牛顿第二定律的应用
牛顿第二定律应用方法

练习、如图,将质量为 的物体分置于质量为M的 练习、如图,将质量为m1、m2的物体分置于质量为 的 物体的两侧,均处于平衡状态, , 物体的两侧,均处于平衡状态,m1>m2,α < β,下 述说法正确的是( 述说法正确的是( ACD) m2 m1 A)m1对M的正压力一定大于 2对M的正压力 ) 的正压力一定大于m 的正压力 的正压力一定大于 M β α B)m1对M的摩擦力一定大于 2对M的摩擦力 的摩擦力一定大于m ) 的摩擦力一定大于 的摩擦力 C)水平地面对 的支持力一定等于 的支持力一定等于(M+m1+m2)g )水平地面对M的支持力一定等于 D)水平地面对 的摩擦力一定等于零 )水平地面对M的摩擦力一定等于零 变式:如图所示 一质量为M的楔形木块放在水平桌面 如图所示, 变式 如图所示,一质量为 的楔形木块放在水平桌面 它的顶角为90 两底角为α和 ; 、 为两个位于 上,它的顶角为 o,两底角为 和β;a、b为两个位于 斜面上质量均为m的小木块 的小木块。 斜面上质量均为 的小木块。已知所有接触面都是光滑 现发现a、 沿斜面下滑 而楔形木块静止不动, 沿斜面下滑, 的。现发现 、b沿斜面下滑,而楔形木块静止不动,这 时楔形木块对水平桌面的压力等于: 时楔形木块对水平桌面的压力等于: A A.Mg+mg; B.Mg+2mg; A. ; . ; C.Mg+mg(sinα+sinβ) . ( ) D.Mg+mg(cosα+cosβ) . )
牛顿第二定律的应用(瞬时性、矢量性)

m a2 g2
设弹力与水平方向的夹角为,则:
tan α mg g ma a
【解题回顾】 (一)硬杆对小球的弹力的方向并不一定 沿杆的方向,这可借助于牛顿运动定律来 进行受力分析:
1、物体处于平衡状态时,合外力应为0; 2、物体处于变速运动状态时,满足:
F合=ma, F合方向与加速度方向一致. (二)应用牛顿定律解题时要注意a与F合方向 一致性的关系.有时可根据已知合力方向确定加
明确“轻绳”和“轻弹簧” 两个理想物理模型的 区别.
如图所示,质量均为m的木块A和B用一轻弹簧相连,竖直 放在光滑的水平面上,木块A上放有质量为2m的木块C,三 者均处于静止状态。现将木块C迅速移开,若重力加速度 为g,则在木块C移开的瞬间( C )
A.木块B对水平面的压力迅速变为2mg
B.弹簧的弹力大小为mg
T1
θ T2
m
F合
mg
T2
F合 TG
F合=mg tan a=g tan
T
T
G2
G1
G
F合=mg sin a=g sin
如图质量为 m 的小球用水平弹簧系住,并用倾角为 30°的光
滑木板 AB 托住,小球恰好处于静止状态.当木板 AB 突然
向下撤离的瞬间,小球的加速度为 A.
( C)
B.大小为2 3 3g,方向竖直向下
【例1】小车上固定着光滑的斜面, 斜面的倾 角为θ.小车以恒定的加速度向前运动,有一物 体放于斜面上, 相对斜面静止, 此时这个物体 相对地面的加速度是多大?
