发电厂电气部分论文

合集下载

发电厂电气安装与调试的技术要求与要点论文(优秀范文5篇)

发电厂电气安装与调试的技术要求与要点论文(优秀范文5篇)

发电厂电气安装与调试的技术要求与要点论文(优秀范文5篇)第一篇:发电厂电气安装与调试的技术要求与要点论文1前言如今,伴随着我国经济发展速度的不断加快,电力事业在最近几年来获得了更大的发展空间与更多的发展机遇。

电力系统具有着较高的复杂性,不仅同人们的日常生活有着非常密切的关联,而且对我国社会经济水平的提高也带来了较大的促进作用。

在电力系统中,电气设备是其中一项重要的组成部分,其中包括变压器、发电机、断路器以及电力线路等,为了能够提高电气设备的实用性价值,减少使用问题,进一步提高电气设备的安装调试水平是非常有必要的。

2发电厂电气安装与调试的技术要求2.1设备试验电气设备所需要达到的一个重要指标即为绝缘性能,尤其是对于类似于发电厂这种电压负荷较高的场所来说,就对电气设备的绝缘性提出了更高的要求。

安装人员在完成电气设备的安装工作后,需要严格按照相关规定来开展绝缘实验操作,进一步确定检验设备在规定电压范围内所能够达到的绝缘效果,从根本上避免局部放电现象的出现,切实提高生产工作的安全等级。

需要注意的是,安装人员要根据监测对象的实际条件来选择绝缘试验的类别,目前比较常见的有绝缘强度实验与绝缘特性实验两种。

其中,绝缘强度实验又可以被分为交流耐压、直流耐压、冲击电压这三个小项目,其最主要的检测目的是确定设备在操作冲击波、雷电冲击波以及工频电压条件中的绝缘性能。

在开展耐压实验的过程中,操作人员需要对设备施加超负荷电压,以此来检测设备在此种强度下的绝缘状态。

在开展交流耐压实验以前,操作人员需要确定要实验对象的吸收比以及绝缘电阻等主要参数,如果在操作过程中发现了绝缘障碍或潮湿状况,操作人员需要立即进行修复操作与干燥处理。

绝缘特性实验大致可以被分为电阻试验、含水量试验以及损耗角正切值实验者三种,其主要适用于受检测对象的基本绝缘参数。

2.2继电保护装置继电保护是确保电力系统安全运行的基础保障,当电网在运营过程中发生异常现象后,继电保护装置可以有效控制住故障的进一步扩散,缩小故障的波及范围。

火力发电厂电气部分毕业设计论文

火力发电厂电气部分毕业设计论文

摘要发电厂是电力系统的重要组成部分,也直接影响整个电力系统的安全与运行。

在发电厂中,一次接线和二次接线都是其电气部分的重要组成部分。

在本次设计中,主要针对了一次接线的设计。

从主接线方案的确定到厂用电的设计,从短路电流的计算到电气设备的选择以及配电装置的布置,都做了较为详尽的阐述。

二次接线则以发电机的继电保护的设计为专题,对继电保护的整定计算做了深入细致的介绍。

设计过程中,综合考虑了经济性、可靠性和可发展性等多方面因素,在确保可靠性的前提下,力争经济性。

设计说明书中所采用的术语、符号也都完全遵循了现行电力工业标准中所规定的术语和符号。

毕业设计任务书1毕业设计题目胜利火力发电厂电气部分设计专题:发电机继电保护设计2毕业设计要求及原始资料1、凝气式发电机的规模(1)装机容量装机4台容量2×25MW+2×50MW,U N=10.5KV (2)机组年利用小时 T MAX=6500h/a(3)厂用电率按8%考虑(4)气象条件发电厂所在地最高温度38℃,年平均温度25℃。

