频率分布直方图-高中数学知识点讲解(含答案)
第63讲 根据频率分布直方图求中位数众数和平均数-高中数学常见题型解法归纳反馈训练

【知识要点】一、用样本估计总体的两个手段(用样本的频率分布估计总体的分布;用样本的数字特征估计总体的数字特征),需要从总体中抽取一个质量较高的样本,才能不会产生较大的估计偏差,且样本容量越大,估计的结果也就越精确,分析数据的一种基本方法是用图将它们画出来,或者用紧凑的表格改变数据的排列方式,作图可以达到两个目的,一是从数据中提取信息,二是利用图形传递信息.二、频率分布是指一个样本数据在各个小范围内所占比例的大小.一般是用频率分布直方图反映样本频率分布.三、样本的数字特征众数:就是数据中出现次数最多的那个,比其他的都多,如果几个数据出现的次数都是最多,则它们都是众数;每个数据都只有一次,那么数据没有众数.所以众数可以不止一个或者没有.中位数:就是这些数据排列好了以后中间的那个数字,那么如果有偶数个数据,那么就是中间两个数字的平均数,如果有奇数个数据,则中间那个就是数据的中位数.所以数据的中位数不一定在数据中.平均数:这个就是把所有数据相加,除以个数,就是数据的平均数. nx n++(n x x ++-(n x x ++-四、茎叶图茎叶图又称“枝叶图”,它的思路是将数组中的数按位数进行比较,将数的大小基本不变或变化不大的位作为一个主干(茎),将变化大的位的数作为分枝(叶),列在主干的后面,这样就可以清楚地看到每个主干后面的几个数,每个数具体是多少.当数据是两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两边的数字表示个位数,即第二个有效数字,它的中间部分像植物的茎,两边部分像植物茎上长出的叶子,因此通常把这样的图叫做茎叶图.【方法讲评】【例1】对某小区100户居民的月均用水量进行统计,得到样本的频率分布直方图如图,则估计此样本的众数、中位数分别为()A. 2.25,2.5 B.2.25,2.02 C.2,2.5 D.2.5,2.25【点评】(1)求频率分布图中的众数,一般先计算出频率分布直方图中的每个小矩形的面积,找到面积最大的那个矩形,取该矩形的横边中点对应的数为众数.(2)求众数也可以直接找最高矩形的横边的中点.【反馈检测1】某学校900名学生在一次百米测试中,成绩全部介于13秒与18秒之间,抽取其中50个样本,将测试结果按如下方式分成五组:第一组[13,14],第二组[14,15),…,第五组[17,18],如图是按上述分组方法得到的频率分布直方图.(1)若成绩小于14秒认为优秀,求该样本在这次百米测试中成绩优秀的人数;(2)请估计学校900名学生中,成绩属于第四组的人数;(3)请根据频率分布直方图,求样本数据的众数和中位数.【例2】高二某班50名学生在一次百米测试中,成绩全部都介于13秒到18秒之间,将测试结果按如下方式分成五组,第一组[13,14),第二组[14,15)…第五组[17,18],如图是按上述分组方法得到的频率分布直方图.(1)若成绩大于等于14秒且小于16秒规定为良好,求该班在这次百米测试中成绩为良好的人数. (2)请根据频率分布直方图,估计样本数据的众数和中位数(精确到0.01).(3)设n m ,表示该班两个学生的百米测试成绩,已知[)[]18,1714,13, ∈n m ,.6个基本事件组成.【点评】求频率分布直方图中的中位数,一般先计算出每个小矩形的面积,通过解方程找到左边面积为0.5的点P ,点P 对应的数就是中位数.【反馈检测2】某公路段在某一时刻内监测到的车速频率分布直方图如图所示. (Ⅰ)求纵坐标中参数h 的值及第三个小长方形的面积; (Ⅱ)求车速的众数1v ,中位数2v 的估计值;1122n n xx p x p x p 计算.的中点对应的数,n p 代表第n 个矩形的面积【例3】某校从参加考试的学生中抽出60名学生,将其成绩(均为整数)分成六组[40,50),[50,60)...[90,100]后画出如下部分频率分布直方图.观察图形的信息,回答下列问题: (Ⅰ)求成绩落在[70,80)上的频率,并补全这个频率分布直方图; (Ⅱ) 估计这次考试的及格率(60分及以上为及格)和平均分;(Ⅲ) 从成绩是70分以上(包括70分)的学生中选两人,求他们在同一分数段的概率.【解析】(Ⅰ)成绩落在[70,80)上的频率是0.3,频率分布直方图如下图.(Ⅲ) 成绩是70分以上(包括70分)的学生人数为(0.03+0.025+0.005)×10×60=36 所以所求的概率为【点评】求频率分布直方图中的平均数,1122n n x x p x p x p 计算.其中nx 代表第n 个矩形的横边的中点对应的数,n p 代表第n 个矩形的面积.【反馈检测3】某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100]. (1)求图中a 的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;(3)若这100名学生语文成绩某些分数段的人数(x )与数学成绩相应分数段的人数(y )之比如下表所示,求数学成绩在[50,90)之外的人数.高中数学常见题型解法归纳及反馈检测第63讲: 根据频率分布直方图求中位数众数和平均数参考答案【反馈检测1答案】(1)3;(2)288;(3)15.5,15.74.【反馈检测2答案】(1)0.01h =,第三个小长方形的面积为65;(2)1265,62.5v v ==;(3【反馈检测2详细解析】(Ⅰ)∵所有小长形面积之和为1,∴10h +10×3h +10×4h +10×2h =1, 解得h =0.01, ∴第三个小长方形的面积为:10×4h =10×0.04=0.4. (Ⅱ)车速的众数1v =,车速的中位数是两边直方图的面积相等, 于是得:10×0.01+10×0.03+(2v ﹣60)×0.04=0.5,解得2v =62.5.×10×45+0.03×10×55+0.04×10×65+0.02×10×75=62. 【反馈检测3答案】(1)005.0=a ;(2)73;(3)10.【反馈检测3详细解析】(1)依题意得,()104.003.002.0210=+++a ,解得005.0=a(2)这100名学生语文成绩的平均分为:()分7305.0952.0853.0754.06505.055=⨯+⨯+⨯+⨯+⨯ (3)数学成绩在[50,60)的人数为:100×0.05=5数学成绩在[60,70[70,80数学成绩在[80,90所以数学成绩在[50,90)之外的人数为:102540205100=----。
高中数学复习概率统计题型归纳与讲解03 频率分布直方图

高中数学复习概率统计题型归纳与讲解专题3频率分布直方图例1.要调查某地区高中学生身体素质,从高中生中抽取100人进行跳高测试,根据测试成绩制作频率分布直方图如图,现从成绩在[120,140)之间的学生中用分层抽样的方法抽取5人,应从[120,130)间抽取人数为b,则()A.a=0.2,b=2B.a=0.025,b=3C.a=0.3,b=4D.a=0.030,b=3【解析】解:由题得10×(0.005+0.035+a+0.020+0.010)=1,所以a=0.030.在[120,130)之间的学生人数为:100×10×0.030=30人,在[130,140)之间的学生人数为:100×10×0.020=20人,在[120,140)之间的学生人数为:100×(10×0.030+0.020)=50人,又用分层抽样的方法在[120,140)之间的学生50人中抽取5人,即抽取比例为:110,所以成绩在[120,130)之间的学生中抽取的人数应,30×110=3,即b=3,故选:D.例2.从某企业生产的某种产品中随机抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:质量指标值分组[70,80) [80,90) [90,100) [100,110) 110,120)频数 14 20 36 18 12估计这种产品质量指标值的平均数为(同一组中的数据用该组区间的中点值作代表)( )A .100B .98.8C .96.6D .94.4【解析】解:平均数x →=0.14×75+0.20×85+0.36×95+0.18×105+0.12×115=94.4.故选:D .例3.“新冠肺炎”席卷全球,我国医务工作者为了打好这次疫情阻击战,充分发挥优势,很快抑制了病毒,据统计老年患者治愈率为71%,中年患者治愈率为85%,青年患者治愈率为91%.如果某医院有30名老年患者,40名中年患者,50名青年患者,则估计该医院的平均治愈率是( )A .86%B .83%C .90%D .84%【解析】解:利用求加权平均数的公式解得:30×71%+40×85%+50×91%30+40+50=0.84=84%,故选:D .例4.已知样本数据x 1,x 2,…,x n (n ∈N *)的平均数与方差分别是a 和b ,若y i =﹣2x i +3(i =1,2,…n ),且样本数据y 1,y 2,…,y n 的平均数与方差分别是b 和a ,则a ﹣b =( )A .1B .2C .3D .4【解析】解:由题意得:{−2a +3=b a =4b ,解得:{a =43b =13,故a ﹣b =1, 故选:A .例5.下面定义一个同学数学成绩优秀的标志为:“连续5次考试成绩均不低于120分”.