发电厂电气部分设计毕业论文
火力发电厂电气部分毕业设计论文

摘要发电厂是电力系统的重要组成部分,也直接影响整个电力系统的安全与运行。
在发电厂中,一次接线和二次接线都是其电气部分的重要组成部分。
在本次设计中,主要针对了一次接线的设计。
从主接线方案的确定到厂用电的设计,从短路电流的计算到电气设备的选择以及配电装置的布置,都做了较为详尽的阐述。
二次接线则以发电机的继电保护的设计为专题,对继电保护的整定计算做了深入细致的介绍。
设计过程中,综合考虑了经济性、可靠性和可发展性等多方面因素,在确保可靠性的前提下,力争经济性。
设计说明书中所采用的术语、符号也都完全遵循了现行电力工业标准中所规定的术语和符号。
毕业设计任务书1毕业设计题目胜利火力发电厂电气部分设计专题:发电机继电保护设计2毕业设计要求及原始资料1、凝气式发电机的规模(1)装机容量装机4台容量2×25MW+2×50MW,U N=10.5KV (2)机组年利用小时 T MAX=6500h/a(3)厂用电率按8%考虑(4)气象条件发电厂所在地最高温度38℃,年平均温度25℃。
气象条件一般无特殊要求(台风、地震、海拔等)2、电力负荷及电力系统连接情况(1)10.5KV电压级电缆出线六回,输送距离最远8km,每回平均输送电量4.2MW,10KV最大负荷25MW,最小负荷16.8MW,COSφ= 0.8,T max = 5200h/a。
(2)35KV电压级架空线六回,输送距离最远20km,每回平均输送容量为5.6MW。
35KV电压级最大负荷33.6MW,最小负荷为22.4MW。
COSφ=0.8, T max =5200h/a。
(3)110KV电压级架空线4回与电力系统连接,接受该厂的剩余功率,电力系统容量为3500MW,当取基准容量为100MVA时,系统归算到110KV母线上的电抗X*S = 0.083。
(4)发电机出口处主保护动作时间t pr1 = 0.1S,后备保护动作时间t pr2 = 4S。
火力发电厂电气部分设计论文

火力发电厂电气部分设计论文摘要:本文主要探讨火力发电厂电气部分的设计,包括电气主接线设计、发电机与变压器的连接形式选择、发电厂厂用电设计、主变压器、启动/备用变压器和高压厂用变压器的容量计算、台数和型号的选择,以及短路电流计算和部分高压电气设备的选择与校验。
论文旨在通过优化设计,提高发电厂电气系统的可靠性和经济性。
一、引言火力发电厂是电力工业的重要组成部分,其运行效率直接影响到电力供应的安全与稳定。
在火力发电厂的总体设计中,电气部分的设计至关重要。
本文将重点讨论火力发电厂电气部分的设计方案和关键技术问题。
二、火力发电厂电气部分设计的主要内容1.电气主接线设计电气主接线是火力发电厂的重要组成部分,其主要功能是保障电能输送的稳定性和安全性。
在进行主接线设计时,应考虑以下因素:(1)可靠性:应能满足正常运行时的安全可靠供电,并能在事故情况下尽量减少停电时间;(2)灵活性:应能适应各种运行方式,并便于切换操作;(3)经济性:应考虑建设成本和运行维护费用;(4)扩展性:应考虑未来负荷增长的需要,方便进行扩建。
2.发电机与变压器的连接形式选择发电机与变压器的连接形式主要有直接连接和通过断路器连接两种。
直接连接适用于容量较小、电压较低的发电机组,此种方式下发电机与变压器直接相连,结构简单、维护方便。
对于大容量、高电压的发电机组,采用断路器连接更为合适,因为这种方式可以通过断路器实现发电机的快速启动和停机,提高系统的稳定性。
3.发电厂厂用电设计厂用电系统是火力发电厂的重要组成部分,其设计的合理与否直接影响到发电厂的运行效率。
在进行厂用电设计时,应考虑以下因素:(1)供电可靠性:应保证重要负荷的供电不中断或少中断;(2)用电安全性:应保证人身和设备的安全;(3)节能环保:应采取措施降低能耗和减少对环境的影响;(4)可扩展性:应考虑未来发展的需要,方便进行扩建。
4.主变压器、启动/备用变压器和高压厂用变压器的容量计算、台数和型号的选择主变压器是火力发电厂的核心设备,其容量和台数的选择需根据发电厂的总体规划、用电负荷、运行方式等因素综合考虑。