气象条件一般无特殊要求(台风、地震、海拔等)2、电力负荷及电力系统连接情况(1)10.5KV电压级电缆出线六回,输送距离最远8km,每回平均输送电量4.2MW,10KV最大负荷25MW,最小负荷16.8MW,COSφ= 0.8,T max = 5200h/a。

(2)35KV电压级架空线六回,输送距离最远20km,每回平均输送容量为5.6MW。

35KV电压级最大负荷33.6MW,最小负荷为22.4MW。

COSφ=0.8, T max =5200h/a。

(3)110KV电压级架空线4回与电力系统连接,接受该厂的剩余功率,电力系统容量为3500MW,当取基准容量为100MVA时,系统归算到110KV母线上的电抗X*S = 0.083。

(4)发电机出口处主保护动作时间t pr1 = 0.1S,后备保护动作时间t pr2 = 4S。

发电厂电气部分设计毕业论文

发电厂电气部分设计毕业论文

10万kvA发电厂一次部分设计第一章电气主接线的设计1.1 电气主接线的设计1.1.1 电气主接线设计的要求电气主接线图是由各种电气元件如发电机、变压器、断路器、隔离开关、互感器、母线、电缆、线路等,接照一定的要求和顺序接起来,并用国家统一规定图形的文字符号表示的发、变、供电的电路图。

电气主接线是发电厂、变电所电气设计的首要部分,也是构成电力系统的重要环节。

主接线是的确定对电力系统整体及发电厂、变电所本身运行的可靠性、灵活性和经济性密切相关,并且对电气设备选择,配电装置布置,继电保护和控制方式的拟定有较大影响。

因此,必须正确处理好各方面的关系,全面分析有关影响因素,通过技术经济比较,合理确定主接线方案。

1.1.2基本接线及适用X围1.35kV及110kV母线采用单母分段接线(1)优点:用断路器把母线分段后,对重要用户可以从不同段引出两个回路,有两个电源供电;当一段母线发生故障,分段断路器自动将故障段切除,保证正常段母线不间断供电和不致使重要用户停电。

(2)缺点:当一段母线或母线隔离开关故障或检修时,该母线的回路都要在检修期间内停电;当出线为回路时,常使架空线路出现交叉跨跃。

(3)适用X围:35-63kV配电装置的出线回路数不超过4-8回;110-220kV配电装置的出线回路数不超过3-4回。

2. 10kV母线采用双母分段接线3. 110kV母线采用内桥接线(1)35-110kV线路为两回及以下时,宜采用桥形、线路变压器组成或线路分支接线。

(2)桥型接线:当只有两台主变压器和两回输电线路时,采用桥型接线。

当只有两台变压器和两回输电线路时采用内桥形式(3)内桥使用X围:内桥接线适用于输电线路较长(则检修和故障机率大)或变压器不需经常投,切及穿越功率不大的小容量配电装置中。

(4)外桥使用X围:外桥接线使用于输电线路较短或变压器需经常投,切及穿越功率较大的小容量配电装置中。

1.2 设计方案比较与确定1.2.1 主接线设计方案图确定采用110kV内桥连接方式.图1-1 接线方案的主接线图由图1-1可以看出该方案中:110kV侧选用内桥接线;35kV侧选用单母分段接线;10kV侧选用双母分段接线。

火力发电厂电气部分设计论文

火力发电厂电气部分设计论文

火力发电厂电气部分设计论文摘要:本文主要探讨火力发电厂电气部分的设计,包括电气主接线设计、发电机与变压器的连接形式选择、发电厂厂用电设计、主变压器、启动/备用变压器和高压厂用变压器的容量计算、台数和型号的选择,以及短路电流计算和部分高压电气设备的选择与校验。