F合=G tan a =g tan
N
F合 a
θ
G
例 2:如图所示,动力小车上有一竖杆,杆顶端
《牛顿第二定律的应用》 讲义

《牛顿第二定律的应用》讲义一、牛顿第二定律的基本概念牛顿第二定律是经典力学中的核心定律之一,它描述了物体的加速度与作用在物体上的合力以及物体质量之间的关系。
其表达式为:F =ma,其中 F 表示合力,m 表示物体的质量,a 表示物体的加速度。
加速度是描述物体速度变化快慢的物理量,当物体受到合力的作用时,就会产生加速度。
而质量则是物体惯性的量度,质量越大,物体的惯性越大,越不容易改变其运动状态。
二、牛顿第二定律在直线运动中的应用1、匀变速直线运动当物体在一条直线上受到恒定的合力作用时,将做匀变速直线运动。
比如,一个在光滑水平面上受到水平恒力作用的物体,其加速度恒定。
根据牛顿第二定律,可以计算出加速度的大小,再结合运动学公式,就能够求解物体在不同时刻的速度、位移等物理量。
例如,一个质量为 5kg 的物体,受到一个水平向右的 20N 的力,求5s 末物体的速度和位移。
首先,根据牛顿第二定律计算加速度 a = F/ m = 20 / 5 = 4 m/s²。
然后,根据速度公式 v = v₀+ at(假设初速度 v₀= 0),可得 5s 末的速度 v = 4 × 5 = 20 m/s。
再根据位移公式 s = v₀t + 1/2 at²(假设初速度 v₀= 0),可得 5s 内的位移 s =1/2 × 4 × 5²= 50 m。
2、非匀变速直线运动当物体所受合力随时间变化时,物体将做非匀变速直线运动。
此时,需要根据合力随时间的变化关系,结合牛顿第二定律,求出加速度随时间的变化关系,进而求解物体的运动情况。
比如,一个物体在竖直方向上受到重力和随时间变化的向上拉力作用。
在不同时刻,拉力的大小不同,通过牛顿第二定律求出加速度的变化,再利用积分等数学方法,就可以求出物体在一段时间内的位移和速度。
三、牛顿第二定律在曲线运动中的应用1、平抛运动平抛运动可以分解为水平方向的匀速直线运动和竖直方向的自由落体运动。
牛顿第二定律的应用-整体法与隔离法

解题过程
首先确定整体受到的重力 和支持力,然后根据牛顿 第二定律求出加速度。
03 隔离法应用
定义与特点
定义
隔离法是将研究对象从其周围物体中 隔离出来,对它进行受力分析,研究 其运动状态变化规律的方法。
特点
隔离法可以单独地分析每个物体的受 力情况,从而简化问题,易于理解和 掌握。
适用范围与条件
适用范围
公式
F=ma,其中F表示作用力,m表示 物体的质量,a表示物体的加速度。
适用范围与条件
适用范围
适用于宏观低速的物体,即物体的速 度远小于光速,此时物体的运动状态 变化符合牛顿第二定律。
条件
作用力必须是物体受到的合外力,且 物体具有质量。
牛顿第二定律的重要性
基础性
牛顿第二定律是经典力学的基础,是研究物体运动规律和作用力的基本公式。
汽车加速与刹车
当汽车加速或刹车时,乘客会受到一个向心或离心的力,这是由于牛顿第二定律中加速度与力之间的 关系。
电梯载人
当电梯加速上升或减速下降时,乘客会感到超重或失重,这是因为牛顿第二定律中加速度与力之间的 关系。
在工程中的应用
桥梁设计
桥梁设计需要考虑重力、风载、地震等外力作用,通过牛顿第二定律可以计算出桥梁的 承载能力和稳定性。
适用于需要单独分析某个物体的受力情况,或者需要排除其他物体的影响,单独研究某个物体的运动状态变化。
条件
隔离法的使用需要满足一定的条件,如物体间的相互作用力较小,可以忽略不计;或者需要将复杂的系统分解为 若干个简单的子系统进行研究等。