发电厂电气部分毕业论文

长春工程学院毕业设计(论文)目录1 引言 (1)2电气主接线的设计 (2)2.1 主接线的设计方案的选择 (2)2.3 发电机与主变压器选择 (4)3厂用电接线设计 (6)3.1 站用电压等级的确定 (6)3.2 厂用电接线设计方案论证及确定 (6)3.3 高压厂用变压器和高备变压器的选择 (8)4短路电流计算 (9)4.1 短路电流计算概述 (9)4.2 元件电抗计算 (10)4.3 各短路点短路电流计算 (11)5电气设备配置 (18)5.1 隔离开关的配置 (18)5.2 电压互感器的配置 (18)5.3 电流互感器的配置 (18)5.4 避雷器、避雷针的配置 (19)5.5 接地刀闸或接地器的配置 (19)5.6 自动装置的配置 (20)6电气设备的选择与校验 (20)6.1 电气设备选择与校验 (20)6.2 母线选择 (29)7 高压配电装置的设计 (30)7.1 高压配电装置的选型 (30)7.2 高压配电装置设计 (31)总结 (32)参考文献 (33)致谢 (34)1引言目前电力与我们生活息息相关,电力作为最重要的能源之一。
如何经济有效的开发和利用电力能源是关系国计民生的关键。
随着我国经济的飞速发展,电能的需求量也日益增加。
目前电力生产主要以火力发电和水力发电两种形式,相比之下,水力发电成本低廉且没有火力发电带来的环境污染。
很多优点决定水电能源在今后相当长的时间是解决能源危机的首选。
然而我国电力在技术水平上还很落后,这就需要我们在设计中,能够开拓创新,开发出新技术、新设备。
以提高电能在发送过程中的安全可靠系数,以保证电能高质量、高水平的输送。
此次设计是某水电厂的电气部分设计。
电气设计工作是工程建设的关键环节。
做好设计工作,对工程建设的工期、质量、投资费用和建成投产后的运行安全可靠性和生产的综合经济效益,起着决定性的作用。
本次设计:本期工程规模为2×300MW燃煤机组,在布置上不堵死再扩建的可能。
2×600MW发电厂电气部分初步设计 毕业设计论文【范本模板】

2×600MW发电厂电气部分初步设计摘要本毕业设计论文是2 600MW发电厂电气部分初步设计。
全论文除了摘要、毕业设计书之外,还详细的说明了各种设备选择的最基本的要求和原则依据。
变压器的选择包括:发电厂主变压器、高压备用变压器及高压厂用变压器的台数、容量、型号等主要技术数据的确定;电气主接线主要介绍了电气主接线的重要性、设计依据、基本要求、各种接线形式的优缺点以及主接线的比较选择,并制定了适合本厂要求的主接线;厂用电接线包括:厂用电接线的总要求以及厂用母线接线设计。
短路电流计算是最重要的环节,本论文详细的介绍了短路电流计算的目的、假定条件、一般规定、元件参数的计算、网络变换、以及各短路点的计算等知识;高压电气设备的选择包括母线、高压断路器、隔离开关、电流互感器、电压互感器、高压开关柜的选择原则和要求,并对这些设备进行校验和产品相关介绍。
而根据本论文所介绍的高压配电装置的设计原则、要求和500KV的配电装置,决定此次设计对本厂采用分相中型布置.继电保护和自动装置的规划,包括总则、自动装置、一般规定和发电机、变压器、母线等设备的保护, 而发电厂和变电所的防雷保护则主要针对避雷针和避雷器的设计。
此外,在论文适当的位置还附加了图纸(主接线、平面图、防雷保护等)及表格以方便阅读、理解和应用.关键词电力系统,短路计算,设备选择,母线,高压断路器AabstractThis paper is the designation to 2×600MW thermal power plant electricity part. Whole thesis besides summary graduate to design the book outside,returned the expatiation every kind of most basic request that equipments choose with principle according to。
300mw机组火力发电厂电气部分设计本科学位论文

