式与一元一次方程的关系解得x 的值是解题的打破口.22.以下图,正方形ABCD的面积为 12,△ ABE是等边三角形,点 E 在正方形ABCD内,在对角线AC上有一点P,使 PD+PE的和最小,则这个最小值为2.【考点】轴对称 - 最短路线问题;正方形的性质.【剖析】因为点 B 与 D 对于 AC对称,因此连结BD,与 AC的交点即为 F 点.此时PD+PE=BE最小,而BE是等边△ABE的边, BE=AB,由正方形 ABCD的面积为 12,可求出 AB 的长,从而得出结果.【解答】解:连结 BD,与 AC交于点 F.∵点 B 与 D对于 AC对称,∴ PD=PB,∴PD+PE=PB+PE=BE最小.∵正方形 ABCD的面积为 12,∴AB=2 .又∵△ ABE是等边三角形,∴BE=AB=2 .故所求最小值为 2 .故答案为: 2 .【评论】本题主要考察轴对称﹣﹣最短路线问题,要灵巧运用对称性解决此类问题.23.在下边的网格图中,每个小正方形的边长均为1,△ ABC的三个极点都是网格线的交点,已知B,C 两点的坐标分被为(﹣ 1,﹣ 1),( 1,﹣ 2),将△ ABC绕着点 C 顺时针旋转90°,则点 A 的对应点的坐标为(5,﹣1).【考点】坐标与图形变化- 旋转.【剖析】先利用 B,C 两点的坐标画出直角坐标系获取 A 点坐标,再画出△ABC绕点 C顺时针旋转90°后点 A 的对应点的A′,而后写出点A′的坐标即可.【解答】解:如图, A 点坐标为( 0, 2),将△ ABC绕点 C 顺时针旋转90°,则点 A 的对应点的A′的坐标为( 5,﹣ 1).故答案为:(5,﹣ 1).【评论】本题考察了坐标与图形变化:图形或点旋转以后要联合旋转的角度和图形的特别性质来求出旋转后的点的坐标.常有的是旋转特别角度如:30°, 45°, 60°, 90°, 180°.24.若对于x 的不等式组有4个整数解,则 a 的取值范围是﹣≤a<﹣.【考点】一元一次不等式组的整数解.【剖析】第一确立不等式组的解集,先利用含 a 的式子表示,依据整数解的个数就能够确立有哪些整数解,依据解的状况能够获取对于 a 的不等式,从而求出 a 的范围.【解答】解:,由①得, x> 8,由②得, x< 2﹣ 4a,∵此不等式组有解集,∴解集为 8< x< 2﹣4a,又∵此不等式组有 4 个整数解,∴此整数解为 9、 10、 11、 12,∵ x< 2﹣ 4a, x 的最大整数值为12,,∴ 12< 2﹣ 4a≤ 13,∴﹣≤a<﹣.【评论】本题是一道较为抽象的中考题,利用数轴就能直观的理解题意,列出对于 a 的不等式组,临界数的弃取是易错的地方,要借助数轴做出正确的弃取.三、解答题(本大题共 5 个小题,共 48 分)25.( 1)计算(+1)(﹣ 1) ++﹣ 3( 2)解不等式组,并在数轴上表示它的解集解不等式组,并把它们的解集表示在数轴上.【考点】二次根式的混淆运算;在数轴上表示不等式的解集;解一元一次不等式组.【剖析】(1)利用平方差公式、二次根式的性质化简计算即可;( 2)利用解一元一次不等式组的一般步骤解出不等式组,把解集在数轴上表示出来.【解答】解:( 1)原式 =()2﹣ 12+ + ×3 ﹣ 3×=3﹣ 1++﹣2=2+;( 2),解①得, x< 2,解②得, x≥﹣ 1,则不等式组的解集为:﹣1≤x< 2.【评论】本题考察的是二次根式的混淆运算、一元一次不等式组的解法,掌握二次根式的和和运算法例、一元一次不等式组的解法是解题的要点.26.如图,直线l 1的分析式为y=﹣ x+2,l 1与 x 轴交于点B,直线 l 2经过点 D( 0,5),与直线 l 1交于点 C(﹣ 1,m),且与x 轴交于点A(1)求点 C的坐标及直线 l 2的分析式;(2)求△ ABC的面积.【考点】两条直线订交或平行问题.