实例分析:连接体问题
问题描述
两个或多个物体通过轻绳、轻弹簧等 连接在一起,共同运动,求各物体的 加速度和运动状态。
牛顿第二定律的应用

牛顿第二定律的应用牛顿第二定律是经典力学中最基本且重要的定律之一,被广泛应用于解决各种力学问题。
它描述了物体的加速度与作用在物体上的净力之间的关系。
本文将讨论牛顿第二定律在不同领域的应用。
1. 机械领域中的应用在机械领域中,牛顿第二定律被用于计算物体的加速度和所受的力。
根据牛顿第二定律,一个物体的加速度正比于作用在它上面的净力,而与物体的质量成反比。
数学表达式为 F = ma,其中 F代表物体所受的净力,m代表物体的质量,a代表物体的加速度。
利用这个公式,可以计算出物体所受的力或者求解物体的加速度。
2. 飞行器的设计与控制牛顿第二定律的应用远不止在机械领域中,它在飞行器的设计与控制中也起到了重要的作用。
例如,在航空航天领域中,飞机的推进系统利用了牛顿第二定律。
飞机通过喷射出高速气流来提供后向的反作用力,从而推进自身前进。
牛顿第二定律可以帮助工程师计算出所需的推力和加速度,从而使飞机能够平稳地起飞和飞行。
3. 汽车的制动系统在车辆的制动系统中,牛顿第二定律同样起到了关键的作用。
汽车制动时,刹车片对轮胎施加了一个与车辆运动方向相反的摩擦力,这个摩擦力通过牛顿第二定律可以计算出来。
根据该定律,刹车片的净力与汽车质量乘以刹车片的摩擦系数之积相等,即 F = ma,其中F代表刹车片的净力,m代表汽车质量,a代表汽车的加速度。
通过控制刹车片的压力和摩擦系数,司机可以准确地控制汽车的制动效果。
4. 物体的竖直上抛运动在物理学中,牛顿第二定律被用于分析物体的竖直上抛运动。
当我们将一个物体从地面上抛出时,它所受的力由重力和空气阻力组成。
根据牛顿第二定律,物体的净力等于物体的重力减去空气阻力。
这个净力与物体的质量和加速度之间存在着简单的线性关系。
通过求解这个关系式,我们可以计算出物体的加速度和抛射初速度。
5. 摩天轮的运动模拟摩天轮是一个经典的游乐设施,它的运动过程可以通过牛顿第二定律进行模拟和分析。
摩天轮的运动受到重力和张力的影响,通过在摩天轮上设置电机或者其他驱动装置,可以产生一个向心力来维持摩天轮的运动。
牛顿第二定律的应用(很全_自己上课用)

a
5.如图所示,质量为m的小 球用细绳挂在倾角为37°的 光滑斜面顶端,斜面静止时, 绳与斜面平行,现斜面向左 加速运动。 (1)当a1=g时,细绳对 小球的拉力多大? (2)当a2=2g呢?
Tcosθ-Nsinθ=ma Tsinθ+Ncosθ=mg解得 T=mgsinθ+macosθ 当a1=g时,T1=1.4mg;当a2=2g时, T2=2.2mg
F
m1 m2 FN1
[m1]
F1
m1g FN2
F
联立(1)、(2)可得
m2F F1 = m1 m 2
[m2]
F1
m2g
例题1:光滑的水平面上有质量分别为m1、m2的两物体 静 止靠在一起(如图) ,现对m1施加一个大小为 F 方向向 右的推力作用。求此时物体m2受到物体 m1的作用力F1 [ 解法二 ]: 对m1、m2视为整体作受力分析
一条轻弹簧上端固定在 天花板上,下端连接一物 体A,A的下边通过一轻绳 连接物体B.A,B的质量相 同均为m,待平衡后剪断 A,B间的细绳,则剪断细 绳的瞬间,物体A的加速 度和B的加速度?
A
B
如图,两个质量均 为m的重物静止,若 剪断绳OA,则剪断 瞬间A和B的加速度 分别是多少?