各专业完整优秀毕业论文设计图纸河南机电高等专科学校毕业设计论文论文题目:300MW机组火力发电厂电气部分设计系部:电气工程系专业:电力系统自动化班级:2012级01班学生姓名:张冬育学号:120313144指导教师:张锐李桂芳2014年12月31日摘要由发电、变电、输电、配电用电等环节组成的电能生产与消费系统它的功能是将自然界的一次能源通过发电动力装置转化成电能,再经过输、变电系统及配电系统将电能供应到各负荷中心。
电气主接线反映了发电机、变压器、线路、断路器和隔离开关等有关电气设备的数量、各回路中电气设备的连接关系及发电机、变压器与输电线路、负荷间以怎样的方式连接,直接关系到电力系统的可靠性、灵活性和安全性,直接影响发电厂、变电所电气设备的选择,配电装置的布置,保护与控制方式选择和检修的安全与方便性。
而且电能的使用已经渗透到社会、经济、生活的各个领域,而在我国电源结构中火电设备容量占总装机容量的75%。
本次设计是针对一台300MW机组火力发电厂电气部分的设计。
在本次毕业论文设计当中介绍了有关发电厂的一些电气设备如发电机、变压器、断路器、电压互感器、电流互感器和电动机等以及介绍了主变的选择和短路电流的计算条件,最后介绍防雷的重要性以及防雷的有效措施。
因此,我们在电厂以后的工作当中一定要时刻保持安全和认真的态度。
本文对发电厂的主要一次设备进行了选择,并根据短路电流计算,通过电器设备的短路动稳定、热稳定性对主要设备进行了校验。
在主接线设计中,我们把两种接线方式在经济性,灵活性,可靠性三个方面进行比较,最后选择双母线接线方式。
关键词:电气设备,发电机,变压器,电力系统,ABSTRACTBy power、generation、substation,、transmission and distribution of electricity, electricity production and consumption system, its function is the nature of primary energy into electricity by electric power equipment, after losing, substation and power distribution system will be power supply to the load center.Reflects the main electrical wiring generators, transformers, lines, the number of circuit breaker and isolating switch and related electrical equipment, electrical equipment in each circuit connection relationship and generator, transformer and transmission lines, in which way the load between connections, is directly related to reliability, flexibility and security of power system, directly affect the choice of the electricalequipment for power plants, substations, power distribution equipment arrangement, protection and control mode selection and maintenance of safety and convenience. And the use of electricity has penetrated into every field of society, economy, life, and the power structure in our country accounted for 75% of total