牛顿第二定律及应用(解析版)
牛顿第二定律的应用(瞬时性、矢量性)

m a2 g2
设弹力与水平方向的夹角为,则:
tan α mg g ma a
【解题回顾】 (一)硬杆对小球的弹力的方向并不一定 沿杆的方向,这可借助于牛顿运动定律来 进行受力分析:
1、物体处于平衡状态时,合外力应为0; 2、物体处于变速运动状态时,满足:
F合=ma, F合方向与加速度方向一致. (二)应用牛顿定律解题时要注意a与F合方向 一致性的关系.有时可根据已知合力方向确定加
明确“轻绳”和“轻弹簧” 两个理想物理模型的 区别.
如图所示,质量均为m的木块A和B用一轻弹簧相连,竖直 放在光滑的水平面上,木块A上放有质量为2m的木块C,三 者均处于静止状态。现将木块C迅速移开,若重力加速度 为g,则在木块C移开的瞬间( C )
A.木块B对水平面的压力迅速变为2mg
B.弹簧的弹力大小为mg
T1
θ T2
m
F合
mg
T2
F合 TG
F合=mg tan a=g tan
T
T
G2
G1
G
F合=mg sin a=g sin
如图质量为 m 的小球用水平弹簧系住,并用倾角为 30°的光
滑木板 AB 托住,小球恰好处于静止状态.当木板 AB 突然
向下撤离的瞬间,小球的加速度为 A.
( C)
B.大小为2 3 3g,方向竖直向下
【例1】小车上固定着光滑的斜面, 斜面的倾 角为θ.小车以恒定的加速度向前运动,有一物 体放于斜面上, 相对斜面静止, 此时这个物体 相对地面的加速度是多大?
F合=G tan a =g tan
N
F合 a
θ
G
例 2:如图所示,动力小车上有一竖杆,杆顶端
实验04 验证牛顿第二定律(解析版)

实验四 验证牛顿第二定律(解析版)1.实验原理 (1)保持质量不变,探究加速度与合力的关系。
(2)保持合力不变,探究加速度与质量的关系。
(3)作出a-F 图象和a-图象,确定其关系。
1m 2.实验器材 打点计时器、纸带、复写纸、小车、一端附有定滑轮的长木板、小盘、砝码、夹子、细绳、交流电源、导线、天平(带有一套砝码)、刻度尺。
3.实验步骤 (1)测量:用天平测量小盘和砝码的质量m',小车的质量m 。
(2)安装:按照如图所示的装置把实验器材安装好,但是不把悬挂小盘的细绳系在小车上(不给小车牵引力)。
(3)平衡摩擦力:在长木板不带定滑轮的一端下面垫上一块薄木块,使小车能匀速下滑。
(4)操作:①小盘通过细绳绕过定滑轮系在小车上,先接通电源,后放开小车,打点结束后先断开电源,再取下纸带。
②保持小车的质量m 不变,改变小盘和砝码的质量m',重复步骤①。
③在每条纸带上选取一段比较理想的部分,测加速度a 。
④描点作图,以m'g 作为拉力F ,作出a-F 图象。
⑤保持小盘和砝码的质量m'不变,改变小车质量m ,重复步骤①和③,作出a-图象。
1m4.数据分析 (1)利用Δx=aT 2及逐差法求a 。
(2)以a 为纵坐标,F 为横坐标,根据各组数据描点,如果这些点在一条过原点的直线上,说明a 与F 成正比。
(3)以a 为纵坐标,为横坐标,描点、连线,如果该线为过原点的直线,就能判定a 与m 成反比。
1m 5.注意事项 (1)平衡摩擦力:适当垫高木板的右端,使小车的重力沿斜面方向的分力正好平衡小车和纸带受到的阻力。
在平衡摩擦力时,不要把悬挂小盘的细绳系在小车上,让小车拉着穿过打点计时器的纸带匀速运动。
(2)不重复平衡摩擦力。
(3)实验条件:m ≫m'。
(4)“一先一后一按”:改变拉力或小车质量后,每次开始时小车应尽量靠近打点计时器,并应先接通电源,后释放小车,且应在小车到达滑轮前按住小车。
牛顿第二定律的综合应用(解析版)-高中物理