论文旨在通过优化设计,提高发电厂电气系统的可靠性和经济性。

一、引言火力发电厂是电力工业的重要组成部分,其运行效率直接影响到电力供应的安全与稳定。

在火力发电厂的总体设计中,电气部分的设计至关重要。

本文将重点讨论火力发电厂电气部分的设计方案和关键技术问题。

二、火力发电厂电气部分设计的主要内容1.电气主接线设计电气主接线是火力发电厂的重要组成部分,其主要功能是保障电能输送的稳定性和安全性。

在进行主接线设计时,应考虑以下因素:(1)可靠性:应能满足正常运行时的安全可靠供电,并能在事故情况下尽量减少停电时间;(2)灵活性:应能适应各种运行方式,并便于切换操作;(3)经济性:应考虑建设成本和运行维护费用;(4)扩展性:应考虑未来负荷增长的需要,方便进行扩建。

2.发电机与变压器的连接形式选择发电机与变压器的连接形式主要有直接连接和通过断路器连接两种。

直接连接适用于容量较小、电压较低的发电机组,此种方式下发电机与变压器直接相连,结构简单、维护方便。

对于大容量、高电压的发电机组,采用断路器连接更为合适,因为这种方式可以通过断路器实现发电机的快速启动和停机,提高系统的稳定性。

3.发电厂厂用电设计厂用电系统是火力发电厂的重要组成部分,其设计的合理与否直接影响到发电厂的运行效率。

在进行厂用电设计时,应考虑以下因素:(1)供电可靠性:应保证重要负荷的供电不中断或少中断;(2)用电安全性:应保证人身和设备的安全;(3)节能环保:应采取措施降低能耗和减少对环境的影响;(4)可扩展性:应考虑未来发展的需要,方便进行扩建。

4.主变压器、启动/备用变压器和高压厂用变压器的容量计算、台数和型号的选择主变压器是火力发电厂的核心设备,其容量和台数的选择需根据发电厂的总体规划、用电负荷、运行方式等因素综合考虑。

发电厂电气部分毕业论文

发电厂电气部分毕业论文

长春工程学院毕业设计(论文)目录1 引言 (1)2电气主接线的设计 (2)2.1 主接线的设计方案的选择 (2)2.3 发电机与主变压器选择 (4)3厂用电接线设计 (6)3.1 站用电压等级的确定 (6)3.2 厂用电接线设计方案论证及确定 (6)3.3 高压厂用变压器和高备变压器的选择 (8)4短路电流计算 (9)4.1 短路电流计算概述 (9)4.2 元件电抗计算 (10)4.3 各短路点短路电流计算 (11)5电气设备配置 (18)5.1 隔离开关的配置 (18)5.2 电压互感器的配置 (18)5.3 电流互感器的配置 (18)5.4 避雷器、避雷针的配置 (19)5.5 接地刀闸或接地器的配置 (19)5.6 自动装置的配置 (20)6电气设备的选择与校验 (20)6.1 电气设备选择与校验 (20)6.2 母线选择 (29)7 高压配电装置的设计 (30)7.1 高压配电装置的选型 (30)7.2 高压配电装置设计 (31)总结 (32)参考文献 (33)致谢 (34)1引言目前电力与我们生活息息相关,电力作为最重要的能源之一。