installed capacity of thermal power equipment capacity. This design is for a 300 mw thermal power plant electrical part design. In the design of the graduation thesis introduces related to power plant electrical equipment such as generator, transformer, circuit breaker, voltage transformer, current transformer and motor etc, and introduces the selection of main transformer and the calculation of short-circuit current condition, finally presents the importance of lightning protection and effective measures of lightning protection. Therefore, we in the midst of the power plant after work must keep safety and serious attitude.In this paper, a main equipment of power plant selection, and according to the current calculation, using electrical equipment of dynamic stability, thermal stability of the short circuit to the main equipment calibration. In the main wiring design, we put the two connection mode in economy, flexibility, reliability, comparing three aspects, and finally choose double connection mode.Keywords:electrical equipment, generator, transformer, power system, relay protection目录摘要 (I)绪论 (1)第1章电力系统及其发电厂电气部分总述 (3)1.1 电力系统的构成 (3)1.2 对电力系统的基本要求 (3)1.3 发电厂电气部分概述 (4)第2章发电厂电气主接线选择 (6)2.1 概述 (6)2.2 电气主接线的设计依据 (6)2.3 主接线方案的拟定 (8)2.4 主接线方案的比较与选定 (9)第3章主变压器的选择 (11)3.1 主变压器的概述 (11)3.2 主变压器的选择 (10)3.3 主变压器的计算 (11)第4章短路电流的分析及计算 (13)4.1 短路电流计算分析 (13)第5章电气设备的选择及校验 (14)5.1 电气设备选择的原则 (14)5.2 电气设备的分析 (14)5.3 220KV母线侧高压断路器的选择及校验 (14)5.4 220KV母线侧隔离开关的选择及校验 (16)5.5 220KV母线侧电流互感器的选择 (16)5.6 220KV母线侧电压互感器的选择 (17)5.7 110KV母线侧高压断路器的选择及校验 (18)5.8 110KV母线侧隔离开关的选择及校验 (19)5.9 110KV母线侧电流互感器的选择 (19)5.10110KV母线侧电压互感器的选择 (19)第6章防雷保护规划 (22)6.1 雷电过电压的形成与危害 (22)6.2 防雷保护 (22)6.3避雷器的选择 (22)6.4防雷计算 (22)第7章展望 (27)致谢 (30)参考文献 (31)附录I短路电流计算 (32)绪论世界各国电力工业发展的经验告诉我们,电力系统愈大,调度运行就愈能合理和优化,经济效益就愈好,应变事故的能力就愈强。