牛顿第二定律的综合应用1.高考真题考点分布题型考点考查考题统计计算题动力学两类基本问题2022年浙江卷选择题连接体问题2024年全国甲卷计算题传送带模型2024年湖北卷选择题、计算题板块模型2024年高考新课标卷、辽宁卷2.命题规律及备考策略【命题规律】高考对动力学两类基本问题、连接体问题、传送带和板块模型考查的非常频繁,有基础性的选题也有难度稍大的计算题。
【备考策略】1.利用牛顿第二定律处理动力学两类基本问题。
2.利用牛顿第二定律通过整体法和隔离法处理连接体问题。
3.利用牛顿第二定律处理传送带问题。
4.利用牛顿第二定律处理板块模型。
【命题预测】重点关注牛顿第二定律在两类基本问题、连接体、传送带和板块模型中的应用。
一、动力学两类基本问题1.已知物体的受力情况求运动情况;2.已知物体的运动情况求受力情况。
二、连接体问题多个相互关联的物体由细绳、细杆或弹簧等连接或叠放在一起,构成的系统称为连接体。
(1)弹簧连接体:在弹簧发生形变的过程中,两端连接体的速度不一定相等;在弹簧形变最大时,两端连接体的速率相等。
(2)物物叠放连接体:相对静止时有相同的加速度,相对运动时根据受力特点结合运动情景分析。
(3)轻绳(杆)连接体:轻绳在伸直状态下,两端的连接体沿绳方向的速度总是相等,轻杆平动时,连接体具有相同的平动速度。
三、传送带模型1.模型特点传送带问题的实质是相对运动问题,这样的相对运动将直接影响摩擦力的方向。
2.解题关键(1)理清物体与传送带间的相对运动方向及摩擦力方向是解决传送带问题的关键。
(2)传送带问题还常常涉及临界问题,即物体与传送带达到相同速度,这时会出现摩擦力改变的临界状态,对这一临界状态进行分析往往是解题的突破口。
四、板块模型1.模型特点:滑块(视为质点)置于木板上,滑块和木板均相对地面运动,且滑块和木板在摩擦力的相互作用下发生相对滑动。
2.位移关系:如图所示,滑块由木板一端运动到另一端的过程中,滑块和木板同向运动时,位移之差Δx=x1 -x2=L(板长);滑块和木板反向运动时,位移之和Δx=x2+x1=L。
牛顿第二定律详细解析

解: 对汽车研究 ,其受力分析如图.
FN
F合= F-f
F
由牛顿第二定律得:
f
F-f=ma
G
解得:
a= (F-f)/m =1.5 m/s2
汽车前进时的加速度大小为1.5 m/s2 ,方向与前进的 方向相同。
牛顿第二定律详细解析
五、解题步骤:
1、确定研究对象。 2、分析研究对象的受力情况,画出受力图。 3、选定正方向或建立适当的正交坐标系。 4、求合力,列方程求解。 5、对结果进行检验或讨论。
在x方向上:F合=FGxf 在x方向上:F合=Ff Gx
牛顿第二定律详细解析
5)F沿水平推 (G=20N F=20N f=4N)
FN
v
F
Gx
f
Fx
F
Fy
Gy
FN
v
F
f Fx
Gx
F
Fy
Gy
G
G
G xG si3n0G yGco3s0
FxFco3s0FyFsi3 n0
列方程(在y轴上没有运动) 列方程(在y轴上没有运动)
牛顿第二定律详细解析
五、总结
一、牛顿第二定律 1、内容:物体的加速度跟作用力成正比,跟物体的质 量成反比,这就是牛顿第二定律。
2、数学表达试:a∝F/m F ∝ma,即F=kma,k—比例 如果各量都用国际单位,则k=1,所以F=ma 系数
牛顿第二定律进一步表述:F合=ma 二、对牛顿第二定律F合=ma的理解
在y方向上:FNGyFy 在y方向上:FNGyFy
在x方向上:F合=FxGxf 在x方向上:F合=Fxf Gx
牛顿第二定律详细解析
4.一个质量为m的物体被竖直向上抛出,在空中 运动过程所受的阻力大小为f,求该物体在上升 和下降过程中的加速度.