如何经济有效的开发和利用电力能源是关系国计民生的关键。

随着我国经济的飞速发展,电能的需求量也日益增加。

目前电力生产主要以火力发电和水力发电两种形式,相比之下,水力发电成本低廉且没有火力发电带来的环境污染。

很多优点决定水电能源在今后相当长的时间是解决能源危机的首选。

然而我国电力在技术水平上还很落后,这就需要我们在设计中,能够开拓创新,开发出新技术、新设备。

以提高电能在发送过程中的安全可靠系数,以保证电能高质量、高水平的输送。

此次设计是某水电厂的电气部分设计。

电气设计工作是工程建设的关键环节。

做好设计工作,对工程建设的工期、质量、投资费用和建成投产后的运行安全可靠性和生产的综合经济效益,起着决定性的作用。

本次设计:本期工程规模为2×300MW燃煤机组,在布置上不堵死再扩建的可能。

2×600MW发电厂电气部分初步设计 毕业设计论文【范本模板】

2×600MW发电厂电气部分初步设计 毕业设计论文【范本模板】

2×600MW发电厂电气部分初步设计摘要本毕业设计论文是2 600MW发电厂电气部分初步设计。

全论文除了摘要、毕业设计书之外,还详细的说明了各种设备选择的最基本的要求和原则依据。

变压器的选择包括:发电厂主变压器、高压备用变压器及高压厂用变压器的台数、容量、型号等主要技术数据的确定;电气主接线主要介绍了电气主接线的重要性、设计依据、基本要求、各种接线形式的优缺点以及主接线的比较选择,并制定了适合本厂要求的主接线;厂用电接线包括:厂用电接线的总要求以及厂用母线接线设计。

短路电流计算是最重要的环节,本论文详细的介绍了短路电流计算的目的、假定条件、一般规定、元件参数的计算、网络变换、以及各短路点的计算等知识;高压电气设备的选择包括母线、高压断路器、隔离开关、电流互感器、电压互感器、高压开关柜的选择原则和要求,并对这些设备进行校验和产品相关介绍。

而根据本论文所介绍的高压配电装置的设计原则、要求和500KV的配电装置,决定此次设计对本厂采用分相中型布置.继电保护和自动装置的规划,包括总则、自动装置、一般规定和发电机、变压器、母线等设备的保护, 而发电厂和变电所的防雷保护则主要针对避雷针和避雷器的设计。

此外,在论文适当的位置还附加了图纸(主接线、平面图、防雷保护等)及表格以方便阅读、理解和应用.关键词电力系统,短路计算,设备选择,母线,高压断路器AabstractThis paper is the designation to 2×600MW thermal power plant electricity part. Whole thesis besides summary graduate to design the book outside,returned the expatiation every kind of most basic request that equipments choose with principle according to。

某发电厂电气部分设计 毕设论文

某发电厂电气部分设计  毕设论文

黄台发电厂电气部分设计网络教育学院本科生毕业论文(设计)题目:黄台发电厂电气部分设计I黄台发电厂电气部分设计内容摘要火力发电厂的电气设备可分为电气一次设备和电气二次设备,在火力发电厂电气部分设计中,一次回路的设计是主体,它是保证供电可靠性。

经济性和电能质量的关键,并直接影响着电气部分的投资。

对发电厂进行电气部分的设计有着很好的实践和指导意义,电气设计包括很多方面,其中,电气主接线是发电厂变电所的主要环节,电气主接线直接影响运行的可靠性、灵活性,它的拟定直接关系着整个变电所电气设备的选择、配电装置的布置、继电保护、自动装置和控制方式的确定,是变电站电气部分投资大小的决定性因素。

本次论文选黄台发电厂作为设计对象,做有关这个发电厂的电气设计。

论文从黄台发电厂的现状以及研究意义入手,首先对发电厂电气设计的主要内容进行了总体概括,包括发电厂的总体分析及主变选择、发电厂的总体分析及主变选择、电气主接线的设计和选择、短路计算以及电气设备的选择等;之后又分别详细地介绍了发电厂的总体分析以及主变选择,对主变的容量、台数、以及电缆的选择等进行了计算;通过分析和计算对该发电厂的电气主接线进行了设计和选择;接着又进行了短路计算并介绍了短路计算的相关目以及有关电气设备选择及校验的相关原则和知识;最后全文进行了总结和概括,有一定的实际指导意义。