某发电厂电气部分设计 毕设论文

黄台发电厂电气部分设计网络教育学院本科生毕业论文(设计)题目:黄台发电厂电气部分设计I黄台发电厂电气部分设计内容摘要火力发电厂的电气设备可分为电气一次设备和电气二次设备,在火力发电厂电气部分设计中,一次回路的设计是主体,它是保证供电可靠性。
经济性和电能质量的关键,并直接影响着电气部分的投资。
对发电厂进行电气部分的设计有着很好的实践和指导意义,电气设计包括很多方面,其中,电气主接线是发电厂变电所的主要环节,电气主接线直接影响运行的可靠性、灵活性,它的拟定直接关系着整个变电所电气设备的选择、配电装置的布置、继电保护、自动装置和控制方式的确定,是变电站电气部分投资大小的决定性因素。
本次论文选黄台发电厂作为设计对象,做有关这个发电厂的电气设计。
论文从黄台发电厂的现状以及研究意义入手,首先对发电厂电气设计的主要内容进行了总体概括,包括发电厂的总体分析及主变选择、发电厂的总体分析及主变选择、电气主接线的设计和选择、短路计算以及电气设备的选择等;之后又分别详细地介绍了发电厂的总体分析以及主变选择,对主变的容量、台数、以及电缆的选择等进行了计算;通过分析和计算对该发电厂的电气主接线进行了设计和选择;接着又进行了短路计算并介绍了短路计算的相关目以及有关电气设备选择及校验的相关原则和知识;最后全文进行了总结和概括,有一定的实际指导意义。
关键词:电气设计;变电所;电气主接线;电流计算II黄台发电厂电气部分设计目录内容摘要 (II)目录 (1)1 绪论 (3)1.1发电厂的发展现状与趋势 (3)1.2黄台发电厂的研究背景 (3)1.3 本次论文的主要工作 (4)2 电气设计的主要内容 (5)2.1发电厂的总体分析及主变选择 (5)2.1.1 黄台火力发电厂现状 (5)2.1.2 黄台发电厂的主变选择 (5)2.2电气主接线的选择与设计 (6)2.3短路电流计算 (6)2.4电气设备选择及校验 (6)2.4.1 电气设备选择的一般原则 (7)2.4.2 电气设备的选择条件 (7)3 发电厂的总体分析及主变选择 (10)3.1发电厂的总体情况分析 (10)3.2主变压器容量的选择 (10)3.3主变压器台数的选择 (10)3.4电缆选用原则 (11)4 电气主接线设计 (12)4.1 引言 (12)4.2 电气主接线设计的原则和基本要求 (12)4.3 电气主接线设计说明 (13)4.3.1系统连接 (13)4.3.2主接线方案论证 (14)5 短路电流计算 (16)5.1短路计算的目的 (16)1黄台发电厂电气部分设计5.2发电厂短路电流计算 (16)6 结论 (21)参考文献 (22)2黄台发电厂电气部分设计1 绪论1.1发电厂的发展现状与趋势火力发电厂简称火电厂,是利用煤、石油、天然气作为燃料生产电能的工厂,它的基本生产过程是:燃料在锅炉中燃烧加热水使成蒸汽,将燃料的化学能转变成热能,蒸汽压力推动汽轮机旋转,热能转换成机械能,然后汽轮机带动发电机旋转,将机械能转变成电能,并由升压变压器将发电机出口电压升高后,经输电线路将电能输送到用户或电网中。
发电厂电气部分论文发电厂电气论文

发电厂电气部分论文发电厂电气论文发电厂电气自动化中断路器状态在线监测的实现摘要:介绍了发电厂电气监控系统ECS的结构和功能,详细讨论了对断路器的电寿命和机械寿命进行在线监测的有关问题,最后指出增加对断路器的工作状态的在线监测功能是ECS的发展方向。
关键词:监控;状态检修;在线监测新一代发电厂电气自动化技术(ECS)涵盖了发电厂机组和厂用电保护与监控、网络站监控以及其他的电气自动装置的监控与信息集成,并可以与DCS接口实现一体化控制。
目前ECS系统实现的监控功能主要包括模拟量、开关量、脉冲量的采集,开关的遥控,SOE,保护事件,录波,远方通信等,也包括继电保护及自动装置的远方整定管理、防误闭锁及操作票等应用功能。
这些功能基本覆盖了运行人员对电气系统的日常操作和管理,但随着监控技术的发展,两项新功能将融入电气监控系统:一项是电气运行的视频监控,另一项是高压电气设备的工作状态在线监测。