0
A
B
质量皆为m的A,B两球之间系 着一个不计质量的轻弹簧,放 在光滑水平台面上,A球紧靠墙 壁,今用力F将B球向左推压弹 簧,平衡后,突然将力F撤去的 瞬间A,B的加速度分别为多 少?.
m
θ
• 2.如图所示,在前进的车厢的竖直后壁上放一个 物体,物体与壁间的静摩擦因数μ=0.8,要使物 体不致下滑,车厢至少应以多大的加速度前进? (g=10m/s2)
牛顿第二定律的应用

力情况
合力
加速度 a
物体运
动情况
二、从运动情况确定受力
物体受
合力
加速度
物体运
力情况
a
动情况
运动学 公式
解题思路: 力的合成 与分解 受力情况
a的作用
a 合力F合 F合 = m a
运动情况
应用牛顿运动定律解题的一般步骤
1、确定研究对象。 2、分析研究对象的受力情况,必要时画受力 的示意图。 3、分析研究对象的运动情况,必要时画运动 过程简图。 4、利用牛顿第二定律或运动学公式求加速度。 5、利用运动学公式或牛顿第二定律进一步求 解要求的物理量。
(g=10m/s2)
解:
由x=v0 t+
at 2
2
21
得
a=
2(x -v0t)
t
①
FN
F阻
θ mg
滑雪的人滑雪时受力如图,将G分解得: F1= mgsinθ ② 根据牛顿第二定律:F1-F阻=m a 由①②③ 代入数据可得: F阻=75N
③
F1
θ
F2
F阻 方向沿斜面向上
总结:从运动情况确定受力
处理这类问题的基本思路是:先分析物 体的运动情况,据运动学公式求加速度, 再在分析物体受力情况的基础上,用牛顿 第二定律列方程求所求量(力)。 F=m
牛顿第二定律的应用
一、 从受力确定运动情况
已知物体受力情况确定运动情况, 指的是在受力情况已知的条件下,要 求判断出物体的运动状态或求出物体 的速度、位移等。
【例1】一个静止在光滑水平面上的物 体,质量为2kg,受水平拉力F=6N的 作用从静止开始运动,求物体2s末的 速度及2s内的位移.
6m/s 6m
牛顿第二定律的简单应用

牛顿第二定律的简单应用1.牛顿第二定律的用途:牛顿第二定律是联系物体受力情况与物体运动情况的桥梁.根据牛顿第二定律,可由物体所受各力的合力,求出物体的加速度;也可由物体的加速度,求出物体所受各力的合力.2.应用牛顿第二定律解题的一般步骤(1)确定研究对象.(2)进行受力分析和运动状态分析,画出受力分析图,明确运动性质和运动过程.(3)求出合力或加速度.(4)根据牛顿第二定律列方程求解.3.两种根据受力情况求加速度的方法(1)矢量合成法:若物体只受两个力作用,应用平行四边形定则求这两个力的合力,再由牛顿第二定律求出物体的加速度的大小及方向.加速度的方向就是物体所受合力的方向.(2)正交分解法:当物体受多个力作用时,常用正交分解法分别求物体在x 轴、y 轴上的合力F x 、F y ,再应用牛顿第二定律分别求加速度a x 、a y .在实际应用中常将受力分解,且将加速度所在的方向选为x 轴或y 轴,有时也可分解加速度,即⎩⎪⎨⎪⎧F x =ma x F y =ma y . 注意:在应用牛顿第二定律解决问题时要重点抓住加速度a 分析解决问题。
【题型1】如图所示,沿水平方向做匀变速直线运动的车厢中,悬挂小球的悬线偏离竖直方向的夹角θ=37°,小球和车厢相对静止,小球的质量为1 kg.sin 37°=0.6,cos 37°=0.8,取g =10 m/s 2.求:(1)车厢运动的加速度并说明车厢的运动情况;(2)悬线对小球的拉力大小.【题型2】(多选)如图所示,套在绳索上的小圆环P 下面用悬线挂一个重力为G 的物体Q 并使它们处于静止状态,现释放圆环P ,让其沿与水平面成θ角的绳索无摩擦下滑,在圆环P 下滑过程中绳索处于绷紧状态(可认为是一直线),若圆环和物体下滑时不振动,稳定后,下列说法正确的是( )A.Q 的加速度一定小于g sin θB.