关键词:电气设计;变电所;电气主接线;电流计算II黄台发电厂电气部分设计目录内容摘要 (II)目录 (1)1 绪论 (3)1.1发电厂的发展现状与趋势 (3)1.2黄台发电厂的研究背景 (3)1.3 本次论文的主要工作 (4)2 电气设计的主要内容 (5)2.1发电厂的总体分析及主变选择 (5)2.1.1 黄台火力发电厂现状 (5)2.1.2 黄台发电厂的主变选择 (5)2.2电气主接线的选择与设计 (6)2.3短路电流计算 (6)2.4电气设备选择及校验 (6)2.4.1 电气设备选择的一般原则 (7)2.4.2 电气设备的选择条件 (7)3 发电厂的总体分析及主变选择 (10)3.1发电厂的总体情况分析 (10)3.2主变压器容量的选择 (10)3.3主变压器台数的选择 (10)3.4电缆选用原则 (11)4 电气主接线设计 (12)4.1 引言 (12)4.2 电气主接线设计的原则和基本要求 (12)4.3 电气主接线设计说明 (13)4.3.1系统连接 (13)4.3.2主接线方案论证 (14)5 短路电流计算 (16)5.1短路计算的目的 (16)1黄台发电厂电气部分设计5.2发电厂短路电流计算 (16)6 结论 (21)参考文献 (22)2黄台发电厂电气部分设计1 绪论1.1发电厂的发展现状与趋势火力发电厂简称火电厂,是利用煤、石油、天然气作为燃料生产电能的工厂,它的基本生产过程是:燃料在锅炉中燃烧加热水使成蒸汽,将燃料的化学能转变成热能,蒸汽压力推动汽轮机旋转,热能转换成机械能,然后汽轮机带动发电机旋转,将机械能转变成电能,并由升压变压器将发电机出口电压升高后,经输电线路将电能输送到用户或电网中。

电厂电气自动化技术论文3篇

电厂电气自动化技术论文3篇

电厂电气自动化技术论文3篇第一篇1初探电厂电气自动化系统主要内容构成所谓的电气自动化系统简单来说就是将电厂设备监控和设备检测以及设备的通讯保护等方面的功能综合统一起来的系统,目前我国电厂的电气自动化一般采用集散型的电气控制体系来完成,以往电厂使用的较为传统的、滞后的电气系统根本不能用集散型控制体系完成电厂电气自动化。

通常情况下还是只能用水平较低的半自动相关硬件来和监测仪表进行连接后再进行监控,这种“低水平半自动化技术”只能监控相应的一台设备,并不能同时对多台电气设备进行同时的监控,也就是说不能“一对多”的监控。

电厂的电气自动化系统具体来说主要由三层内容构成:其一,“间隔层”中的设备通常是分层间隔,一般在开关层放置“电保护测控装置”从而减少各个设备之间的连接,保证设备的使用独立性,减少“二次接线数”可以更高地保证节省电厂的实际成本,将设备的维护工作次数降到最低;其二,“网络通讯层”包括通讯装置以及网络交换装置和中继器装置等等,其主要的作用是将信息在各个设备系统之间进行良好的传递;其三,“站控层”一般采用“分布开放式”结构,其作用主要是能够对电厂的所有设备进行一定的监控,这种“监控能力”也是“站控层”的主要功能。

2分析电厂电气自动化技术应用的实际意义2.1市场经济意义众所周知,电厂电气自动化技术的应用不仅可以提高设备的使用价值,还能为电厂和电力市场架起一座沟通的桥梁,促使电厂得到比较系统的规范,电力市场也形成比较完善的发展模式。

在经济方面电厂对电气自动化的应用,可以对电厂的经营过程进行很好的监督和控制,对生产过程中的成本资料以及生产资源都能及时地监控,切实地保证了成本资源的合理应用,大大地提高了资源的使用价值,进而对电厂的经济起到了推波助澜的作用。

2.2生产效率意义在电厂实际的生产活动中,对电气自动化的应用可以有效地提高电厂的生产效率,同时也可以提高电厂员工的工作效率。

具体来说就是电气自动化的应用节省了电厂的劳动力成本,减少了劳动力在同一件工作上的劳动时间,提高了相对时间内的劳动率,这样对电厂的整体快速发展都有着积极的推动作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈断路器的工作原理及使用方法岑华蒙(广西科技大学电气与信息工程学院电气工程与自动化101班,学号201000307027)摘要:断路器(本文指漏电型断路器)是电力供配电系统中不可缺少的主要保护电器之一,也是功能最完善的保护电器,其主要作用是作为短路、过载、漏电、过压以及欠电压保护。