本文以高压断路器的工作状态在线监测为例,分析了在ECS系统的监控功能中实现对高压设备,例如断路器的电寿命、机械性能等状态指标的在线监测,从而将对电气系统的紧急控制从故障后保护动作,发展为以发现潜在故障特征为目标的预防性控制,这对于提高发电厂电气设备的安全运行十分有益。
在发电厂的一次设备中,就单台设备而言,断路器是仅次于发电机、变压器的大型电力设备,但就需用数量和所占电站设备的投资大小而言,它又排在二者之前。
它的动作可靠性直接关系着系统的安全与稳定,许多重大设备损坏或系统解列停电事故都是开关操作失常所致。
目前,内蒙古兴安热电有限责任公司的高压断路器基本尚处于定期维护阶段,这种传统的计划检修往往造成巨大的人力、财力浪费,并可能对生产造成冲击。
采用基于设备工作状态的在线采集监视的状态检修是今后设备维护和检修的发展方向。
所谓“状态检修”就是要通过种种手段对正在运行中的设备进行健康水平的评估或诊断,进而有针对性地采取相应措施,以最大限度地延长设备的检修周期及使用寿命,增强其运行的可靠性。
发电厂电气设备运行与维护毕业设计(论文)

毕业设计(论文)摘要发电厂是电力系统的重要组成部分, 也直接影响整个电力系统的安全与运行。
在发电厂中,一次接线和二次接线都是其电气部分的重要组成部分。
本文为规划4×350MW热电厂的一期工程2×350MW热电厂电气部分设计,通过对拟建火力发电厂的概括以及出线方向来考虑,并通过对负荷资料的分析,从安全性、经济性及可靠性方面考虑,确定了220kV以及厂用电的主接线,然后通过负荷计算及供电范围确定了主变压器台数、容量及型号,同时也确定了厂用变压器的容量及型号。
最后,根据最大持续工作电流及短路计算的结果,对高压断路器、隔离开关、母线、绝缘子、穿墙套管、电压互感器、电流互感器进行了选型,从而完成了2×350MW热电厂电气部分设计。
内容第一章锅炉 (3)第二章汽轮机 (4)第三章发电厂主要电气设备 (5)第一节发电机 (6)第二节变压器 (7)第三节其它电气设备 (8)第四节厂用电 (9)第四章毕业实习心得 (10)第一章.锅炉一.概述锅炉的作用燃料或热源的热能加热工作介质,使一定数量的工作介质达到所要求的状态。
蒸汽锅炉的工作介质是水,在锅炉里被加热变成一定压力和温度的蒸汽。
蒸汽的压力和温度称为蒸汽参数,表示蒸汽的状态。
在火力发电厂中,锅炉产生的蒸汽送进汽轮机膨胀做工,驱动汽轮机转子带动发电机转子旋转,利用导体切割磁力线产生感应电流的原理而发出电力。
发电的生产过程是一个能量转换的过程,这个过程可表示为:燃料的化学能电能机械能蒸汽热能发电机汽轮机锅炉−−→−−−→−−−→− 锅炉机组的工作过程示意图如图3—1所示下图为锅炉机组的工作过程示意图图3—1 锅炉机组的工作过程示意图二、锅炉设备的整体构造从锅炉设备的名称可以看出,它包括着锅和炉两部分,燃料在炉内燃烧,放出热量,通过传热过程将热量传给锅内的工作介质——水,使其蒸发,过热成为合格的蒸汽。
这两者是锅炉的基本组成部分,常成为本体部分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10万kvA发电厂一次部分设计第一章电气主接线的设计1.1 电气主接线的设计1.1.1 电气主接线设计的要求电气主接线图是由各种电气元件如发电机、变压器、断路器、隔离开关、互感器、母线、电缆、线路等,接照一定的要求和顺序接起来,并用国家统一规定图形的文字符号表示的发、变、供电的电路图。
电气主接线是发电厂、变电所电气设计的首要部分,也是构成电力系统的重要环节。
主接线是的确定对电力系统整体及发电厂、变电所本身运行的可靠性、灵活性和经济性密切相关,并且对电气设备选择,配电装置布置,继电保护和控制方式的拟定有较大影响。
因此,必须正确处理好各方面的关系,全面分析有关影响因素,通过技术经济比较,合理确定主接线方案。
1.1.2基本接线及适用X围1.35kV及110kV母线采用单母分段接线(1)优点:用断路器把母线分段后,对重要用户可以从不同段引出两个回路,有两个电源供电;当一段母线发生故障,分段断路器自动将故障段切除,保证正常段母线不间断供电和不致使重要用户停电。