现有甲、乙、丙三位同学连续5次数学考试成绩的记录数据(记录数据都是正整数):①甲同学:5个数据的中位数为127,众数为120;②乙同学:5个数据的中位数为125,总体均值为127;③丙同学:5个数据的中位数为135,总体均值为128,总体方差为19.8.则可以判定数学成绩优秀同学为( )A .甲、乙B .乙、丙C .甲、丙D .甲、乙、丙【解析】解:在①中,甲同学:5个数据的中位数为127,众数为120,所以前三个数为120,120,127,则后两个数肯定大于127,故甲同学数学成绩优秀,故①成立;在②中,5个数据的中位数为125,总体均值为127,可以找到很多反例,如:118,119,125,128,145,故乙同学数学成绩不优秀,故②不成立;在③中,5个数据的中位数为135,总体均值为128,总体方差为19.8设x 1<x 2<x 3<x 4,则丙的方差为15[(x 1﹣128)2+(x 2﹣128)2+(x 3﹣128)2+(x 4﹣128)2+(135﹣128)2]=19.8, ∴(x 1﹣128)2+(x 2﹣128)2+(x 3﹣128)2+(x 4﹣128)2=50,∴(x 1﹣128)2≤50,得|x 1﹣128|≤5,∴x 1≥128﹣5>120,∴丙同学数学成绩优秀,故③成立.∴数学成绩优秀有甲和丙2个同学.故选:C .例6.若数据x 1,x 2,…,x n 的平均数x =3,方差s 2=1,则数据2x 1+3,2x 2+3,…,2x n +3的平均数和方差分别为( )A.6,6B.9,2C.9,6D.9,4【解析】解:由题意若数据x1,x2,…,x n的平均数x=3,方差s2=1,可得x1+x2+…+x n=3n,则:2x1+3+x2+3+…+x n+3=2(x1+x2+…+x n)+3n=9n,所以数据2x1+3,2x2+3,…,2x n+3的平均数为9.又S2=1n[(x1﹣3)2+(x2﹣3)2+…+(x n﹣3)2]=1,所以[(x1﹣3)2+(x2﹣3)2+…+(x n﹣3)2]=n,所以1n [(2x1+3﹣9)2+(2x2+3﹣9)2+…+(2x n+3﹣9)2]=4n[(x1﹣3)2+(x2﹣3)2+…+(x n﹣3)2]=4,则数据2x1+3,2x2+3,…,2x n+3的平均数和方差分别为9,4.故选:D.例7.随着城镇化的不断发展,老旧小区的改造及管理已经引起了某市政府的高度重视,为了了解本市甲,乙两个物业公司管理的小区住户对其服务的满意程度,现从他们所服务的小区中随机选择了40个住户,根据住户对其服务的满意度评分,得到A区住户满意度评分的频率分布直方图和B 区住户满意度评分的频率分布表.B区住户满意度评分的频率分布表满意度评分分组[50,60)[60,70)[70,80)[80,90)[90,100]频数4610128(Ⅰ)在图2中作出B区住户满意度评分的频率分布直方图,并通过频率分布直方图计算两区住户满意度评分的平均值及分散程度(其中分散程度不要求计算出具体值,给出结论即可);(Ⅱ)根据住户满意度评分,将住户和满意度分为三个等级:满意度评分低于70分,评定为不满意;满意度评分在70分到89分之间,评定为满意;满意度评分不低于90分,评定为非常满意.试估计哪个地区住户的满意度等级为不满意的概率大?若是要选择一个物业公司来管理老旧小区的物业,从满意度角度考虑,应该选择哪一个物业公司?说明理由.【解析】解:(Ⅰ)作出如图所示的频率分布直方图,B区住户满意度评分的频率分布直方图如图所示A区住户满意度评分的平均值为45×0.1+55×0.2+65×0.3+75×0.2+85×0.15+95×0.05=67.5;B区住户满意度评分的平均值为55×0.1+65×0.15+75×0.25+85×0.3+95×0.2=78.5.通过比较两区住户满意度评分的频率分布直方图可以看出,B区住户满意度评分比较集中,而A 区住户满意度评分比较分散.(Ⅱ)记D表示事件:“A区住户的满意度等级为不满意”,记E表示事件:“B区住户的满意度等级为不满意”,则P(D)=(0.010+0.020+0.030)×10=0.6,P(E)=(0.010十0.015)×10=0.25,所以A区住户的满意度等级为不满意的概率较大.若是要选择一个物业公司来管理老旧小区的物业,从满意度等级为满意来考虑,应该选择乙物业公司来为小区服务,这样的话小区住户满意度会高一些.例8.某校在一次期末数学测试中,为统计学生的考试情况,从学校的2000名学生中随机抽取50名学生的考试成绩,被测学生成绩全部介于65分到145分之间(满分150分),将统计结果按如下方式分成八组:第一组[65,75),第二组[75,85),……第八组[135,145],如图是按上述分组方法得到的频率分布直方图的一部分.(1)求第七组的频率,并完成频率分布直方图;(2)用样本数据估计该校的2000名学生这次考试成绩的平均分(同一组中的数据用该组区间的中点值代表该组数据平均值);(3)若从样本成绩属于第六组和第八组的所有学生中随机抽取2名,求他们的分差的绝对值小于10分的概率.【解析】解:(1)由频率分布直方图得第七组的频率为:1﹣(0.004+0.012+0.016+0.030+0.020+0.006+0.004)×10=0.08.完成频率分布直方图如下:(2)用样本数据估计该校的2000名学生这次考试成绩的平均分为:70×0.004×10+80×0.012×10+90×0.016×10+100×0.030×10+110×0.020×10+120×0.006×10+130×0.008×10+140×0.004×10=102.(3)样本成绩属于第六组的有0.006×10×50=3人,样本成绩属于第八组的有0.004×10×50=2人,从样本成绩属于第六组和第八组的所有学生中随机抽取2名,基本事件总数n=C52=10,他们的分差的绝对值小于10分包含的基本事件个数m=C32+C22=4,∴他们的分差的绝对值小于10分的概率p=mn=410=25.例9.我国是世界上严重缺水的国家之一,城市缺水问题较为突出,某市政府为了节约生活用水,计划在本市试行居民生活用水定额管理,即确定一个居民月用水量标准x,用水量不超过x的部分按平价收费,超出x的部分按议价收费.下面是居民月均用水量的抽样频率分布直方图.①求直方图中a的值;②试估计该市居民月均用水量的众数、平均数;③设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;④如果希望85%的居民月均用水量不超过标准x ,那么标准x 定为多少比较合理?【解析】解:①由概率统计相关知识,各组频率之和的值为1,∵频率=(频率/组距)*组距,∴0.5×(0.08+0.16+0.4+0.52+0.12+0.08+0.04+2a )=1,解得:a =0.3,∴a 的值为0.3;②由频率分布直方图估计该市居民月均用水量的众数为2+2.52=2.25(吨),估计该市居民月均用水量的平均数为:0.5(0.25×0.08+0.75×0.16+1.25×0.3+1.75×0.4+2.25×0.52+2.75×0.3+3.25×0.12+3.75×0.08+4.25×0.04)=2.035(吨).③由图,不低于3吨人数所占百分比为0.5×(0.12+0.08+0.04)=12%,∴全市月均用水量不低于3吨的人数为:30×12%=3.6(万);④由频率分布直方图得月均用水量低于2.5吨的频率为:0.5×(0.08+0.16+0.3+0.4+0.52)=0.73<85%,月均用水量低于3吨的频率为:0.5×(0.08+0.16+0.3+0.4+0.52+0.3)=0.88>85%,∴x=2.5+0.5×0.85−0.730.3×0.5=2.9(吨).例10.如图是某校高三(1)班的一次数学知识竞赛成绩的基叶图(图中仅列出[50,60),[90,100)的数据)和频率分布直方图.(1)求全班人数以及频率分布直方图中的x,y;(2)估计学生竞赛成绩的平均数和中位数(保留两位小数).【解析】解:(1)分数在[50,60)的频率为0.020×10=0.2,由茎叶图知,分数在[50,60)之间的频数为5,所以全班人数为50.2=25(人);分数在[90,100)之间的频数为2,由225=10y,解得y=0.008;又10x=1﹣10×(0.036+0.024+0.020+0.008),解得x=0.012.(2)由频率分布直方图,计算平均数为x=55×0.2+65×0.24+75×0.36+85×0.12+95×0.08=71.4,由0.2+0.24+0.36=0.80,所以中位数在[70,80)内,设中位数为m,则0.20+0.24+(m﹣70)×0.036=0.5,解得m≈71.67,所以中位数约为71.67.例11.某高中数学建模兴趣小组的同学为了研究所在地区男高中生的身高与体重的关系,从若干个高中男学生中抽取了1000个样本,得到如下数据.数据一:身高在[170,180)(单位:cm)的体重频数统计体重(kg)[50,55)[55,60)[60,65)[65,70)[70,75)[75,80)[80,85)[85,90)人数206010010080201010数据二:身高所在的区间含样本的个数及部分数据身高x(cm)[140,150)[150,160)[160﹣170)[170﹣180)[180﹣190)平均体重y(kg)4553.66075(Ⅰ)依据数据一将下面男高中生身高在[170﹣180)(单位:cm)体重的频率分布直方图补充完整,并利用频率分布直方图估计身高在[170﹣180)(单位:cm)的中学生的平均体重;(保留小数点后一位)(Ⅱ)依据数据一、二,计算身高(取值为区间中点)和体重的相关系数约为0.99,能否用线性回归直线来刻画中学生身高与体重的相关关系,请说明理由;若能,求出该回归直线方程;(Ⅲ)说明残差平方和或相关指数R2与线性回归模型拟合效果之间关系.