关键词:断路器;工作原理;电流参数;范围;选型;安装0 引言在实际应用过程中,往往由于一些人员对断路器的选择或使用不当,从而使断路器的功能不能完好的体现,给施工用电安全埋下隐患或发生用电安全事故。

因此要完整准确地选择断路器、了解短路器的工作原理、理解断路器的各个电流参数的意义、分清短路器的使用范围及正确的安装是十分必要的。

1 断路器的工作原理断路器漏电保护的工作原理是由三个连续功能来实现的,这三个功能实质上是同时作用的,分别为:检测剩余电流、对剩余电流进行测量比较、启动脱扣装置将故障电路断开。

检测剩余电流是通过一个电流互感器,其初级绕组测量电路的相线电流和零线电流,绕组方向使相线电流和零线电流产生的磁场相互抵消。

泄漏电流的产生破坏了这种平衡,并且会在次级绕组上通过磁场感应产生一个电流,叫做剩余电流;对剩余电流测量比较是使用一个电子式或电磁式继电器,将剩余电流的电信号与预设值相比较。

在正常用电情况下,连接跳闸机构的金属杆被一块永磁铁吸住,同时零序电流也产生电磁力,它与弹簧产生的力同时也作用在连接跳闸机构的金属杆上,通电状态下永磁铁的磁力(涌磁铁的磁力决定了断路器的灵敏度)大于弹簧和电磁力的合力,即跳闸机构不会动作,电路是接通状态;启动脱扣器即跳闸:只要剩余电流产生的电磁力大到能够抵抗永磁铁的磁力,弹簧使金属杆旋转,触发断路器的脱扣装置以断开故障电路。

同时断路器可配备不同的继电器或脱扣器。

脱扣器是断路器一个重要的组成部分,而继电器则通过与断路器操作机构相连的欠电压脱扣器、分励脱扣器来控制断路器,由脱扣器来完成其相应的其它保护功能(如过载、短路等)。

断路器的参数重多,只有充分理解断路器的各个电流参数的意义才能做到正确的选择。

断路器的电流参数包括断路器壳架等级额定电流参数、过电流脱扣器的电流参数、断路器的短路特性电流参数三个部分。

2 断路器壳架等级额定电流参数国标《低压开关设备和控制设备:低压断路器》 GB14048.2-94对断路器的额定电流使用有2个概念,分别为断路器的额定电流In和断路器壳架等级额定电流Inm,定义如下:断路器的额定电流In,是指脱扣器能长期稳定通过的电流,也就是脱扣器额定电流。

对带可调式脱扣器的断路器则为脱扣器可长期通过的最大电流。

断路器壳架等级额定电流Inm,用基本几何尺寸相同和结构相似的框架或塑料外壳中所装的最大脱扣器额定电流表示。

国标中对断路器额定电流的定义与我们通常所说的概念有些不同。

当我们提及“断路器额定电流”这一概念时,通常是指“断路器壳架等级额定电流”Inm。

多数低压断路器供应商所提供的产品资料中,也一般不提“断路器壳架等级额定电流”这一复杂的说法,而只给出“断路器额定电流”这一参数,将“断路器额定电流” In作为“断路器壳架等级额定电流” Inm的一种简称。