【剖析】(1)第一利用待定系数法求出 C 点坐标,而后再依据D、C 两点坐标求出直线l 2的分析式;( 2)第一依据两个函数分析式计算出A、 B 两点坐标,而后再利用三角形的面积公式计算出△ABC的面积即可.【解答】解:( 1)∵直线l 1的分析式为y=﹣ x+2 经过点 C(﹣ 1, m),∴m=1+2=3,∴C(﹣ 1,3),设直线 l 2的分析式为y=kx+b ,∵经过点D( 0, 5), C(﹣ 1, 3),∴,解得,∴直线 l 2的分析式为y=2x+5;(2)当 y=0 时, 2x+5=0,解得 x=﹣,则 A(﹣,0),当y=0 时,﹣ x+2=0解得 x=2,则 B( 2, 0),△ ABC的面积:×(2+)× 3=.【评论】本题主要考察了待定系数法求一次函数分析式,要点是掌握凡是函数图象经过的点必能知足分析式.27.如图,在△ ABC中, D 是 BC边上的一点, E 是 AD的中点,过 A 点作 BC的平行线交 CE的延伸线于点 F,且AF=BD,连结 BF.(1)证明: BD=CD;(2)当△ ABC知足什么条件时,四边形 AFBD是矩形?并说明原因.【考点】全等三角形的判断与性质;矩形的判断.【剖析】( 1)由 AF 与 BC平行,利用两直线平行内错角相等获取一对角相等,再一对对顶角相等,且由 E 为 AD 的中点,获取 AE=DE,利用 AAS获取三角形 AFE与三角形 DCE全等,利用全等三角形的对应边相等即可得证;AFBD为平行( 2)当△ ABC知足: AB=AC时,四边形AFBD是矩形,原因为:由AF 与 BD平行且相等,获取四边形四边形,再由AB=AC, BD=CD,利用三线合一获取AD垂直于 BC,即∠ ADB为直角,即可得证.【解答】解:( 1)∵ AF∥ BC,∴∠ AFE=∠DCE,∵ E 为 AD的中点,∴ AE=DE,在△ AFE和△ DCE中,,∴△ AFE≌△ DCE( AAS),∴AF=CD,∵AF=BD,∴ CD=BD;( 2)当△ ABC知足: AB=AC时,四边形 AFBD是矩形,原因以下:∵AF∥ BD, AF=BD,∴四边形AFBD是平行四边形,∵ AB=AC, BD=CD,∴∠ ADB=90°,∴四边形AFBD是矩形.【评论】本题考察了全等三角形的判断与性质,以及矩形的判断,娴熟掌握全等三角形的判断与性质是解本题的要点.28.如图,点P 是正方形ABCD内一点,点P 到点 A、 B 和 D 的距离分别为1, 2,,△ ADP沿点A旋转至△ABP′,连结PP′,并延伸AP与 BC订交于点 Q.(1)求证:△ APP′是等腰直角三角形;(2)求∠ BPQ的大小.【考点】旋转的性质;等腰直角三角形;正方形的性质.【剖析】(1)依据正方形的性质得AB=AD,∠ BAD=90°,再利用旋转的性质得AP=AP′,∠ PAP′=∠DAB=90°,于是可判断△ APP′是等腰直角三角形;( 2)依据等腰直角三角形的性质得PP′=PA=,∠ APP′=45°,再利用旋转的性质得PD=P′B=,接着依据勾股定理的逆定理可证明△PP′B为直角三角形,∠ P′PB=90°,而后利用平角定义计算∠BPQ的度数.【解答】(1)证明:∵四边形ABCD为正方形,∴AB=AD,∠ BAD=90°,∵△ ADP沿点 A 旋转至△ ABP′,∴AP=AP′,∠ PAP′=∠DAB=90°,∴△ APP′是等腰直角三角形;(2)解:∵△APP′是等腰直角三角形,∴PP′= PA= ,∠ APP′=45°,∵△ADP沿点 A 旋转至△ ABP′,∴P D=P′B=,在△ PP′B中, PP′=,PB=2,P′B=,∵(222) +( 2) =(),222∴PP′ +PB=P′B,∴△ PP′B为直角三角形,∠ P′PB=90°,∴∠ BPQ=180°﹣∠ APP′﹣∠ P′PB=180°﹣ 45°﹣ 90°=45°.