(只需写出结论,不需要计算)参考公式:b=∑ni=1(x i−x)(y i−y)∑n i=1(x i−x)2=∑ni=1x i y i−nx⋅y∑n i=1x i2−nx2,a=y−b x.参考数据:(1)145×45+155×53.6+165×60+185×75=38608;(2)1452+1552+1652+1752+1852﹣5×1652=1000.(3)663×175=116025,664×175=116200,665×175=116375.(4)728×165=120120.【解析】解:(1)身高在[170,180)的总人数为:20+60+100+100+80+20+10+10=400,体重在[55﹣60)的频率为:60400=0.15,体重在[70﹣75)的频率为:80400=0.2,平均体重为:52.5×0.05+57.5×0.15+62.5×0.25+67.5×0.25+72.5×0.2+77.5×0.05+82.5×0.025+87.5×0.025≈66.4,(2)因为r=0.99→1,线性相关很强,故可以用线性回归直线来刻画中学生身高与体重的相关,x=145+155+165+175+1855=165,y=45+75+60+53.6+66.45=60,b=∑8i=1x i y i−8x⋅y∑8i=1x i2−8x2=38608+175×66.4−5×165×601000=0.728,a=y−b x=60−0.728×165=−60.12,所以回归直线方程为:y=0.728x−60.12,(3)残差平方和越小或相关指数R2越接近于1,线性回归模型拟合效果越好.例12.市政府为了节约用水,调查了100位居民某年的月均用水量(单位:t),频数分布如下:分组[0,0.5)[0.5,1)[1,1.5)[1.5,2)[2,2.5)[2.5,3)[3,3.5)[3.5,4)[4,4.5]频数4815222514642(1)根据所给数据将频率分布直方图补充完整(不必说明理由);(2)根据频率分布直方图估计本市居民月均用水量的中位数;(3)根据频率分布直方图估计本市居民月均用水量的平均数(同一组数据由该组区间的中点值作为代表).【解析】解:(1)频率分布直方图如图所示:(2)∵0.04+0.08+0.15+0.22=0.49<0.5,∴中位数为2+0.5−0.490.25×0.5=2.02,(3)由频率分布直方图得平均数为:0.25×0.04+0.75×0.08+1.25×0.15+1.75×0.22+2.25×0.25+2.75×0.14+3.25×0.06+3.75×0.04+4.25×0.02=2.02.例13.某地区100居民的人均用水量(单位:t)的分组的频数如下:[0,0.5),4;[0.5,1),8;[1,1.5),15;[1.5,2),22;[2,2.5),25;[2.5,3),14;[3,3.5),6;[3.5,4),4;[4,4.5),2.(1)列出样本的频率分布表;(2)画出频率分布直方图,并根据直方图估计这组数据的众数;(坐标轴单位自定)(3)当地政府制订了人均月用水量为3t的标准,若超出标准加倍收费,当地政府解释说,85%以上的居民不超出这个标准,这个解释对吗?为什么?【解析】解:(1 )分组频数频率[0,0.5 )40.04[0.5,1 )80.08[1,1.5 )150.15[1.5,2 )220.22[2,2.5 )250.25[2.5,3 )140.14[3,3.5 )60.06[3.5,4 )40.04[4,4.5 )20.02(2):频率分布直方图如下图,由图知,这组数据的众数为2.25.(3)人均月用水量在3t以上的居民的比例为6%+4%+2%=12%,即大约是有12%的居民月均用水量在3t以上,88%的居民月均用水量在3t以下,因此,政府的解释是正确的.例14.某校从参加高一年级期末考试的学生中抽出60名学生,将其物理成绩(均为整数)分成六段[40,50),[50,60)…[90,100]后画出如下频率分布直方图.观察图形的信息,回答下列问题:(Ⅰ)估计这次考试的众数m与中位数n(结果保留一位小数);(Ⅱ)估计这次考试的及格率(60分及以上为及格)和平均分.【解析】解:(Ⅰ)众数是最高小矩形中点的横坐标,所以众数为m=75(分);(3分)前三个小矩形面积为0.01×10+0.015×10+0.015×10=0.4,∵中位数要平分直方图的面积,∴n=70+0.5−0.40.03=73.3(7分)(Ⅱ)依题意,60及以上的分数所在的第三、四、五、六组,频率和为(0.015+0.03+0.025+0.005)*10=0.75所以,抽样学生成绩的合格率是75% (11分)利用组中值估算抽样学生的平均分45•f1+55•f2+65•f3+75•f4+85•f5+95•f6=45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71估计这次考试的平均分是71分.(14分)例15.为应对新冠疫情,重庆市于2020年1月24日启动重大突发公共卫生事件一级响应机制,要求市民少出门,少聚集,于是快递业务得到迅猛发展.为满足广大市民的日常生活所需,某快递公司以优厚的条件招聘派送员,现给出了两种日薪薪酬方案,甲方案:底薪100元,每派送一单奖励1元;乙方案:底薪150元,每日前55单没有奖励,超过55单的部分每单奖励10元.(Ⅰ)请分别求出这两种薪酬方案中日薪y(单位:元)与送货单数n的函数关系式;(Ⅱ)根据该公司所有派送员10天的派送记录,发现派送员的日平均派送单数与天数满足以下表格:日均派送单数5054565860频数(天)23221回答下列问题:①根据以上数据,设每名派送员的日薪为X(单位:元),试分别求出这10天中甲、乙两种方案的日薪X的平均数及方差;②结合①中的数据,根据统计学的思想,若你去应聘派送员,选择哪种薪酬方案比较合适,并说明你的理由.(参考数据:172=289,372=1369)【解析】解:(1)甲方案,y =100+n ;乙方案,y ={150,n ≤5510n −400,n >55.(2),①甲方案中,根据已知表格可计算出日平均派送单数为2×50+3×54+2×56+2×58+6010=55,方差为0.2×(50﹣55)2+0.3×(54﹣55)2+0.2×(56﹣55)2+0.2×(58﹣55)2+0.1×(60﹣55)2=9.8,所以,由(1)中变量之间的关系,可以指,甲方案的日薪X 的平均数为155,方差为9.8. 乙方案中,日薪X 的平均数为[5×150+160×2+180×2+200]×0.1=163,日薪方差为0.5×(150﹣163)2+0.2×(160﹣163)2+0.2×(180﹣163)2+0.1×(200﹣163)2=213.4.(3)若去应聘派送员,我会选择乙方案,从平均数的角度来看,乙方案的平均薪酬更高,同时更有激励作用.例16.2019年起,全国地级及以上城市全面启动生活垃圾分类工作,垃圾分类投放逐步成为居民的新时尚.为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收垃圾、有害垃圾和其他垃圾四类,并分别设置了相应的垃圾箱.为调查居民生活垃圾分类投放情况,现随机抽取了某市三类垃圾箱中总计1000吨生活垃圾,数据统计如下(单位:吨):“厨余垃圾”箱 “可回收垃圾”箱 “有害垃圾”箱“其他垃圾”箱厨余垃圾 300 70 30 80 可回收垃圾 30 210 30 30 有害垃圾 20 20 60 20 其他垃圾10201060(1)分别估计厨余垃圾和有害垃圾投放正确的概率;(2)假设厨余垃圾在“厨余垃圾”箱、“可回收垃圾”箱、“有害垃圾”箱、“其他垃圾”箱的投放量分别为a,b,c,d,其中a>0,a+b+c+d=800.当数据a,b,c,d的方差s2最大时,写出a,b,c,d的值(结论不要求证明),并求此时s2的值.【解析】解:(1)根据题意,厨余垃圾共300+70+30+80=480吨,其中投放正确的有300吨,则厨余垃圾投放正确的概率P1=300480=58,有害垃圾共20+20+60+20=120吨,其中投放正确的有60吨,则害垃圾投放正确的概率P2=60120=12;(2)根据题意,厨余垃圾在四种垃圾箱的投放量分别为a,b,c,d,其中a>0,a+b+c+d=800,则其平均数x=8004=200,则其方差S2=14[(a﹣200)2+(b﹣200)2+(c﹣200)2+(d﹣200)2],当a=600,b=c=d=0时,s2最大,而x=a+b+c+d4=200,此时s2=14[(600﹣200)2+(0﹣200)2+(0﹣200)2+(0﹣200)2]=120000例17.某市教育局为了解全市高中学生在素质教育过程中的幸福指数变化情况,对8名学生在高一,高二不同学习阶段的幸福指数进行了一次跟踪调研.结果如表:学生编号12345678高一阶段幸福指数9593969497989695学生编号12345678高二阶段幸福指数9497959695949396(1)根据统计表中的数据情况,分别计算出两组数据的平均值及方差;(2)请根据上述结果,就平均值和方差的角度分析,说明在高一,高二不同阶段的学生幸福指数状况,并发表自己观点.