(2)缺点:当一段母线或母线隔离开关故障或检修时,该母线的回路都要在检修期间内停电;当出线为回路时,常使架空线路出现交叉跨跃。
(3)适用X围:35-63kV配电装置的出线回路数不超过4-8回;110-220kV配电装置的出线回路数不超过3-4回。
2. 10kV母线采用双母分段接线3. 110kV母线采用内桥接线(1)35-110kV线路为两回及以下时,宜采用桥形、线路变压器组成或线路分支接线。
(2)桥型接线:当只有两台主变压器和两回输电线路时,采用桥型接线。
当只有两台变压器和两回输电线路时采用内桥形式(3)内桥使用X围:内桥接线适用于输电线路较长(则检修和故障机率大)或变压器不需经常投,切及穿越功率不大的小容量配电装置中。
(4)外桥使用X围:外桥接线使用于输电线路较短或变压器需经常投,切及穿越功率较大的小容量配电装置中。
1.2 设计方案比较与确定1.2.1 主接线设计方案图确定采用110kV内桥连接方式.图1-1 接线方案的主接线图由图1-1可以看出该方案中:110kV侧选用内桥接线;35kV侧选用单母分段接线;10kV侧选用双母分段接线。
变压器短路:变压器35kV,10kV侧QF110kV出线QF及联络QF跳闸。
一回110kV出线暂停电,操作后可恢复送电。
但有线路过负荷的可能性。
桥开关一侧短路。
一回110kV出线暂停电,出线开关变压器的开关均跳开,该侧出线停电至故障排除为止。
变压器停运,需暂时使出出线停电,操作后才重新送电。
经综合考虑,本方案完全符合要求,确定本方案为本设计的主接线方案。
1.3 主变压器容量的选择1.3.1 主变压器选择原则1. 对于中小型发电厂,主变压器应选用三相式。
2. 在发电机发电母线上的负荷为最小时,能将剩余功率送入电力系统。
3. 发电机电压母线上最大一台发电机停运时,能满足发电机电压的最大负荷用电需要。
4. 因系统经济运行而需要限制本厂出力时,亦应满足发电机电压的最大负荷用电。
1.3.2三绕组变压器的选择原则1. 由于次发电厂有三种电压,若采用双绕组变压器,则从6kV~110kV和6kV~35kV需要四台双绕组变压器。
其经济性低于使用2台三绕组变压器,且占地面积大。
2. 在发电厂有两种升高电压的情况下,当机组容量为125MW及以下时,从经济上考虑,一般采用三绕组变压器。
但每个绕组的通过功率应达到该变压器容量的15%以上。
三绕组变压器一般不超过两台。
1.3.3 主变压器容量选择计算1. 当10kV母线上负荷最小,且两台发电机满发时100-100×8%=100-8=92MW92-20=72MW 72/0.8=90MVA 90/2=45MVA=45000kVA(每台变压器的容量)又因为35KV恒定供电20MW,则每台承担10MW。
10/=10/0.9=11.11MVA 在发电厂有两种升高电压的情况下。
当机组容量为125MW及以下时,一般采用三绕组变压器。
但每个绕组的通过功率应达到该变压器容量的15%以上。
(三绕组变压器一般不超过两台)∴35kV侧变压器绕组所占百分比:11.11/45=24.7%>15% ∴满足要求。
2. 当10kV母线上负荷最小且T1 T2之一退出时有:SN=〔100-100×8%/0.9-20/0.9〕×0.7=(115-22.22)×0.7=64900kVA根据上边的计算结果应选63000kVA变压器,但考虑变压器的事故过负荷能力,选用50000kVA的变压器。
选用SFSL1-50000型变压器,其参数见下表:表1-1 变压器型号及参数3. 当10kV母线上负荷最大且G1 G2之一退出时,应满足系统倒送电能。
由于10kV母线上负荷最大为25MW切除一台发电机剩余总容量为:50-50×8%=46MW 则没有变压器从系统倒送功率可能性。
由于所选变压器容量小于计算值需进行过负荷校验。
变压器事故过负荷倍数K=64900/50000=1.3 当事故过负荷倍数K为1.3时允许过负荷时间为120min。
可见当考虑过负荷能力的情况下,所选SFSL1-50000型变压器满足本条要求。