运用实例解析牛顿第二定律的教学案例

运用实例解析牛顿第二定律的教学案例引言:牛顿第二定律是物理学中最基本的定律之一,它描述了物体所受到的力对其运动状态的影响。
在教学中,为了让学生更好地理解和应用这一定律,可以通过实例来进行解析和说明。
本文将通过几个教学案例,以生动的实例来解析牛顿第二定律,帮助学生更好地理解并应用这一定律。
案例一:小球的加速度与施加力的关系在这个案例中,可以选择一个小球和一个弹簧测力计。
首先,让学生用测力计测量小球所受到的力,并记录下来。
接下来,以不同的力施加在小球上,分别测量小球的加速度,并记录下来。
通过实验数据的对比,可以发现小球所受到的力与其加速度之间存在着线性关系。
通过这个案例,可以引导学生推导出牛顿第二定律的数学表达式F=ma,并进一步讨论力和加速度的关系。
案例二:车辆行驶的力与加速度的关系这个案例可以通过实际的道路和汽车模型来进行展示。
让学生观察一辆行驶的汽车,引导他们思考汽车行驶时所受到的力有哪些,并以此为基础进行讨论。
接着,在模型车辆上加装不同重量的货物,观察车辆加速度的变化。
通过实验结果的对比,学生可以发现车辆所受到的力与其加速度之间存在着正比关系。
这个案例不仅可以帮助学生理解牛顿第二定律,还能够加深他们对力的理解以及力的作用。
案例三:项目工程中的应用在工程领域中,牛顿第二定律也有着广泛的应用。
可以通过具体工程案例来展示牛顿第二定律在工程实践中的重要性。
例如,建筑工程中的起重机、桥梁的设计和机械设备的运行等都需要考虑力对于物体运动状态的影响。
通过这些案例,学生可以看到牛顿第二定律是如何应用在实际工程中,进一步加深他们对该定律的理解。
结论:通过以上的几个教学案例,学生可以通过实际观察、实验和分析,深入理解牛顿第二定律的概念和应用。
通过这种基于实例的教学方法,学生能够更直观地理解物体所受力与其运动状态之间的关系,并能够在实践中应用这一定律。
通过这种锻炼,学生的动手实践能力、观察分析能力和问题解决能力都能够得到有效提升。
牛顿第二定律的理解和应用

牛顿第二定律的理解和应用1.对牛顿第二定律的理解2.应用牛顿第二定律求瞬时加速度的技巧在分析瞬时加速度时应注意两个基本模型的特点:(1)轻绳、轻杆或接触面——不发生明显形变就能产生弹力的物体,剪断(或脱离)后,其弹力立即消失,不需要形变恢复时间;(2)轻弹簧、轻橡皮绳——两端同时连接(或附着)有物体的弹簧或橡皮绳,特点是形变量大,其形变恢复需要较长时间,在瞬时性问题中,其弹力的大小往往可以看成保持不变.例1(多选)一质点做匀速直线运动,现对其施加一恒力,且原来作用在质点上的力不发生改变,则()A.质点速度的方向总是与该恒力的方向相同B.质点速度的方向不可能总是与该恒力的方向垂直C.质点加速度的方向总是与该恒力的方向相同D.质点单位时间内速率的变化量总是不变答案BC解析质点一开始做匀速直线运动,处于平衡状态,施加恒力后,则该质点所受的合外力为该恒力.若该恒力方向与质点原运动方向不共线,则质点做曲线运动,质点速度方向与恒力方向不同,故A错;若F的方向某一时刻与质点运动方向垂直,之后质点做曲线运动,力与速度方向不再垂直,例如平抛运动,故B正确;由牛顿第二定律可知,质点加速度方向总是与其所受合外力方向相同,C正确;根据加速度的定义,相等时间内速度变化量相同,而速率变化量不一定相同,故D错.