【解析】解:(1)8名学生在高一阶段的幸福指数的平均数为:x=18(95+93+96+94+97+98+96+95)=95.5,方差为:S12=18∑8i=1(x i−x1)2=2.25,8名学生在高二阶段的幸福指数的平均数为:y=18(94+97+95+96+95+94+93+96)=95,方差为:S22=18∑8i=1(y i−y)2=1.5;(2)①∵x>y,∴可以认为这8名学生在高一的平均幸福指数大于在高二的平均幸福指数,②∵S12>S22,∴可以认为这8名学生在高二的幸福指数的稳定性大于在高一的幸福指数的稳定性.例18.2020年1月,教育部《关于在部分高校开展基础学科招生改革试点工作的意见》印发,自2020年起,在部分高校开展基础学科招生改革试点(也称“强基计划”).强基计划聚焦高端芯片与软件、智能科技、新材料、先进制造和国家安全等关键领域以及国家人才紧缺的人文社会科学领域,选拔培养有志于服务国家重大战略需求且综合素质优秀或基础学科拔尖的学生.新材料产业是重要的战略性新兴产业,如图是我国2011﹣2019年中国新材料产业市场规模及增长趋势图.其中柱状图表示新材料产业市场规模(单位:万亿元),折线图表示新材料产业市场规模年增长率(%).(1)求从2012年至2019年,每年新材料产业市场规模年增长量的平均数(精确到0.1);(2)从2015年至2019年中随机挑选两年,求两年中至少有一﹣年新材料产业市场规模年增长率超过20%的概率;(3)由图判断,从哪年开始连续三年的新材料产业市场规模的方差最大.(结论不要求证明)【解析】解:(1)从2012年起,每年新材料产业市场规模的年增加值依次为:0.3,0.2,0.3,0.5,0.6,0.4,0.8,0.6,(单位:万亿元),∴年增加的平均数为:0.3+0.2+0.3+0.5+0.6+0.4+0.8+0.68=0.5万亿元.(2)设A表示事件“从2015年至2019年中随机挑选两个,两年中至少有一年新材料产业市场规模增长率超过20%”,依题意P(A)=1−C22C52=910.(3)从2017年开始连续三年的新材料产业市场规模的方差最大.。
频数直方图 知识讲解

频数直方图——知识讲解责编:康红梅【学习目标】1. 理解组距、频数、频率、频数统计表的概念;2. 会制作频数统计表,理解频数统计表的意义和作用;3. 体会样本和总体的关系,会用样本的频数分布估计总体的频数分布;4. 掌握画频数直方图的一般步骤,会画频数直方图,理解频数分布直方图的意义和作用. 【要点梳理】要点一、组距、频数、频率与频数统计表1.组距:将数据按从小到大适当地分组,并绘制成统计表,其中每一组的后一个边界值与前一个边界值的差叫做组距.2. 频数:数据分组后落在各小组内的数据个数称为频数.3. 频率:每一组数据频数与数据总数的比叫做这一组数据的频率.4.频数统计表:把各个组别中相应的频数分布用表格的形式表示出来,这种反映数据分布情况的统计表叫做频数统计表,也称频数表.列频数统计表的一般步骤如下:1.选取组距,确定组数.组数通常取大于最大值-最小值组距的最小整数. 当数据在100个以内时,通常可按照数据的多少分成5~12组.2.确定各组的边界值.第一组的起始边界值通常取得比最小数据要小一些.为了使数据不落在边界上,边界值可以比实际数据多取一位小数.取定起始边界值后,就可以根据组距写出各组的边界值.3.列表,填写组别和统计各组频数.要点诠释:(1)各组频数总和等于样本容量,各组数据的频率之和等于1;(2)频数统计表能清楚地反映一组数据的大小分布情况.将一批数据分组,一般数据越多,分的组也越多.要点二、频数直方图1.频数直方图由若干个宽等于组距,面积表示每一组频数的长方形组成的统计图,叫做频数直方图.简称直方图.它直观地呈现了频数的分布特征和变化规律.2.频数直方图的画法(1)列出频数表;(2)画具有相同原点,横、纵两条互相垂直的数轴,分别表示各组别和相应的频数.然后分别以横轴上每一组的两边界点为端点的线段为底边,作高为相应频数的长方形,就得到所求的频数直方图.3. 频数直方图与条形图的联系与区别(1)联系:它们都是用矩形来表示数据分布情况的;当矩形的宽度相等时,都是用矩形的高来表示数据分布情况的;频数直方图是特殊的条形统计图.(2)区别:①由于分组数据具有连续性,频数直方图中各“条形”之间通常是连续排列,中间没有间隙,而条形图中各“条形”是分开排列的,中间有一定的间隙;②条形统计图用横向指标表示考察对象的类别,用纵向指标表示不同对象的数量. 频数直方图横向指标表示考察对象数据的变化范围,用纵向指标表示相应范围内数据的频数.要点诠释:(1)频数直方图是条形统计图的一种;(2)注意直方图与条形图、扇形图、折线图在表示数据方面的优缺点.【典型例题】类型一、组距、组数、频数、频率1. (1)对某班50名学生的数学成绩进行统计,90~99分的人数有10名,这一分数段的频数为_________.(2)有60个数据,其中最小值为140,最大值为186,若取组距为5,则应该分的组数是________.【答案】(1)10; (2)10.【解析】解:(1)利用频数的定义进行解答;(2)利用组数的计算方法求解.【总结升华】组数的确定方法:设数据总数目为n,一般地,当n≤50时,则分为5~8组;的整数部分+1.当50≤n<100.则分为8~12组较为合适,组数等于最大值-最小值组距举一反三:【变式】一个样本中有80个数据,最大值是141,最小值是50,取组距为10,则样本可分成()A.10组 B.9组 C.8组 D.7组【答案】A.2. 我校八年级学生在生物实验中抽出50粒种籽进行研究,数据落在37~40之间的频率是0.2,则这50个数据在37~40之间的个数是()A.1 B.2 C.10 D.5【思路点拨】根据频率、频数的关系:频率=频数÷数据总和,可得频数=频率×数据总和.【答案】C.【解析】解:∵在生物实验中抽出50粒种籽进行研究,数据落在37~40之间的频率是0.2,∴这50个数据在37~40之间的个数=50×0.2=10.故选C.【总结升华】本题考查频率、频数、总数的关系:频率=频数÷数据总和.举一反三:【变式】(2016•黄浦区三模)将样本容量为100的样本编制成组号①~⑧的八个组,简况如表所示:组号①②③④⑤⑥⑦⑧频数14 11 12 13 13 12 10那么第⑤组的频率为()A.14 B.15 C.0.14 D.0.15【答案】D.解:根据表格中的数据,得第⑤组的频数为100﹣(14+11+12+13+13+12+10)=15, 其频率为15:100=0.15. 类型二、频数统计表3.某中学为了解学生的课外阅读情况,就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学仅选一类),并根据调查结果制作了尚不完整的频数统计表:(1)表中m=______,n=______;(2)在这次抽样调查中,最喜爱阅读哪类读物的学生最多?最喜爱阅读哪类读物的学生最少?(3)根据以上调查,试估计该校1200名学生中最喜爱阅读科普类读物的学生有多少人? 【思路点拨】(1)由频率统计表可看出艺术类的频数22,频率是0.11,由频率=频数÷数据总数计算,可得到总数;根据频数的总和为200,可求出m 的值; (2)频数统计表中可以直接看出答案;(3)用样本估计整体:用整体×样本的百分比即可. 【答案与解析】 解:(1)学生总数:22÷0.11=200,m=200-22-66-28=84, n=66÷200=0.33,(2)从频数统计表中可以看出:最喜爱阅读文学类读物的学生最多84人,最喜爱阅读艺术类读物的学生最少22人. (3)1200×0.33=396(人). 【总结升华】此题主要考查了读频数统计表的能力,利用图表得出正确的信息是解决问题的关键.类型三、频数直方图4.某地区对八年级的英语教学情况进行期末质量调查,从中抽出的20个班级的英语期末平均成绩如下(单位:分):80 81 83 79 64 76 80 66 70 72 71 68 69 78 67 80 68 72 70 65试列出频数统计表并绘出频数直方图.【思路点拨】按照画频数直方图的步骤进行解答.解答时,应注意每个步骤中需要注意的事项.【答案与解析】解:(1)计算最大值与最小值的差.类别 频数(人数) 频率 文学 m 0.42 艺术 22 0.11 科普 66 n 其它 28 合计 183-64=19.(2)决定组距与组数.若取组距为4,则有194≈5,所以组数为5.(3)列频数统计表.(4)画频数直方图.【总结升华】按步骤进行操作.因选取的组距不同,所列的频数统计表及所画的频数直方图也不一样.在统计时,数据不能出现重复或遗漏的现象.【高清课堂:数据的描述369923 例1】举一反三:【变式】如图是某校九年级部分男生做俯卧撑的成绩(次数)进行整理后,分成五组,画出的频率分布直方图.已知从左到右前4个小组的频率分别是0.05,0.15,0.25,0.30,第五小组的频数为25,若合格成绩为20,那么此次统计的样本容量和本次测试的合格率分别是().A.100,55% B.100,80% C.75,55% D.75,80%【答案】B.5. (2016•安徽模拟)我校为了迎接体育中考,了解学生的体育成绩,从全校500名九年级学生中随机抽取了部分学生进行体育测试,其中“跳绳”成绩制作图如下:成绩段频数频率160≤x<170 5 0.1170≤x<180 10 a180≤x<190 b 0.14190≤x<200 16 c200≤x<210 12 0.24表(1)根据图表解决下列问题:(1)本次共抽取了名学生进行体育测试,表(1)中,a=,b=c=;(2)补全图(2),所抽取学生成绩中中位数在哪个分数段;(3)“跳绳”数在180以上,则此项成绩可得满分.