【评论】本题考察了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考察了正方形的性质和勾股定理的逆定理.29.小颖到运动鞋店参加社会实践活动,鞋店经理让小颖帮助解决以下问题:运动鞋店准备购进甲乙两种运动鞋,甲种每双进价80元,售价 120 元;乙种每双进价 60 元,售价 90 元,计划购进两种运动鞋共100 双,此中甲种运动鞋许多于65双.( 1)若购进这100 双运动鞋的花费不得超出7500 元,则甲种运动鞋最多购进多少双?( 2)在( 1)条件下,该运动鞋店在 6 月 19日“父亲节”当日对甲种运动鞋以每双优惠a( 0<a< 20)元的价格进行优惠促销活动,乙种运动鞋价钱不变,请写出总收益w 与 a 的函数关系式,若甲种运动鞋每双优惠11 元,那么该运动鞋店应怎样进货才能获取最大收益?【考点】一次函数的应用;一元一次不等式的应用;一次函数的性质.【剖析】(1)设购进甲种运动鞋x 双,依据题意列出对于x 的一元一次不等式,解不等式得出结论;( 2)找出总收益w对于购进甲种服饰x 之间的关系式,依据一次函数的性质判断怎样进货才能获取最大收益.【解答】解:( 1)设购进甲种运动鞋x 双,由题意可知:80x+60 ( 100﹣ x)≤ 7500 ,解得: x≤ 75.答:甲种运动鞋最多购进75 双.( 2)因为甲种运动鞋许多于65 双,因此 65≤x≤ 75,总收益 w=( 120﹣ 80﹣ a) x+( 90﹣ 60)( 100﹣x) =(10﹣ a) x+3000,。

初二数学月考测试卷.docx

马坝初级中学初二数学第三阶段月考测试卷(时间:120分钟 总分:150分)一、选择题:(每题3分共24分)在平面直角坐标系相尸中,点P ( - 3, 5)关于y 轴的对称点的坐标为( A. ( - 3, - 5) B. (3, 5) C. (3. - 5) D. (5, - 3)7. ¥何的算术平方根是( )•8、观察由等腰梯形组成的下图和所给表中数据的规律后回答问题: 当等腰梯形个数为2009时,图形的周长为9、等腰三角形的两边长分别为4cm 和9cm,则第三边长为 10、 已知点A (2a+5, -4)在二、四象限的角平分线上,则a= .11、 一棵树因雪灾于A 处折断,如图所示,测得树梢触地点B 到树根C 处的距离为4米,N ABC 约 45。

,树干AC 垂直于地面,那么此树在未折断之前的高度约为米1. 在平面直角坐标系中,点M (-2, A.第一象限 B.第二象限 3)落在 C.第三象限(D.第四象限2. 估算J7的值是B. D. 3.A.在1和2之间 C.在3和4之间下列函数中,y 是x 的一次函数的是()21A. y=-3x+5B. y=-3x~C. y= — x在2和3之间 在4和5之间D. y=2Vx4.5. .在 3.14、一扼、仞'、兀、0. 2020020002这六个数中,无理数有6. A. 1个B. 2个C.D. 4个列说法中正确的是A.有理数和数轴上的点——对应B. 不带根号的数一定是有理数C.负数没有立方根D. 互为相反数的两个数的立方根也为相反数A, ±9B. 9C. 3D. ±3A. 6029B. 6032C. 6026D. 2009梯形个 数 1 2 3 4 5 ,・・图形周 长 581114 17 ,・・cm.、填空题(每题3分,共30分)12、如图,在梯形 ABCD 中,AD//BC, AB=CD, £8=60。

八年级数学人教版上册同步练习多边形(原卷版)