例2如图1,质量为1.5 kg的物体A静止在竖直的轻弹簧上,质量为0.5 kg的物体B由细线悬挂在天花板上,B与A刚好接触但不挤压.现突然将细线剪断,则剪断后瞬间A、B间的作用力大小为(g取10 m/s2)()图1A.0 B.2.5 NC.5 N D.3.75 N①B与A刚好接触但不挤压;②剪断后瞬间A、B间的作用力大小.答案D解析当细线剪断瞬间,细线的弹力突然变为零,则B物体的重力突然作用到A上,此时弹簧形变仍不变,对AB整体受力分析受重力G=(m A+m B)g=20 N,弹力为F=m A g=15 N,由牛顿第二定律G-F=(m A+m B)a,解得a=2.5 m/s2,对B受力分析,B受重力和A对B 的弹力F1,对B有m B g-F1=m B a,可得F1=3.75 N,D选项正确.。
动力学中的牛顿第二定律解析

动力学中的牛顿第二定律解析牛顿第二定律是经典力学中最为重要的定律之一,它揭示了物体受力时的运动规律。
牛顿第二定律可以描述物体的加速度与施加在物体上的力的关系。
在本文中,我们将对牛顿第二定律进行详细解析。
牛顿第二定律的数学表达式如下:F = m * a其中,F代表力,m代表物体的质量,a代表物体的加速度。
这个数学公式说明了一个简单而直观的关系:物体的加速度与施加在物体上的力成正比,与物体的质量成反比。
通过对牛顿第二定律的解析,我们可以得出以下几个重要结论。
首先,牛顿第二定律指示了物体的运动是由力所决定的。
根据该定律,如果施加在物体上的力增大,物体的加速度也会增大。
反之,如果施加在物体上的力减小,物体的加速度也会减小。
换句话说,物体的加速度与施加在物体上的力具有直接的关系。
其次,牛顿第二定律说明了物体的质量对其加速度具有反作用力。
相同的力作用在较大质量的物体上,会导致较小的加速度;而在较小质量的物体上,会导致较大的加速度。
这是因为物体的质量与加速度成反比关系。
另外,牛顿第二定律还可以通过分析力的合成和分解来研究物体的运动。
根据该定律,物体所受的合力等于物体质量与加速度的乘积。
如果一个物体受到多个力的作用,我们可以将这些力进行合成,得到一个等效的合力,然后根据牛顿第二定律计算物体的加速度。
此外,牛顿第二定律还可以应用于复杂的力学问题。
例如,当物体受到不止一个力的作用时,我们可以将每个力分别计算其对物体的加速度的贡献,然后对这些加速度进行矢量叠加,从而得到物体的总加速度。
这种分析方法被广泛应用于力学领域的研究和实践中。
牛顿第二定律的解析不仅仅适用于经典力学,也可以应用于其他力学理论中。
例如,牛顿第二定律可以用来解析相对论力学中的物体运动规律,或者量子力学中的微观粒子行为。
虽然在这些理论中,对力和加速度的计算可能会有所不同,但牛顿第二定律的基本原理仍然成立。
总结起来,牛顿第二定律是经典力学中的基础定律之一,它揭示了物体受力时的运动规律。
牛顿第二定律及其应用

m
a
M
F
【例】如图所示,放在水平地面上的木板长1 米 , 质 量 为 2kg , B 与 地 面 间 的 动 摩 擦 因 数 为 0.2.一质量为3kg的小铁块A放在B的左端,A、 B之间的动摩擦因数为0.4.当A以3m/s的初 速度向右运动后,求最终A对地的位移和A对B 的位移.