那么,你估计全校九年级有多少学生在此项成绩中获满分?【思路点拨】(1)根据第一组的频数是5,对应的频率是0.1据此即可求得总人数;(2)根据中位数的定义即可求解;(3)利用总人数500乘以对应的比例即可求解.【答案与解析】解:(1)抽测的人数是:5÷0.1=50(人),a==0.2,b=50×0.14=7,c==0.32.故答案是:50,0.2,7,0.32.(2)所抽取学生成绩中中位数在190~200分数段;(3)全校九年级有多少学生在此项成绩中获满分的人数是×500=350(人).答:全校九年级有多少学生在此项成绩中获满分的人数是350人.【总结升华】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.举一反三:【变式】随着车辆的增加,交通违规的现象越来越严重,交警对某雷达测速区检测到的一组汽车的时速数据进行整理,得到其频数及频率如表(未完成):(1)请你把表中的数据填写完整;(2)补全频数直方图;(3)如果汽车时速不低于60千米即为违章,则违章车辆共有多少辆?【答案】解:(1)36÷200=0.18,200×0.39=78,200-10-36-78-20=56,56÷200=0.28;(2)如图所示:(3)违章车辆数:56+20=76(辆).答:违章车辆有76辆.。
高考频率分布直方图知识点

高考频率分布直方图知识点高考题频率分布直方图知识点在学生的学习生涯中,高考是一个极为重要的里程碑。
为了能在高考中取得好成绩,学生们不仅要掌握各学科的基础知识,还需要熟悉高考题型和考点。
而对于数学科目来说,直方图是高考频率分布的一个重要知识点。
下面将以直方图为主题,讨论其相关知识点。
直方图是一种用来表示数据分布情况的图形。
它由一系列高度不等的矩形组成,每个矩形代表一个数据区间,高度表示该区间内数据的频数或频率。
首先,我们先来了解一下直方图的构成。
直方图的横轴通常表示数据的取值范围,纵轴表示频数或频率。
每个矩形的宽度可以根据数据的分布情况来确定,它们可以等宽也可以不等宽。
矩形的高度则代表了数据的频数或频率。
直方图的制作需要经过以下几个步骤。
首先,根据给定的数据集,将数据按照一定的区间进行分组。
一般来说,划分区间时需要保证每个区间的宽度相等,并且包含足够多的数据点。
然后,统计每个区间内的数据个数或频率,并将其绘制成对应高度的矩形。
最后,根据实际需要,可以给直方图添加标题和坐标轴标签等。
直方图不仅能够展示数据的分布情况,还可以帮助我们观察和分析数据的特征和规律。
通过观察直方图,我们可以了解到数据的集中趋势、离散程度以及异常值等重要信息。
比如,直方图的峰度可以反映数据的分布形态是平坦还是陡峭,而直方图的偏度可以反映数据的偏斜程度。
在考试中,直方图也被广泛应用于频率分布题目中。
考生需要根据给定的数据分布情况,回答一些与直方图相关的问题。
例如,考生可以根据直方图估计数据的平均值、中位数和众数等统计指标。
同时,直方图还可以帮助考生判断数据是否满足正态分布或其他特定分布形态。
此外,在解答与直方图相关的题目时,考生还需要熟悉直方图的性质和特点。
例如,直方图的面积表示数据的频数或频率总和。
而不同的数据分布形态会对直方图的形状产生影响。
当数据分布近似正态分布时,直方图呈现出钟形曲线,对称分布的数据则呈现出对称形状的直方图。
高中数学频率分布直方图

频率分布直方图作频率分布直方图的方法为:(1)把横轴分成若干段,每一线段对应一个组的组距;(2)以此线段为底作矩形,它的高等于该组的组距频率,这样得出一系列的矩形;(3)每个矩形的面积恰好是该组上的频率.频率折线图:如果将频率分布直方图中各相邻的矩形的上底边的中点顺次连接起,就得到一条折线,称这条折线为本组数据的频率折线图.作茎叶图的方法是:将所有两位数的十位数字作为“茎”,个位数字作为“叶”,茎相同者共用一个茎,茎按从小到大的顺序从上向下列出,共茎的叶一般按从大到小(或从小到大)的顺序同行列出.知识点1:利用频率分布直方图分析总体分布例题1: 2000辆汽车通过某一段公路时的时速的频率分布直方图如右图所示,时速在[50,60)的汽车大约有 A .30辆 B .60辆 C .300辆 D .600辆变式:某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是 [96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是A.90B.75C. 60D.45变式:某初一年级有500名同学,将他们的身高(单位:cm )数据绘制成频率分布直方图(如图),若要从身高在[)120,130,[)130,140,[]140,150三组内的学生中,用分层抽样的方法选取30人参加一项活动,则从身高在[)130,140内的学生中选取的人数为 .知识点2:用样本分估计总体例题2某市2010年4月1日—4月30日对空气污染指数的监测数据如下(主要污染物为可吸入颗粒物):61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91,77,86,81,83,82,82,64,79,86,85,75,71,49,45,96 98 100 102 104 106 0.1500.125 0.1000.0750.050 克 频率/组距100 110 120130 140 150 身高频率|组距0.0050.0100.020a0.035(Ⅰ) 完成频率分布表;(Ⅱ)作出频率分布直方图;(Ⅲ)根据国家标准,污染指数在0~50之间时,空气质量为优:在51~100之间时,为良;在101~150之间时,为轻微污染;在151~200之间时,为轻度污染。
高一数学频率直方图知识点

高一数学频率直方图知识点频率直方图是数学中常见的一种图形表示方法,它主要用于展示数据集中各个数值出现的频率分布情况。
在高一数学学习中,频率直方图是一个重要的知识点,通过学习频率直方图,可以帮助我们更好地理解和分析数据的分布特征。
本文将介绍频率直方图的定义、构建和应用等相关知识。
一、频率直方图的定义和构建1. 频率直方图的定义频率直方图是一种图形表示方法,用矩形的高度表示该数值所对应的频率,横坐标表示数据的取值范围,纵坐标表示频率。
每个矩形的面积正比于该数值所对应的频率。
2. 频率直方图的构建步骤构建频率直方图的步骤如下:(1)确定数据的取值范围,划分成若干个区间;(2)统计每个区间内数据的频数;(3)用矩形的高度表示频数,绘制频率直方图。
二、频率直方图的特点和应用1. 频率直方图的特点频率直方图的特点如下:(1)矩形的高度表示频率,横坐标表示数据的取值范围;(2)每个矩形的面积正比于该数值所对应的频率;(3)频率直方图可以直观地显示出数据的分布情况。
2. 频率直方图的应用频率直方图的应用范围广泛,常见的应用有:(1)数据分析:通过频率直方图可以观察数据的分布情况,进而分析数据的特点和规律;(2)比较分析:可以通过绘制不同数据集的频率直方图,进行数据的比较和分析,找出其中的差异和相似之处;(3)预测分析:通过对历史数据的频率直方图进行分析,可以预测未来的数据分布趋势。
三、频率直方图的例题分析下面通过一个实际的例题来进行频率直方图的分析。
某班级的学生身高数据如下(单位:cm):160, 165, 168, 170, 172, 175, 175, 176, 178, 180, 182, 185, 188, 190, 195按照身高的整数位数进行分组,得到频率直方图如下:身高区间频数频率160-164 2 0.133165-169 1 0.067170-174 2 0.133175-179 3 0.2180-184 2 0.133185-189 2 0.133190-195 1 0.067通过这个例题,我们可以清晰地看到学生身高的分布情况。
高中数学第6章统计3用样本估计总体分布3-1从频数到频率3-2频率分布直方图北师大版必修第一册

健身减肥前
体重区间
[80,90)
[90,100)
[100,110)
[110,120]
频率
0
30%
50%
20%
健身减肥后
体重区间
[80,90)
[90,100)
[100,110)
[110,120]
频率
10%
40%
50%
0
对比健身前后,关于这20名肥胖者,下面结论正确的是( AB )
纵轴(小长方形的高)表示频率与组距的比值.
名师点睛
频率分布直方图的特征
总体分布情况可以通过样本频率分布情况来估计,样本频率分布是总体分
布的一种近似表示,频率分布表和频率分布直方图有以下特征:(1)从频率
分布直方图可以清楚地看出数据分布的总体趋势.(2)从频率分布直方图得
不出原始的数据内容,把数据表示成直方图后,原有的具体数据信息就被抹
4
分别是5,6,7,10,第五组的频率是0.2,那么第六组的频数是
,频率
是 0.1
.
解析 因为频率=
频数
,所以频数=频率×样本容量,因为第五组的频率是
样本容量
0.2,所以频数是 0.2×40=8,第六组的频数是 40-(5+6+7+10+8)=4,所以第六组
4
的频率是 =0.1.
40
规律方法 频数与频率的求解策略
密度.