“断路器壳架等级额定电流” Inm是标明断路器的框架通流能力的参数,主要由主触头的通流能力决定,它也决定了所能安装的脱扣器的最大额定电流值。

在选择断路器时,此参数是不可缺少的。

3 过电流脱扣器的电流参数断路器的脱扣器型式有过电流脱扣器、欠电压脱扣器、分励脱扣器等。

比较常用的为过电流脱扣器。

过电流脱扣器还可分为过载脱扣器和短路(电磁)脱扣器,并有长延时、短延时、瞬时之分。

过电流脱扣器其动作电流整定值可以是固定的或是可调的。

电磁式过流脱扣器既可以是固定的,也可以是可调的,而电子式过流脱扣器通常总是可调的。

过电流脱扣器的电流有以下几个参数:(1)脱扣器额定电流In,指脱扣器能长期通过的最大稳定电流。

即断路器的额定电流。

(2)长延时过载脱扣器动作电流整定值Ir,固定式脱扣器Ir=In,可调式脱扣器其Ir为脱扣器额定电流In的倍数, Ir=(O.4~1)×In。

(3)短延时电磁脱扣器动作电流整定值Im,为过载脱扣器动作电流整定值Ir 的倍数,倍数固定或可调,Im=(2~10)×Ir。

对不可调式可在其中选择一适当的整定值。

(4)瞬时电磁脱扣器动作电流额定值Im,为脱扣器额定电流In的倍数,倍数固定或可调,Im= (1.5~11)×In。

对不可调式可在其中选择一适当的整定值。

4 断路器的短路特性电流参数断路器的额定短路分断能力以额定极限短路分断能力Icu、额定运行短路分断能力Ics 表示,额定极限短路分断能力Icu是指断路器规定的试验电压及其它规定条件下的极限短路分断电流之值,它可以用预期短路电流表示。

要按规定的试验程序 o-t—CO动作之后,不考虑断路器继续承载它的额定电流。

O表示分断操作;CO表示接通操作后紧接着分断操作;t表示2个相继操作之间的时间间隔,一般不小于3分钟。

额定运行短路分断能力Ics是指断路器在规定的试验电压及其它规定条件下的一种比额定极限短路分断电流小的分断电流值,(Ics是Icu的一个百分数)在按规定的试验程序o-t—co-t—CO动作之后,断路器应有继续承载它的额定电流的能力。

对于额定短路分断能力要求大于1500A的小型断路器,国标《家用及类似场所用断路器》GB10963规定应进行额定极限短路分断能力Icu和额定运行短路分断能力Ics试验。

当Icu≤6000A时, Icu=Ics,故只需作Ics试验。

断路器在规定的试验条件下还要求短时间承受一定电流值的能力称其为额定短时耐受电流(Icw)。

对于交流,此电流值是预期短路电流的周期分量有效值,额定短时耐受电流的时间至少为0.05s。

用于施工现场的断路器既要保证用电安全又要防止误动作影响施工,在使用时首先要确定它的电流参数确保用电安全,断路器额定电流(指过流脱扣器额定电流)In要大于或等于断路器所在的用电线路的计算电流。

根据确定的额定电流In对各个电流参数进行整定。

配电用低压断路器的瞬时过电流脱扣器整定电流Im,应躲过线路正常工作时发生的尖峰电流。

照明用低压断路器的长延时和瞬时过电流脱扣器的整定电流分别为:Ir≥K*Ic,式中Ic为照明线路的计算电流,K为长延时脱扣器可靠系数(1-1.1);Im≥K1*Ir,式中Ir为长延时整定电流,Kl为低压断路器瞬时脱扣器可靠系数(4-7)。

低压断路器长延时和瞬时脱扣器可靠系数过电流脱扣器种类可靠系数白炽灯荧光灯高压汞灯高压钠灯荧光灯卤钨灯金属卤化物灯长延时K 1 1.1 1瞬时K1 4-7 4-7 4-7其次被保护线路各级断路器间选择性动作要求可以防止断路器误动作影响施工,选择型低压断路器瞬延时脱扣器电流整定值 Im在满足被保护线路相间短路电流故障时动作灵敏度要求的前提下,应尽量选择大一些,以躲过下一级开关所保护线路故障时的短路电流。