类型三:整体法与隔离法在连接体问题中的灵活应用 【例 3】 如图 3-2-11 所示,光滑水平面上放置质
,已知汽车的质量为4000kg,则汽
车在BC段的加速度大小为
,O
A段汽车的牵引力大小为
。
v/m·s-
1
10
A
B
C
0 10 20 30 40 t/ s
牛顿第二定律的题型
两种类型: (1)已知运动情况求受力情况
(2)已知受力情况求运动情况
解题关键: 利用
牛顿第二定律 运动学公式
求a
一、力和加速度、速度的关系 力的大小和方向
A.任一时刻A、B加速度的大小相等
(ABD)
B.A、B加速度最大的时刻一定是A、B速度相等的时
皮带传动物体时摩擦力的判定问题
物体与传送带无相对滑动时:
a
A
(1)a=gsinθ时,f=0
B
θ
(2)a>gsinθ时,f沿斜面向下
(3)a<gsinθ时,f沿斜面向上
例、如图所示,一平直传送带以速率V0=2 m/s匀速运行,传送带把A处的工件运送到B处, A、B相距L=10m,从A处把工件轻轻搬到传送 带上,经过时间t =6s能传送到B处。如果提高 传送带的运行速率,工件能较快地从A处传送 到B处。要让工件用最短的时间从A处传送到B 处,说明并计算传送带的速率至少应 为多大?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
牛顿第二定律及应用一、力的单位1.国际单位制中,力的单位是牛顿,符号N。
2.力的定义:使质量为1 kg的物体产生1 m/s2的加速度的力,称为1 N,即1 N=1kg·m/s2。
3.比例系数k的含义:关系式F=kma中的比例系数k的数值由F、m、a三量的单位共同决定,三个量都取国际单位,即三量分别取N、kg、m/s2作单位时,系数k=1。
小试牛刀:例:在牛顿第二定律的数学表达式F=kma中,有关比例系数k的说法,不正确的是()A.k的数值由F、m、a的数值决定B.k的数值由F、m、a的单位决定C.在国际单位制中k=1D.取的单位制不同, k的值也不同【答案】A【解析】物理公式在确定物理量之间的数量关系的同时也确定了物理量的单位关系,在F=kma中,只有m的单位取kg,a的单位取m/s2,F的单位取N时,k才等于1,即在国际单位制中k=1,故B、C 、D正确。
二、牛顿第二定律1.内容:物体加速度的大小跟作用力成正比,跟物体的质量成反比.加速度的方向与作用力方向相同.2.表达式:F=ma.3.表达式F=ma的理解(1)单位统一:表达式中F、m、a三个物理量的单位都必须是国际单位.(2)F的含义:F是合力时,加速度a指的是合加速度,即物体的加速度;F是某个力时,加速度a是该力产生的加速度.4.适用范围(1)只适用于惯性参考系(相对地面静止或匀速直线运动的参考系).(2)只适用于宏观物体(相对于分子、原子)、低速运动(远小于光速)的情况.小试牛刀:例:关于牛顿第二定律,下列说法中正确的是()A.牛顿第二定律的表达式F= ma在任何情况下都适用B.物体的运动方向一定与物体所受合力的方向一致C.由F= ma可知,物体所受到的合外力与物体的质量成正比D.在公式F= ma中,若F为合力,则a等于作用在该物体上的每一个力产生的加速度的矢量和【答案】D【解析】A、牛顿第二定律只适用于宏观物体,低速运动,不适用于物体高速运动及微观粒子的运动,故A错误;B、根据Fam合,知加速度的方向与合外力的方向相同,但运动的方向不一定与加速度方向相同,所以物体的运动方向不一定与物体所受合力的方向相同,故B错误;C、F= ma表明了力F、质量m、加速度a之间的数量关系,但物体所受外力与质量无关,故C错误;D、由力的独立作用原理可知,作用在物体上的每个力都将各自产生一个加速度,与其它力的作用无关,物体的加速度是每个力产生的加速度的矢量和,故D正确;故选D。