3.[人教B版教材例题]我国是世界上严重缺水的国家之一,某市为了制定合
理的节水方案,对家庭用水情况进行了调查,通过抽样,获得了某年100个家
庭的月均用水量(单位:t),将数据按照[0,1),[1,2),[2,3),[3,4),[4,5]分成5组,制
高一频率分布直方图知识点和例题

高一频率分布直方图知识点和例题例1、关于频率分布直方图的下列说法中,正确的是()。
(A)、直方图的高表示某数的频率(B)、直方图的高表示该组上的个体在样本中出现的频率(C)、直方图的高表示该组上的个体与组距的比值( D)、直方图的高表示该组上的个体在样本中解析:在频率分布直方图中,每一个小矩形都是等宽的,即等于组距,其面积表示数据的取值落在相应区间上的频率,因此每一个小矩形的高表示该组上的个体在祥本中出现的频率与组距的比值,所以选( D)。
二、识图计算类例2、为了了解某地区高三学生的身体发有情况,抽查了该地区100名年龄为17.5岁至18岁的男生体重(kg) ,得到频率分布直方图如下:根据上图可得这100名学生中体重在[56.5,64.5 ) 的学生人数是()。
(A)20(B)30(C)40(D)50解:本题主要考查频率分布直方图和总体分布的估计等知识,同时考查图形的识别能力。
由频率直方图可知组距为2,故学生中体重在[56.5,64.5 ) 的频率为:(0.03+0.05+0.05+0.07 ) x 2= 0.4 ,所以100名学生中体重[56.5,64.5]的学生人数有:0. 4X100= 40人。
故选择C。
例3:某校高一某班共有64名学生,下图是该班某次数学考试成绩的频率分布直方图,根据该图可知,成绩在110 ^ 120间的同学大约有( )。
A、10B、11C、13D、16解析:通过直方图可知:成绩在110^120的频率是:10.05_ 0.10.15_0.320.2.所以成绩在110/~120之间的同学大约有:64X 0.2=12.813人。
故选择c。
例4一个社会调查机构就某地居民的月收入调在了100井根据所符数繁面了样本的频率分布直方图(如下图)大为了分析居民的收入与年龄、学历、职业等方面的关系,要从这1000人中再用分层抽样方法抽出100人。
作进一步调查。
则在230.3600 (元)股入段应抽出。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
频率分布直方图(北京习题集)(教师版)一.选择题(共5小题)1.(2020•朝阳区模拟)为了宣传今年9月即将举办的“第十八届中国西部博览会”(简称“西博会”),组委会举办了“西博会”知识有奖问答活动.在活动中,组委会对会议举办地参与活动的15~65岁市民进行随机抽样,各年龄段人数情况如表:组号分组各组人数各组人数频率分布直方图第1组[15,25)10第2组[25,35)a第3组[35,45)b第4组[45,55)c第5组[55,65]d根据以上图表中的数据可知图表中a和x的值分别为()A.20,0.15B.15,0.015C.20,0.015D.15,0.152.(2019春•通州区期末)已知有若干辆汽车通过某一段公路,从中抽取100辆汽车进行测速分析,其时速的频率分布直方图如图所示,那么时速在区间[60,70)内的汽车辆数大约为()A.30B.35C.40D.453.(2019•北京学业考试)生态环境部环境规划院研究表明,京津冀区域 2.5PM主要来自工业和民用污染,其中冬季民用污染占比超过50%,最主要的源头是散煤燃烧.因此,推进煤改清洁能源成为三地协同治理大气污染的重要举措.2018年是北京市压减燃煤收官年,450个平原村完成了煤改清洁能源,全市集中供热清洁化比例达到99%以上,平原地区基本实现“无煤化”,为了解“煤改气”后居民在采暖季里每月用气量的情况,现从某村随机抽取100户居民进行调查,发现每户的用气量都在150立方米到450立方米之间,得到如图所示的频率分布直方图.在这些用户中,用气量在区间[300,350)的户数为()A.5B.15C.20D.254.(2018•西城区模拟)某车站在春运期间为了改进服务,随机抽样调查了100名旅客从开始在购票窗口排队到购到车票所用的时间t(以下简称购票用时,单位:)min.下面是这次抽样的频率分布表和频率分布直方图,则旅客购票用时的平均数可能落在哪一个小组()分组频数频率t<00一组05t<10二组510t<100.10三组1015t<四组1520t<300.30五组2025合计100 1.00A.第二组B.第三组C.第四组D.第五组5.(2016春•西城区期末)如图是100名学生某次数学测试成绩(单位:分)的频率分布直方图,则测试成绩在区间[50,70)中的学生人数是()A.30B.25C.22D.20二.填空题(共7小题)6.(2019秋•房山区期末)为了解中学生课外阅读情况,现从某中学随机抽取200名学生,收集了他们一年内的课外阅读量(单位:本)等数据,以下是根据数据绘制的统计图表的一部分.阅读量人数学生类别[0,10)[10,20)[20,30)[30,40)[40,)性别男73125304女82926328学段初中25364411高中下面有四个推断:①这200名学生阅读量的平均数可能是26本;②这200名学生阅读量的75%分位数在区间[30,40)内;③这200名学生中的初中生阅读量的中位数一定在区间[20,30)内;④这200名学生中的初中生阅读量的25%分位数可能在区间[20,30)内.所有合理推断的序号是.7.(2019春•通州区期末)已知某地区中小学学生人数和近视情况分别如图1和图2所示,为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取20%的近视学生进行调查,则样本容量为,从中抽取的高中生近视人数为.小学初中高中人数9000700040008.(2019春•西城区期末)从某校3000名学生中随机抽取若干学生,获得了他们一天课外阅读时间(单位:分钟)的数据,整理得到频率分布直方图如下.则估计该校学生中每天阅读时间在[70,80)的学生人数为.9.(2018秋•昌平区期末)为调查某校学生每天用于课外阅读的时间,现从该校3000名学生中随机抽取100名学生进行问卷调查,所得数据均在区间[50,100]上,其频率分布直方图如图所示,则估计该校学生中每天用于阅读的时间在[70,80)(单位:分钟)内的学生人数为.10.(2018秋•丰台区期末)某校为了解学生对本校食堂的满意度,随机抽取部分学生进行调查.根据学生的满意度评分,得到如图所示的频率分布直方图,其中a=,若这次满意度评分的中位数为b,根据频率分布直方图,估计b65(填“>”,“<”或“=”)11.(2017秋•海淀区校级期末)如图,从参加环保知识竞赛的学生中抽出80名,将其成绩(均为整数)整理后画出的频率分布直方图如图:观察图形,回答下列问题:(1)[79.5,89.5)这一组的频率是.(2)估计这次环保知识竞赛的及格率(60分以上为及格)为.12.(2018春•西城区校级期中)为了解某地区高三学生的身体发育情况,抽查了该地区100名年龄为17.5岁18岁的男生体重()kg,得到频率分布直方图如图,根据如图可得这100名学生中体重在(56.5,64.5)的学生人数是.三.解答题(共3小题)13.(2019秋•房山区期末)中学生研学旅行是通过集体旅行、集中食宿方式开展的研究性学习和旅行体验相结合的校外教育活动,是学校教育和校外教育衔接的创新形式,是综合实践育人的有效途径,每年暑期都会有大量中学生参加研学旅行活动.为了解某地区中学生暑期研学旅行支出情况,在该地区各个中学随机抽取了部分中学生进行问卷调查,从中统计得到中学生暑期研学旅行支出(单位:百元)频率分布直方图如图所示.(Ⅰ)利用分层抽样在[40,45),[45,50),[50,55]三组中抽取5人,应从这三组中各抽取几人?(Ⅱ)从(Ⅰ)抽取的5人中随机选出2人,对其消费情况进行进一步分析,求这2人不在同一组的概率;(Ⅲ)假设同组中的每个数据都用该区间的左端点值代替,估计该地区中学生暑期研学旅行支出的平均值.14.(2019•大兴区一模)随着智能手机的发展,各种“APP”(英文单词Application的缩写,一般指手机软件)应运而生.某机构欲对A市居民手机内安装的APP的个数和用途进行调研,在使用智能手机的居民中随机抽取100人,获得了他们手机内安装APP的个数,整理得到如图所示频率分布直方图.(Ⅰ)求a的值;(Ⅱ)从被抽取安装APP的个数不低于50的居民中,随机抽取2人进一步调研,求这2人安装APP的个数都低于60的概率;(Ⅲ)假设同组中的数据用该组区间的右端点值代替,以本次被抽取的居民情况为参考,试估计A市使用智能手机的居民手机内安装APP的平均个数在第几组(只需写出结论).15.(2019•山东模拟)某快餐连锁店招聘外卖骑手,该快餐连锁店提供了两种日工资方案:方案(1)规定每日底薪50元,快递业务每完成一单提成3元;方案(2)规定每日底薪100元,快递业务的前44单没有提成,从第45单开始,每完成一单提成5元.该快餐连锁店记录了每天骑手的人均业务量.现随机抽取100天的数据,将样本数据分为[25,35),[35,45),[45,55),[55,65),[65,75),[75,85),[85,95]七组,整理得到如图所示的频率分布直方图.(Ⅰ)随机选取一天,估计这一天该连锁店的骑手的人均日快递业务量不少于65单的概率;(Ⅱ)若骑手甲、乙选择了日工资方案(1),丙、丁选择了日工资方案(2).现从上述4名骑手中随机选取2人,求至少有1名骑手选择方案(1)的概率;(Ⅲ)若仅从人均日收入的角度考虑,请你利用所学的统计学知识为新聘骑手做出日工资方案的选择,并说明理由.(同组中的每个数据用该组区间的中点值代替)频率分布直方图(北京习题集)(教师版)参考答案与试题解析一.选择题(共5小题)1.(2020•朝阳区模拟)为了宣传今年9月即将举办的“第十八届中国西部博览会”(简称“西博会”),组委会举办了“西博会”知识有奖问答活动.在活动中,组委会对会议举办地参与活动的15~65岁市民进行随机抽样,各年龄段人数情况如表:组号分组各组人数各组人数频率分布直方图第1组[15,25)10第2组[25,35)a第3组[35,45)b第4组[45,55)c第5组[55,65]d根据以上图表中的数据可知图表中a和x的值分别为()A.20,0.15B.15,0.015C.20,0.015D.15,0.15【分析】由频率分布直方图可知第一组的频率,再根据第一组的人数求出总人数,从而由第二组的频率求出a的值,由频率分布直方图中各小长方体的面积之和为1,即可求出x的值.