非选择型低压断路器瞬时脱扣器电流整定值,在躲过回路尖峰电流的条件下,尽可能整定得小些,以保证故障时动作的灵敏度。

选择性是指在下级有过电流或接地故障时,上下级配电装置的工作状况。

漏电保护的选择性6 断路器的选型与安装为了保证断路器完善的使用功能还要做到正确的选型与安装:断路器的防护类型和安装方式应与坏境条件和使用条件相适应。

对有金属外壳的I类设备和手持电动工具、安装在潮湿或者强腐蚀等场所的电气设备;建筑工地的电气施工设备、民用插座、游泳池或浴池类设备、安装在水中的供电线路和电气设备,以及医院直接接触人体的电气医疗设备等均应安装漏电断路器;断路器的安装还要保证正确的接线,接线错误可能导致断路器误动作,也可能导致断路器拒动作。

接线前应分清断路器的输入端和输出端、相线和中性线,不得反接或错接。

输入端与输出端接错时,电子式漏电保护装置的电子线路可能由于没有电源而不能正常工作。

组合式漏电保护装置控制回路的外部连接应使用铜导线,其截面积不应小于1.5mm2,连接线不宜过长。

断路器负载侧的线路必须保持独立,即负载侧的线路(包括相线和中性线)不得与接地装置连接,不得与接地保护PE线连接。

在保护接地线路中,应将中性线与PE线分开;中性线必须经过保护器, PE线不得经过保护器,否则,设备漏电时的漏电电流经保护器返回,保护器将拒不动作。

断路器的选择关键是漏电动作电流的大小,在地下室、淋浴室、水池、隧道等触电危险性很大的场所,应选用高灵敏度、快速型漏电断路器(动作电流不宜超过10mA);在触电后可能导致严重二次事故的场合,应选用动作电流6mA的快速型漏电断路器;而对于Ⅰ类手持电动工具,应视其工作场所危险性的大小,安装动作电流10~30mA的快速型漏电断路器;漏电断路器的极数应按线路的供电方式选择,单相线路选用二极保护器,仅带三相负载的三相线路或三相设备可选用三极断路器,动力与照明合用的三相四线线路和三相照明线路必须选用四极断路器。

对于用于施工现场的动力设备,要考虑电动机的启动电流和堵转电流;选择断路器应有较好的平衡特性,以避免的冲击下误动作;对于不允许停转的电动机应采用漏电报警方式,而不应采用漏电切断方式。

对于电焊机(指安装工程),应考虑断路器的正常工作不受电焊机的短时冲击电流、电源电压波动的影响;对于照明线路,宜根据泄漏电流的大小和分布,采用分级保护的方式,支线上选用高灵敏度的断路器,干线上选用中等灵敏度断路器。

在施工现场、金属构架上等触电危险性大的场合,Ⅰ类携带式设备或移动式设备应选用高灵敏度断路器;而电热设备的绝缘电阻随着温度变化在很大的范围内波动,因此应按热态漏电状况选择断路器的动作电流;连接室外架空线路的电气设备,应装设冲击电压不动作型的断路器。

运行中的断路器外壳及其部件、连接端子应保持清洁,完好无损。

连接应牢固。

开关操作手柄灵活、可靠。

断路器安装完毕后,应操作试验按钮检验漏电断路器可以正常动作后才允许投入使用。

在使用过程中也应定期用试验按钮试验其可靠性。

7 结束语对搁置已久重新使用或连续使用的断路器应逐月检测其特性,发现问题应及时修理或更换。

总之要根据施工现场的特点、针对用电设备的性质做到具体的选择断路器才能充分保证施工现场的用电安全。

参考文献:【1】《低压开关设备和控制设备:低压断路器》 GB14048.2-94【2】《家用及类似场所用断路器》 GB10963【3】《漏电保护器安装与运行》 GB13955-92【4】《发电厂电气部分》第四版主编:熊信银中国电力出版社【5】断路器——百度百科作者简介岑华蒙,所读专业是电气工程与自动化。

相关文档
最新文档