5.牛顿第二定律的六个性质性质理解因果性力是产生加速度的原因,只要物体所受的合力不为0,物体就具有加速度矢量性F=ma是一个矢量式.物体的加速度方向由它受的合力方向决定,且总与合力的方向相同瞬时性加速度与合外力是瞬时对应关系,同时产生,同时变化,同时消失同体性F=ma中,m、a都是对同一物体而言的独立性作用在物体上的每一个力都产生加速度,物体的实际加速度是这些加速度的矢量和相对性物体的加速度是相对于惯性参考系而言的,即牛顿第二定律只适用于惯性参考系小试牛刀:例:关于牛顿第二定律,下列说法正确的是()A.由牛顿第二定律可知,加速度大的物体,所受的合力一定大B.牛顿第二定律说明质量大的物体其加速度一定小C.由F=ma可知,物体所受到的合力与物体的质量成正比D.同一物体的加速度与物体所受到的合力成正比,而且在任何情况下,加速度的方向始终与物体所受的合力方向一致【答案】D【解析】由牛顿第二定律可知,所受的合外力大的物体,加速度一定大,选项A错误;牛顿第二定律说明了当所受的外力一定的情况下,质量大的物体,其加速度一定就小,选项B 错误:物体所受到的合外力与物体的质量无关,选项C 错误;对同一物体而言,物体的加速度与物体所受到的合外力成正比,而且在任何情况下,加速度的方向,始终与物体所受到的合外力方向一致,选项D 正确;故选D.6.合外力、加速度、速度的关系(1)力与加速度为因果关系:力是因,加速度是果,只要物体所受的合外力不为零,就会产生加速度。
加速度与合外力方向是相同的,大小与合外力成正比。
(2)力与速度无因果关系:合外力方向与速度方向可以相同,可以相反,还可以有夹角。
合外力方向与速度方向相同时,物体做加速运动,相反时物体做减速运动。
(3)两个加速度公式的区别:a =Δv Δt是加速度的定义式,是比值定义法定义的物理量,a 与v 、Δv 、Δt 均无关;a =F m是加速度的决定式,加速度由其受到的合外力和质量决定. 小试牛刀:例1:关于速度、加速度、合力的关系,下列说法中错误的是( )A .原来静止在光滑水平面上的物体,受到水平推力的瞬间,物体立刻获得加速度B .加速度的方向与合力的方向总是一致的,但与速度的方向可能相同,也可能不同C .在初速度为0的匀加速直线运动中,速度、加速度与合力的方向总是一致的D .合力变小,物体的速度一定变小【答案】D【解析】D 由牛顿第二定律知物体的加速度与其所受外力具有瞬时对应关系,且加速度方向与合外力方向始终一致,所以A 、B 正确,若物体的初速度为0,则速度、加速度与合外力的方向一致,C 正确,合为变小,物体的加速度变小,但速度是变大还是变小取决于加速度与速度的方向关系,D 错误。
例2:下列有关加速度的说法正确的是( )A .因为a =Δv /t ,所以a 与Δv 成正比,与t 成反比B .虽然a =Δv /t ,但a 的大小仍不能由物体速度变化快慢来量度C .因为a =Δv/t ,所以a 的大小可由物体速度变化大小来量度D .由牛顿第二定律a =F /m ,物体的加速度a 大小决定于所受合外力与其质量的比值【答案】 D【解析】A 、加速度描述速度变化快慢的物理量,a 越大,说明加速度变化越快,同时根据加速度公式a =Δv /t 可知,加速度的大小与速度变化量、变化的时间无关,故ABC 错误;D、根据牛顿第二定律a=F/m可知,物体的加速度a大小决定于所受合外力与其质量的比值,故选项D 正确。
三、解决两类动力学基本问题1.做好两个分析——物体的受力分析和物体的运动过程分析;根据物体做各种性质运动的条件即可判定物体的运动情况、加速度变化情况及速度变化情况.2.抓住一个“桥梁”——物体运动的加速度是联系运动和力的桥梁.解决动力学两类问题的基本思路典例剖析:如图所示,倾角为30°的光滑斜面与粗糙平面的平滑连接.现将一滑块(可视为质点)从斜面上的A点由静止释放,最终停在水平面上的C点.已知A点距水平面的高度h=0.8 m,B点距C点的距离L=2.0 m.(滑块经过B点时没有能量损失,g=10 m/s2),求:(1)滑块在运动过程中的最大速度;(2)滑块与水平面间的动摩擦因数μ;(3)滑块从A点释放后,经过时间t=1.0 s时速度的大小.第一步:读题→抓关键词→获取信息关键词获取信息①光滑斜面与粗糙的水平面滑块在斜面上不受摩擦力,水平面受摩擦力②从斜面上的A点由静止释放滑块的初速度v0=0③最终停在水平面上的C点滑块的末速度为零④滑块经过B点时没有能量损失斜面上的末速度和水平面上的初速度大小相等第二步:分析理清思路→抓突破口做好两分析→受力分析、运动分析①滑块在斜面上:滑块做初速度为零的匀加速直线运动.②滑块在水平面上:滑块做匀减速运动.第三步:选择合适的方法及公式→利用正交分解法、牛顿运动定律及运动学公式列式求解.