【解答】解:由频率分布直方图可知,第一组的频率为:0.010100.1⨯=,又第一组的人数为10,∴总人数为:10100 0,1=,第二组的频率为:0.020100.2⨯=,∴第二组的人数0.210020a=⨯=,由频率分布直方图可知,1[1(0.010.020.030.025)10]0.015 10x=⨯-+++⨯=,故选:C.【点评】本题主要考查了频率分布直方图的应用,是基础题.2.(2019春•通州区期末)已知有若干辆汽车通过某一段公路,从中抽取100辆汽车进行测速分析,其时速的频率分布直方图如图所示,那么时速在区间[60,70)内的汽车辆数大约为()A.30B.35C.40D.45【分析】由频率分布直方图求出时速在区间[60,70)内的频率,由此能求出时速在区间[60,70)内的汽车辆数.【解答】解:由频率分布直方图得:时速在区间[60,70)内的频率为:0.04100.4⨯=,∴时速在区间[60,70)内的汽车辆数大约为:⨯=.0.410040故选:C.【点评】本题考查时速在区间[60,70)内的汽车辆数的求法,考查频率分布直方图的性质等基础知识,考查运算求解能力,是基础题.3.(2019•北京学业考试)生态环境部环境规划院研究表明,京津冀区域 2.5PM主要来自工业和民用污染,其中冬季民用污染占比超过50%,最主要的源头是散煤燃烧.因此,推进煤改清洁能源成为三地协同治理大气污染的重要举措.2018年是北京市压减燃煤收官年,450个平原村完成了煤改清洁能源,全市集中供热清洁化比例达到99%以上,平原地区基本实现“无煤化”,为了解“煤改气”后居民在采暖季里每月用气量的情况,现从某村随机抽取100户居民进行调查,发现每户的用气量都在150立方米到450立方米之间,得到如图所示的频率分布直方图.在这些用户中,用气量在区间[300,350)的户数为()A.5B.15C.20D.25【分析】根据频率分布直方图求出用气量在区间[300,350)的频率,用样本容量与频率相乘即可得到用气量在区间[300,350)的户数.【解答】解:依题意,由频率分布直方图可知,用气量在[300,350)的频率为:0.005500.25⨯=,所以100户居民中用气量在区间[300,350)的户数为:1000.2525⨯=.故选:D.【点评】本题考查了频率分布直方图的应用,考查了考查数据分析处理、运算求解能力,属于基础题.4.(2018•西城区模拟)某车站在春运期间为了改进服务,随机抽样调查了100名旅客从开始在购票窗口排队到购到车票所用的时间t(以下简称购票用时,单位:)min.下面是这次抽样的频率分布表和频率分布直方图,则旅客购票用时的平均数可能落在哪一个小组()分组频数频率t<00一组05t<10二组510t<100.10三组1015t<四组1520t<300.30五组2025合计100 1.00A.第二组B.第三组C.第四组D.第五组【分析】由频率分布表和频率分布直方图得第四组的频率为0.5,从而求得旅客购票用时的平均数,由此得到旅客购票用时的平均数落第四小组.【解答】解:由频率分布表和频率分布直方图得第四组的频率为:---=,10.10.10.30.5由频率分布表和频率分布直方图得旅客购票用时的平均数为:7.50.1012.50.1017.50.5022.50.317.5⨯+⨯+⨯+⨯=,∴旅客购票用时的平均数落第四小组.故选:C.【点评】本题考查平均数、频率的求法及应用,考查频率分布表和频率分布直方图等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.5.(2016春•西城区期末)如图是100名学生某次数学测试成绩(单位:分)的频率分布直方图,则测试成绩在区间[50,70)中的学生人数是()A .30B .25C .22D .20【分析】根据频率分布直方图中频率和为1,求出a 的值,计算模块测试成绩落在[50,70)中的频率以及频数即可. 【解答】解:根据频率分布直方图中频率和为1,得: 10(23762)1a a a a a ++++=,解得1200a =; ∴模块测试成绩落在[50,70)中的频率是1110(23)50502004a a a +==⨯=, ∴对应的学生人数是1100254⨯=. 故选:B .【点评】本题考查了频率分布直方图的应用问题,也考查了频率的计算问题,是基础题目. 二.填空题(共7小题)6.(2019秋•房山区期末)为了解中学生课外阅读情况,现从某中学随机抽取200名学生,收集了他们一年内的课外阅读量(单位:本)等数据,以下是根据数据绘制的统计图表的一部分.阅读量 人数 学生类别 [0,10) [10,20) [20,30) [30,40) [40,)+∞性别男 7 31 25 30 4 女8 29 26 32 8 学段初中 25 36 44 11 高中下面有四个推断:①这200名学生阅读量的平均数可能是26本;②这200名学生阅读量的75%分位数在区间[30,40)内;③这200名学生中的初中生阅读量的中位数一定在区间[20,30)内;④这200名学生中的初中生阅读量的25%分位数可能在区间[20,30)内.所有合理推断的序号是①②③.【分析】利用频率分布直方图、平均数、75%分位数、中位数、25%分位数直接求解.【解答】解:在①中,这200名学生阅读量的平均数为:1x>⨯+⨯+⨯+⨯+⨯=.(5151560255235624512)24.93200∴这200名学生阅读量的平均数可能是26本,故①正确;在②中,20075%150⨯=,阅读量在[0,30)中有:156052117++=名学生,阅读量在[30,40)中有62名学生,∴这200名学生阅读量的75%分位数在区间[30,40)内,故②正确;在③中,阅读量在[0,20)中有:156065+=名学生,阅读量在[20,30)中有51名学生,∴这200名学生中的初中生阅读量的中位数一定在区间[20,30)内,故③正确;在④中,20025%50⨯=,阅读量在[0,10)中有15名学生,阅读量在[10,20)中有60名学生,∴这200名学生中的初中生阅读量的25%分位数可能在区间[10,20)内.故④错误.故答案为:①②③.【点评】本题考查命题真假的判断,考查频率分布直方图、平均数、75%分位数、中位数、25%分位数等基础知识,考查运算求解能力,是基础题.7.(2019春•通州区期末)已知某地区中小学学生人数和近视情况分别如图1和图2所示,为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取20%的近视学生进行调查,则样本容量为4000,从中抽取的高中生近视人数为.小学初中高中人数900070004000【分析】用分层抽样的方法抽取20%的近视学生进行调查,利用分层抽样、频数分布表、条形图的性质求出样本容量和从中抽取的高中生近视人数.【解答】解:由题意得:用分层抽样的方法抽取20%的近视学生进行调查,则样本容量为:(900070004000)20%4000++⨯=.从中抽取的高中生近视人数为:⨯⨯=.400020%50%400故答案为:4000,400.【点评】本题考查样本容量、频率的求法,考查分层抽样、频数分布表、条形图的性质等基础知识,考查运算求解能力,是基础题.8.(2019春•西城区期末)从某校3000名学生中随机抽取若干学生,获得了他们一天课外阅读时间(单位:分钟)的数据,整理得到频率分布直方图如下.则估计该校学生中每天阅读时间在[70,80)的学生人数为900.【分析】求出a的值,根据[70,80)的概率求出在此区间的人数即可.【解答】解:由10.050.350.20.10.3----=,故0.03a=,故阅读的时间在[70,80)(单位:分钟)内的学生人数为:0.33000900⨯=,故答案为:900.【点评】本题考查了直方图问题,考查概率问题,是一道常规题.9.(2018秋•昌平区期末)为调查某校学生每天用于课外阅读的时间,现从该校3000名学生中随机抽取100名学生进行问卷调查,所得数据均在区间[50,100]上,其频率分布直方图如图所示,则估计该校学生中每天用于阅读的时间在[70,80)(单位:分钟)内的学生人数为900.【分析】求出a的值,根据[70,80)的概率求出在此区间的人数即可.【解答】解:由10.050.350.20.10.3----=,故0.03a=,故阅读的时间在[70,80)(单位:分钟)内的学生人数为:0.33000900⨯=,故答案为:900.【点评】本题考查了直方图问题,考查概率问题,是一道常规题.10.(2018秋•丰台区期末)某校为了解学生对本校食堂的满意度,随机抽取部分学生进行调查.根据学生的满意度评分,得到如图所示的频率分布直方图,其中a=0.005,若这次满意度评分的中位数为b,根据频率分布直方图,估计b65(填“>”,“<”或“=”)【分析】由频率分布直方图列方程能求出a;评分在[50,70)的频率为0.45,评分为[70,80)的频率为0.3,由此能求出中位数.【解答】解:由频率分布直方图得:a a++++⨯=,(0.040.030.02)101解得0.005a=.评分在[50,70)的频率为:(0.0050.04)100.45+⨯=,评分为[70,80)的频率为:0.03100.3⨯=,∴中位数0.50.452157010650.33b-=+⨯=>.故答案为:0.005,>.【点评】本题考查频率的求法、中位数的求法,考查频率分布直方图的性质等基础知识,考查运算求解能力,考查数形结合思想,是基础题.11.(2017秋•海淀区校级期末)如图,从参加环保知识竞赛的学生中抽出80名,将其成绩(均为整数)整理后画出的频率分布直方图如图:观察图形,回答下列问题:(1)[79.5,89.5)这一组的频率是0.25.(2)估计这次环保知识竞赛的及格率(60分以上为及格)为.【分析】(1)由频率分布直方图能求出[79.5,89.5)这一组的频率.(2)由频率分布直方图能估计这次环保知识竞赛的及格率(60分以上为及格).【解答】解:(1)由频率分布直方图得[79.5,89.5)这一组的频率是0.025100.25⨯=.故答案为:0.25.(2)由频率分布直方图估计这次环保知识竞赛的及格率(60分以上为及格)为:(0.0150.030.0250.005)10100%75%+++⨯⨯=.故答案为:75%.【点评】本题考查频率、及格率的求法,考查频率分布直方图的性质等基础知识,考查运算求出能力,考查函数与方程思想,是基础题.12.