11.3.1多边形一、单选题1.为了丰富同学们的课余生活,东辰学校初二年级计划举行一次篮球比赛,从3个分部中选出15支队伍参加比赛,比赛采用单循环制(即每个队与其他各队比赛一场),则这次联赛共有()场比赛.A.30 B.45 C.105 D.2102.多边形每一个内角都等于135°,则从该多边形一个顶点出发,可引出对角线的条数为()A.3条B.4条C.5条D.8条3.如果从一个多边形的一个顶点出发作它的对角线,最多能将多边形分成2011个三角形,那么这个多边形是()A.2012边形B.2013边形C.2014边形D.2015边形4.下列图形中,是正多边形的是( )A.三条边都相等的三角形B.四个角都是直角的四边C.四边都相等的四边形D.六条边都相等的六边形5.过n边形的其中一个顶点有10条对角线,则n的值为( )A.11 B.12 C.13 D.146.下列说法不正确的是()A.各边相等的多边形是正多边形B.等边三角形是正多边形C.正多边形的各个内角都相等D.正多边形的各条边都相等7.如果从一个多边形的一个顶点出发作它的对角线,最多能将多边形分成2016个三角形,那么这个多边形是()边形.A.2020 B.2019 C.2018 D.20178.要使一个六边形的木架稳定,至少要钉()根木条A.3 B.4 C.6 D.9二、填空题目9.我们知道,三角形的稳定性在日常生活中被广泛运用.要使不同的木架不变形,四边形木架至少要再钉1根木条;五边形木架至少要再钉2根木条;…按这个规律,要使n边形木架不变形至少要再钉______________根木条.(用n表示,n为大于3的整数)10.连接多边形的一个顶点与其它各顶点,可将多边形分成11个三角形,则这个多边形是______边形.11.过m边形的一个顶点有7条对角线,n边形没有对角线,过k边形一个顶点的对角线条数是边数的12,则m n k-+=______________________.12.从一个n边形的同一个顶点出发,分别连结这个顶点与其余各顶点,若把这个多边形分割为6个三角形,则n的值是___________.三、解答题13.已知一个多边形的内角和比它的外角和的2倍还大180°,求这个多边形共有多少条对角线.14.如图,网格中每个小正方形的边长为1.(1)求阴影部分的面积;(2)把图中阴影部分通过剪拼形成一个正方形,设正方形的边长为a.已知a的整数部分和小数部分分别是x和y,求xy的值.15.观察下面图形,并回答问题.()1四边形有条对角线;五边形有条对角线;六边形有条对角线.()2根据()1中得到的规律,试猜测十边形的对角线条数.16.四边形共有几条对角线?五边形呢?n边形呢?17.观察下面图形,并回答问题.(1)四边形有_______条对角线;五边形有_____条对角线;六边形有____条对角线.(2)根据规律七边形有_______条对角线,n边形有______条对角线.(3)应用:10个人聚会,每不相邻的人都握一次手,共握多少次手?18.一个正多边形每个内角比外角多90°,求这个正多边形所有对角线的条数.19.乐乐和数学小组的同学们研究多边形对角线的相关问题,邀请你也加入其中!请仔细观察下面的图形和表格,并回答下列问题:(1)观察探究:请自己观察上面的图形和表格,并用含n的代数式将上面的表格填写完整;(2)实际应用:数学社团共分为6个小组,每组有3名同学.同学们约定,大年初一时不同组的两位同学之间要打一个电话拜年,请问,按照此约定,数学社团的同学们一共将拨打电话多少个?(3)类比归纳:乐乐认为(1),(2)之间存在某种联系,你能找到这两个问题之间的联系吗?请用语言描述你的发现.20.已知正n边形的周长为60,边长为a(1)当n=3时,请直接写出a的值;(2)把正n边形的周长与边数同时增加7后,假设得到的仍是正多边形,它的边数为n+7,周长为67,边长为b.有人分别取n等于3,20,120,再求出相应的a与b,然后断言:“无论n取任何大于2的正整数,a与b一定不相等.”你认为这种说法对吗?若不对,请求出不符合这一说法的n的值.祝福语祝你考试成功!。

黑龙江省哈尔滨市南岗区松雷中学2022-2023学年八年级上学期 数学(五四制)练习卷(八)