【答案】(1)4 m/s(2)0.4(3)3.2 m/s【解析】(1)滑块先在斜面上做匀加速运动,然后在水平面上做匀减速运动,故滑块运动到B点时速度最大为v m,设滑块在斜面上运动的加速度大小为a1,则有mg sin 30°=ma1,v2m=2a1hsin 30°,解得:v m=4 m/s(2)滑块在水平面上运动的加速度大小为a2,μmg=ma2v2m=2a2L,解得:μ=0.4(3)滑块在斜面上运动的时间为t1,v m=a1t1得t1=0.8 s由于t>t1,滑块已经经过B点,做匀减速运动的时间为t-t1=0.2 s设t=1.0 s时速度大小为v=v m-a2(t-t1)解得:v=3.2 m/s精选练习A组基础练1.(多选)关于牛顿第二定律的下列说法中,正确的是()A.物体加速度的大小由物体的质量和物体所受合力大小决定,与物体的速度大小无关B.物体加速度的方向只由它所受合力的方向决定,与速度方向无关C.物体所受合力的方向和加速度的方向及速度方向总是相同的D.一旦物体所受合力为零,则物体的加速度立即为零,其速度也一定立即变为零【答案】AB【解析】对于某个物体,合力的大小决定加速度的大小,合力的方向决定加速度的方向,而与速度的方向无关,故AB正确;物体所受合力方向若与速度方向相同,则物体做加速运动;若合力方向与速度方向相反,则物体做减速运动,故C错误;合力一旦为零,根据牛顿第二定律,则加速度立即为零,而此时物体的速度不一定为零,物体有可能做匀速直线运动,故D错误。
所以AB正确,CD错误。
2.物体质量为2 kg,放在光滑水平面上,同时受到大小为2 N和5 N的两个水平力作用,物体的加速度可能为()A.0 B.2 m/s2C.4 m/s2D.5 m/s2【答案】B【解析】两个力的大小分别为2N和5N,它们的合力范围为3N≤F合≤7N,根据牛顿第二定律F合=ma 得:物体的加速度范围为 1.5m/s2≤a≤3.5m/s2.可知,物体的加速度可能为2m/s2,故B正确,ACD错误.故选B3.人站在地面上,竖直向上提起质量为1kg的物体,物体获得的加速度为,则此过程中,人对物体的作用力大小是()A.14N B.12N C.8N D.4N【答案】A【解析】以物体为研究对象,对物体,由牛顿第二定律得:F-mg=ma,解得:F=m(g+a)=1×(10+4)=14N;故选A。
4. 质量为2kg的物体,受到4个力的作用而处于静止状态,当撤去其中一个力F1后,其它力保持不变,物体运动的加速度为2m/s2,方向向北,则F1的大小和方向为( )A. 2N、方向向北B. 2N、方向向南C. 4N、方向向南D. 4N、方向向北【答案】C【解析】根据牛顿第二定律得到其余两个力的合力大小F合=ma=4N,方向向北.而原来物体处于平衡状态,F1、F2两个力的合力与其余两个力的合力大小相等,方向相反,所以F1、F2的合力是4N,方向向南.故选C.5.如图所示,质量为10 kg的物体,在水平地面上向左运动,物体与水平地面间的动摩擦因数为0.2,与此同时,物体受到一个水平向右的拉力F=20 N的作用,则物体的加速度为(g取10 m/s2)()A.0B.2 m/s2,水平向右C.4 m/s2,水平向右D.2 m/s2,水平向左【答案】C【解析】物体受到地面的摩擦力大小为F1=μmg=0.2×10×10 N=20 N,方向水平向右,物体的加速度a===4 m/s2,方向水平向右6.如图所示,两个人同时用大小分别为F1=120 N、F2=80 N的水平力拉放在水平光滑地面的小车,如果小车的质量m=20 kg,则小车的加速度()A.方向向左,大小为10 m/s2B.方向向左,大小为2 m/s2C.方向向右,大小为10 m/s2D.方向向右,大小为2 m/s2【答案】B【解析】小车受到的合力为:F=F1-F2=120 N-80 N=40 N,方向向左,由牛顿第二定律得:F=ma,解得小车的加速度为:a==2 m/s2,方向与合力方向相同7.雨滴从高空下落,由于空气阻力作用,其加速度逐渐减小,直到为零,在此过程中雨滴的运动情况()A.速度不断减小,加速度为零时,速度达到最小B.速度不断增大,加速度为零时,速度达到最大C.速度先增大后减小,最终恒定D.速度对时间的变化率始终保持不变【答案】B【解析】雨滴的加速度方向与速度方向相同,所以雨滴做加速度逐渐减小的加速运动,当加速度减小到零,此时速度最大,然后做匀速直线运动。