(2018春•西城区校级期中)为了解某地区高三学生的身体发育情况,抽查了该地区100名年龄为17.5岁18-岁的男生体重()kg,得到频率分布直方图如图,根据如图可得这100名学生中体重在(56.5,64.5)的学生人数是40.【分析】由频率分布直方图求出体重在(56.5,64.5)的频率为0.4,由此能求出这100名学生中体重在(56.5,64.5)的学生人数.【解答】解:由频率分布直方图得:体重在(56.5,64.5)的频率为:(0.030.050.050.07)20.4+++⨯=,∴这100名学生中体重在(56.5,64.5)的学生人数是:0.410040⨯=.故答案为:40.【点评】本题考查频数的求法,考查频率分布直方图的性质等基础知识,考查运算求解能力,考查数形结合思想,是基础题.三.解答题(共3小题)13.(2019秋•房山区期末)中学生研学旅行是通过集体旅行、集中食宿方式开展的研究性学习和旅行体验相结合的校外教育活动,是学校教育和校外教育衔接的创新形式,是综合实践育人的有效途径,每年暑期都会有大量中学生参加研学旅行活动.为了解某地区中学生暑期研学旅行支出情况,在该地区各个中学随机抽取了部分中学生进行问卷调查,从中统计得到中学生暑期研学旅行支出(单位:百元)频率分布直方图如图所示.(Ⅰ)利用分层抽样在[40,45),[45,50),[50,55]三组中抽取5人,应从这三组中各抽取几人?(Ⅱ)从(Ⅰ)抽取的5人中随机选出2人,对其消费情况进行进一步分析,求这2人不在同一组的概率;(Ⅲ)假设同组中的每个数据都用该区间的左端点值代替,估计该地区中学生暑期研学旅行支出的平均值.【分析】(Ⅰ)利用分层抽样和频率分布直方图能求出在[40,45),[45,50),[50,55]三组中分别抽取的人数.(Ⅱ)从抽取的5人中随机选出2人,基本事件总数2510n C==,这2人不在同一组包含的基本事件个数112 3227m C C C=+=,由此能求出这2人不在同一组的概率.(Ⅲ)假设同组中的每个数据都用该区间的左端点值代替,利用频率分布直方图的性质能求出估计该地区中学生暑期研学旅行支出的平均值.【解答】解:(Ⅰ)分层抽样在[40,45),[45,50),[50,55]三组中抽取5人,应从[40,45)中抽取:0.06530.060.020.02⨯=++人,从[45,50)中抽取:0.02510.060.020.02⨯=++人,从[50,55)中抽取:0.02510.060.020.02⨯=++人.(Ⅱ)从(Ⅰ)抽取的5人中随机选出2人,对其消费情况进行进一步分析,基本事件总数2510n C==,这2人不在同一组包含的基本事件个数1123227m C C C=+=,∴这2人不在同一组的概率710mpn==.(Ⅲ)假设同组中的每个数据都用该区间的左端点值代替,估计该地区中学生暑期研学旅行支出的平均值为:32.50.04537.50.06542.50.06547.50.02552.50.02540.5x=⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯=.【点评】本题考查频数、概率、平均数的求法,考查频率分布直方图的性质、分层抽样、古典概型等基础知识,考查运算求解能力,是基础题.14.(2019•大兴区一模)随着智能手机的发展,各种“APP”(英文单词Application的缩写,一般指手机软件)应运而生.某机构欲对A市居民手机内安装的APP的个数和用途进行调研,在使用智能手机的居民中随机抽取100人,获得了他们手机内安装APP的个数,整理得到如图所示频率分布直方图.(Ⅰ)求a的值;(Ⅱ)从被抽取安装APP的个数不低于50的居民中,随机抽取2人进一步调研,求这2人安装APP的个数都低于60的概率;(Ⅲ)假设同组中的数据用该组区间的右端点值代替,以本次被抽取的居民情况为参考,试估计A市使用智能手机的居民手机内安装APP的平均个数在第几组(只需写出结论).【分析】(Ⅰ)由频率分布直方图的性质能求出a .(Ⅱ)设事件A 为“这2人手机内安装“APP ”的数量都低于60”.被抽取的智能手机内安装“APP ”的数量在[50,60)的有4人,分别记为1a ,2a ,3a ,4a ,被抽取的智能手机内安装“APP ”的数量在[60,70]的有1人,记为1b ,从被抽取的智能手机内安装“APP ”的数量不低于50的居民中随机抽取2人进一步调研,利用列举法能求出这2人安装APP 的个数都低于60的概率. (Ⅲ)第4组 (或者写成[30,40)). 【解答】(共13分)解:(Ⅰ)由(0.0110.0160.0180.0040.001)101a a ++++++⨯=,⋯⋯(2分) 得0.025a =.⋯⋯(3分)(Ⅱ)设事件A 为“这2人手机内安装“APP ”的数量都低于60”. ⋯⋯(1分) 被抽取的智能手机内安装“APP ”的数量在[50,60)的有0.004101004⨯⨯=人, 分别记为1a ,2a ,3a ,4a ,⋯⋯(2分)被抽取的智能手机内安装“APP ”的数量在[60,70]的有0.001101001⨯⨯=人, 记为1b ,⋯⋯(3分)从被抽取的智能手机内安装“APP ”的数量不低于50的居民中随机抽取2人进一步调研,共包含10个基本事件, 分别为12a a ,13a a ,14a a ,11a b ,23a a ,24a a ,21a b ,34a a ,31a b ,41a b ,⋯⋯(5分) 事件A 包含6个基本事件,分别为12a a ,13a a ,14a a ,23a a ,24a a ,34a a ,⋯⋯(6分) 则这2人安装APP 的个数都低于60的概率63()105P A ==.⋯⋯(7分) (Ⅲ)第4组 (或者写成[30,40)).⋯⋯(3分)【点评】本题考查频率、概率的求法,考查频率分布直方图的应用,考查用数学知识解决实际生活问题的能力,考查运算求解能力,是基础题.15.(2019•山东模拟)某快餐连锁店招聘外卖骑手,该快餐连锁店提供了两种日工资方案:方案(1)规定每日底薪50元,快递业务每完成一单提成3元;方案(2)规定每日底薪100元,快递业务的前44单没有提成,从第45单开始,每完成一单提成5元.该快餐连锁店记录了每天骑手的人均业务量.现随机抽取100天的数据,将样本数据分为[25,35),[35,45),[45,55),[55,65),[65,75),[75,85),[85,95]七组,整理得到如图所示的频率分布直方图.(Ⅰ)随机选取一天,估计这一天该连锁店的骑手的人均日快递业务量不少于65单的概率;(Ⅱ)若骑手甲、乙选择了日工资方案(1),丙、丁选择了日工资方案(2).现从上述4名骑手中随机选取2人,求至少有1名骑手选择方案(1)的概率;(Ⅲ)若仅从人均日收入的角度考虑,请你利用所学的统计学知识为新聘骑手做出日工资方案的选择,并说明理由.(同组中的每个数据用该组区间的中点值代替)【分析】(Ⅰ)设事件A 为“随机选取一天,这一天该连锁店的骑手的人均日快递业务量不少于65单”依题意,连锁店的人均日快递业务量不少于65单的频率分别为:0.2,0.15,0.05,由此能估计这一天该连锁店的骑手的人均日快递业务量不少于65单的概率.(Ⅱ)设事件B 为“从四名骑手中随机选取2人,至少有1名骑手选择方案(1)”从四名新聘骑手中随机选取2名骑手,利用列举法能求出至少有1名骑手选择方案(1)的概率.(Ⅲ)方法1:求出快餐店人均日快递量的平均数,从而方案(1)日工资约为50623236+⨯=,方案2日工资约为100(6244)5190236+-⨯=<,由此得到骑手应选择方案(1). 方法2:设骑手每日完成快递业务量为n 件,分别求出方案(1)的日工资和方案(2)的日工资,从而建议骑手应选择方案(1).方法3:设骑手每日完成快递业务量为n 单,方案(1)的日工资*1503()y n n N =+∈,方案(2)的日工资*2*100,44,1005(44),44,n n N y n n n N ⎧∈=⎨+->∈⎩求出结果,建议骑手选择方案(1). 【解答】解:(Ⅰ)设事件A 为“随机选取一天,这一天该连锁店的骑手的人均日快递业务量不少于65单” 依题意,连锁店的人均日快递业务量不少于65单的频率分别为:0.2,0.15,0.05因为0.20.150.050.4++=所以估计这一天该连锁店的骑手的人均日快递业务量不少于65单的概率P (A )0.4=. (Ⅱ)设事件B 为“从四名骑手中随机选取2人,至少有1名骑手选择方案(1)” 从四名新聘骑手中随机选取2名骑手,有6种情况,即{甲,乙},{甲,丙},{甲,丁},{乙,丙},{乙,丁},{丙,丁}, 其中至少有1名骑手选择方案(1)的情况为:{甲,乙},{甲,丙},{甲,丁},{乙,丙},{乙,丁} 所以至少有1名骑手选择方案(1)的概率5()6P B = (Ⅲ)方法1:快餐店人均日快递量的平均数是:300.05400.05500.2600.3700.2800.15900.0562⨯+⨯+⨯+⨯+⨯+⨯+⨯=因此,方案(1)日工资约为50623236+⨯= 方案2日工资约为100(6244)5190236+-⨯=< 故骑手应选择方案(1)方法2:设骑手每日完成快递业务量为n 件 方案(1)的日工资*1503()y n n N =+∈,方案(2)的日工资*2*100,44,1005(44),44,n n N y n n n N ⎧∈=⎨+->∈⎩当17n <时,12y y <依题意,可以知道25n ,所以这种情况不予考虑 当25n 时,令5031005(44)n n +>+-,则85n <,即若骑手每日完成快递业务量在85件以下,则方案(1)日工资大于方案(2)日工资, 而依题中数据,每日完成快递业务量超过85件的频率是0.05,较低, 故建议骑手应选择方案(1)方法3:设骑手每日完成快递业务量为n 单, 方案(1)的日工资*1503()y n n N =+∈,方案(2)的日工资*2*100,44,1005(44),44,n n N y n n n N ⎧∈=⎨+->∈⎩所以方案(1)日工资约为1400.051700.052000.22300.32600.22900.153200.05236⨯+⨯+⨯+⨯+⨯+⨯+⨯= 方案(2)日工资约为1000.051000.051300.21800.32300.22800.153300.05194.5⨯+⨯+⨯+⨯+⨯+⨯+⨯= 因为236194.5>,所以建议骑手选择方案(1).。