初二数学练习卷8一、选择题(每题4分,共36分)1.下列方程是一元一次方程的是()A.0322=--x x B.43=-x C.11=x D.yx =-12.下列图中,∠1与∠2是对顶角的是()A.B.C.D.3.方程2x-5=3x 移项正确的是()A.2x+3x=5B.2x+3x=-5C.2x-3x=5D.2x-3x=-54.运用等式性质进行的变形,正确的是()A.如果a=b,那么a+c=b-c B.如果a b c c=,那么a=b C.如果a=b,那么a b c c = D.如果a 2=3a,那么a=35.点P 为直线m 外一点,点A、B、C 为直线m 上三点,PA=4cm,PB=5cm,PC=2cm,则点P 到直线m 的距离为()A.4cm B.2cm C.不大于2cm D.小于2cm6.在数学课上,同学们在练习过点B 作线段AC 所在直线的垂线段时,有一部分同学画出下列四种图形,请你数一数,错误的个数为()A.1个B.2个C.3个D.4个7.某班有52人,其中男生的人数比女生人数的2倍少11人,设女生有x 人,根据题意可列方程()A.52)112(=-+x x B.52)11(2=-+x x C.52)1121(=-+x x D.()521121=-+x x 8.一条山路,某人从山下往山顶走3小时还有1千米才到山顶,若从山顶走到山下只用150分钟,已知下山速度是上山速度的1.5倍,求山下到山顶的路程.设上山速度为x 千米/分钟,则列方程为()A .x -1=5⨯1.5x B .3x +1=50⨯1.5xC .3x -1=150⨯1.5xD .180x +1=150⨯1.5x 9.下列语句正确的个数是()①有公共顶点并且相等的两个角是对顶角;②如果两个角不相等,那么这两个角一定不是对顶角;③若两个角有公共顶点且有一条公共边,和等于180°,则这两个角为邻补角;③两条直线相交所成的四个角中,如果有三个角相等,那么这两条直线互相垂直;④直线外一点与直线上的一点间的线段的长度是这一点到这条直线的距离;⑤互相垂直的两条线段一定相交.A.1个B.2个C.3个D.4个二、填空题(每题4分,共36分)10.若x=4是方程m(x-1)=4x-m 的解,则m=.11.当x =___时,式子32x -与223x -的值相等.12.如图2一棵小树生长时与地面所成的角为80°,它的根深入泥土,如果根和小树在同一条直线上,那么∠2等于°13.如图,若把水渠中的水引到水池C ,挖一条沟CD 垂直于渠岸AB ,垂足为D ,这时沟CD 最短,这时根据____________________.14.如图4,点O 是直线AB 上一点,自点O 引射线OC 、OD 、OE 、OF ,图中共有对邻补角.15.在一次猜迷抢答赛上,每人有30道的答题,答对1题加20分,答错1题或者不答都扣10分,小明共得了120分,则小明答对道题.16.整理一批数据,由一人做需80小时完成.现在计划先由一些人做2小时,再增加5人做8小时,完成这项工作的43,应该先由___人整理.17.甲乙两人骑车同时从学校出发去A 城,甲的速度是9千米/时,乙的速度是15千米/时,乙因事在途中停了4小时,结果比甲迟到1小时,则学校与A 城相距千米.18.如图,三角形ABC 中,∠C=90°,CD⊥AB 于点D,若AC=3cm,BC=4cm,AB=5cm 则C 到AB 的距离为_________cm.答题卡一、选择题(每题4分,共36分)123456789二、填空题(每题4分,共36分)10._____________11.______________12._______________13._____________14._________________15._____________16.______________17._______________18._____________12题13题14题19.解方程(每题4分,共8分)(1)142312-+=-y y (2)6.12.045.03=+--x x 20.(10分)如图,直线AB、CD 相交于O,OE 平分∠BOC,OF⊥CD,当∠EOB︰∠BOD=3︰2时,求∠AOF 的度数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初二数学周练一