悬线所受拉力为G sin θC.悬线所受拉力为G cos θD.悬线一定与绳索垂直【题型3】如图所示,质量为m的人站在自动扶梯上,扶梯正以加速度a向上做减速运动,a与水平方向的夹角为α.求人受到的支持力和摩擦力.【题型4】如图所示,质量为m2的物体2放在正沿平直轨道向右行驶的车厢底板上,并用竖直细绳通过光滑定滑轮连接质量为m1的物体1,跟物体1相连接的绳与竖直方向成θ角不变,下列说法中正确的是()A.车厢的加速度大小为g tanB.绳对物体1的拉力为m1g cosθC.车厢底板对物体2的支持力为(m2-m1)gD.物体2受车厢底板的摩擦力为0针对训练1.如图所示,一倾角为α的光滑斜面向右做匀加速运动,物体A相对于斜面静止,则斜面运动的加速度为()A.g sin αB.g cosC.g tan αD.gtan α2.如图所示,用橡皮筋将一小球悬挂在小车的架子上,系统处于平衡状态,现使小车从静止开始向左加速,加速度从零开始逐渐增大到某一值,然后保持此值,小球稳定地偏离竖直方向某一角度(橡皮筋在弹性限度内)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
牛顿第二定律的应用
在物理学中,牛顿第二定律是描述力、质量和加速度之间关系的基
本定律。
具体而言,它表明力是物体质量乘以加速度的乘积。
牛顿第
二定律在力学问题的解决中扮演着重要的角色,并且在各种实际应用
中经常被使用。
本文将讨论牛顿第二定律在不同领域中的应用。
1. 机械运动
牛顿第二定律在机械运动中有着广泛的应用。
例如,我们可以利用
牛顿第二定律来计算物体的加速度,从而确定物体的运动状态。
在简
单的情况下,我们可以使用公式F=ma,其中F表示作用在物体上的力,m表示物体的质量,a表示物体的加速度。
根据这个公式,我们可以计
算物体所受的合力,进而预测物体的运动轨迹。
2. 交通工程
牛顿第二定律在交通工程中也有重要的应用。
例如,我们常常需要
研究车辆在不同道路状况下的行驶情况。
通过使用牛顿第二定律,我
们可以计算出车辆所受的合力,并进一步预测车辆的加速度和速度。
这样的信息可以用于改善道路设计,提高交通效率,确保交通安全。
3. 弹道学
牛顿第二定律在弹道学中也被广泛应用。
弹道学研究的是物体在空
中飞行的轨迹和性质。
利用牛顿第二定律,我们可以计算出物体在受
到力的作用下的加速度和速度变化情况。
这些信息对于炮弹、导弹和
火箭的轨迹计算和控制非常重要。
4. 工程设计
牛顿第二定律对于工程设计中的力学分析也是至关重要的。
在建筑
和结构设计中,我们需要确保建筑物的稳定性和安全性。
通过应用牛
顿第二定律,我们可以计算出分布在结构上的力,并评估结构的强度
和稳定性。
这可以帮助工程师确定所需的材料和构建方法,从而确保
设计的可行性和长期的稳定性。
5. 运动控制
牛顿第二定律在运动控制领域也发挥着重要的作用。
例如,在机器
人技术中,我们需要精确控制机器人的运动和位置。
通过应用牛顿第
二定律,我们可以计算出所需施加在机器人身上的力,从而控制机器
人的加速度和速度。
这使得机器人能够准确地执行特定的任务,如自
主导航、工业生产等。
总结:
牛顿第二定律在各个领域中都有广泛的应用。
无论是机械运动、交
通工程、弹道学、工程设计还是运动控制,牛顿第二定律都发挥着重
要的作用。
通过应用这个定律,我们可以预测和控制物体的运动状态,优化工程设计,改善交通效率以及提高机器人技术的发展水平。
因此,深入理解和灵活应用牛顿第二定律对于解决各种物理问题具有重要的
意义。