班级________________姓名____________学号_________
一、填空题:(每空3分,共36分)
1、一元二次方程的一般形式是 ;
2、若代数式252x x ++与119x +的值相等,则x 为______
3、一元二次方程
的解是 . 4、关于x 的一元二次方程022=+-m mx x 的一个根为1,则方程的另一根为______
5、若(x+y )(1-x-y )+6=0,则x+y 的值是______.
6、已知实数x ,y 满足2222()(1)2x y x y ++-=,则22x y +=______ ;
7、若一个三角形的边长均满足方程2680x x -+=,则此三角形的周长为______
8、0122=--x k x 有两个不相等的实数根,则k ;
9、若关于x 的一元二次方程(m -1)x 2+5x+m 2-3m+2=0的常数项为0,则m 的值等于_________.
10、设一元二次方程的两个实数根分别为和,则 , =+221221x x x x .
11、方程2420x x --=的两根分别是21x x 、,且21x x <,则_________2221=-x x
二、选择题:(每空3分,共12分)
12、下列方程,是一元二次方程的是( )
A 、21250x x --=
B 、3x 2+5xy+5y 2=0
C 、x(x+2)=(x-1)(x+3)
D 、x 2=0 13、关于x 的一元二次方程0)2(x 2=-+-m mx 的根的情况是 ( )
A 、有两个不相等的实数根
B 、有两个相等的实数根
C 、没有实数根
D 、无法确定
14、已知一元二次方程2
35x kx k -+-k =0,有两个相等的实数根,则k=( )
A 、 1=k 0,2k =-4,
B 、1=k 0,2k =4
C 、k=4
D 、k= -4
15、下面对于二次三项式-2x +4x-5的值的判断正确的是 ( )
A 、恒大于0
B 、恒小于0
C 、不小于0
D 、可能为0
三、解方程:(每题5分,共30分)
16、()()2241920x x +--= 17、)23)(21()23(2x x x --=-
18、2(1)3(1)100x x ----=
19、01842=+-x x (用配方法)
20、221
32
=--x x
21、解关于x 的方程222a b ax x -=-
四、解答题:(第22、23题每题7分,24题8分,共22分)
22、.阅读材料,解答问题
为了解一元四次方程(y²-1)² -3(y²-1)+2=0,我们将y²-1视为一个整体,
解:设 y²-1=a ,则(y²-1)²=a²,
a² - 3a+2=0, (1)
a 1=1,a 2=2。

当a=1时,y² -1=1,y =±2,
当a=2时,y²-1=2,y=±3 所以原方程的根是.3,3,2,24321-==-==y y y y
在由原方程得到方程(1)的过程中,利用了换元法达到了降次的目的,体现了化归的数学思想。

请你试着用换元法解方程:
08)2(7)2(222=-+++x x x x
23. 在等腰三角形ABC ∆中8=BC , AB 、AC 的长是关于x 的方程x 2
-10x +m =0的两个根,求m 的值.
24、若0是关于x的方程(m-2)x2+3x+m2+2m-8=0的解,求实数m的值,并解方程。

相关文档
最新文档