1.4 发电机型号的选择本厂发电机的容量为50MW,选择型号有如下两种:表1-2 容量为50MW发电机的型号选择表型号超瞬Xd″QFS-50-2 14.75% 0.8SQF-50-2 14.9% 0.8查表可知SQF-50-2的各项参数绝大部分大于QFS-50-2的参数,且重量,体积也比QFS-50-2大因此选择QFS-5-2型号的发电机。
1.5电抗器的选择因为主接线设计中有母联电抗器和出线电抗器,据母联电抗器电抗百分数为12%,出线电抗器电抗百分数为6%,选择型号电抗器的选择(110kV NKL型铝电缆水泥电抗器技术数据)表1-2 电抗器型号及参数表型号额定电流(A)额定电压(U)通过容量额定电抗NKL-10-200-6200 10 3×866 6 NKL-10-3000-123000 10 12第二章短路电流的计算2.1 总系统中电抗值计算与合并总系统的电抗图如下:图2-1 总系统的电抗图由于计算短路电流时,此图中的发电机将给发电厂系统中输送能量,并作为一个电源点,因此需将这些发电机合并为一个电源点,图中各元件的电抗值合并为一个总电抗值。
具体计算如下:设基准容量为Sb =100MVA 基准电压Ub=115kV(已知正序阻抗为X=0.4Ω/km1. 线路阻抗的换算(1)168KM长线路X L1*= Xl1×Sb/ Ub2=0.4×168×100/1152=67.2×0.00756=0.508(2)14KM长线路X L2*= Xl2×Sb/ Ub2=0.4×14×100/1152=5.6×0.00756=0.0423(3)78KM长线路X L3*= Xl3×Sb/ Ub2=0.4×78×100/1152=31.2×0.00756=0.236(4)26KM长线路X L4*= Xl4×Sb/ Ub2=0.4×26×100/1152=10.4×0.00756=0.0786(5)18KM长线路X L5*= Xl5×Sb/ Ub2=0.4×18×100/1152=7.2×0.00756=0.0544(6)2KM长线路X L6*= Xl6×Sb/ Ub2=0.4×2×100/1152=0.8×0.00756=0.00605(7)12KM长线路X L7*= Xl7×Sb/ Ub2=0.4×12×100/1152=4.8×0.00756=0.0363(8)5KM长线路X L8*= Xl8×Sb/ Ub2=0.4×5×100/1152=2×0.00756=0.00512. 系统中发电机阻抗标幺值(Xd″查表发电机型号与参数)(1)LQ:容量为25MW的发电机查表得:次暂态电抗X F1*= Xd″×/Sn=0.1215×4×0.8=0.486×0.8=0.3888容量为12MW的发电机查表得:次暂态电抗X F2*= Xd″×Sb/Sn=0.1133×8.3×0.8=0.7554(2)YM: 同*(3)HLR: 同*(4)YKSJ:容量为6MW的发电机查表得:次暂态电抗X F3*= Xd″×Sb/Sn=0.1239×100×0.8/6=2.065×0.8=1.652容量为1.5MW的发电机查表得:次暂态电抗X F4*= Xd″×Sb/Sn=0.184×100×0.8/1.5=12.26×0.8=9.81363. 系统中变压器阻抗标幺值计算.双绕组:容量为31.5MVA的变压器(1)T2*=0.105×100/31.5=0.105×3.1746=0.3333Xb2(2)T容量为31.5MVA的变压器4*=0.105×100/15=0.105×6.66=0.7Xb4容量为8MVA的变压器(3)T6*=0.105×100/8=0.105×12.5=1.3125Xb6容量为10MVA的变压器(4)T8*=0.105×100/10=0.105×10 =1.05Xb8三绕组:容量为31.5MVA的变压器总系统图化简为下图:图2-2 总系统图化简图LQ:YM:HLR:YKS:系统图中,系统所给的电抗值转换为基准电抗:2.2 发电厂中各元件阻抗标幺值的计算:1. 容量为50MW的发电机X G1*=XG2* =××=0.1475×100/50×0.8=0.1475×2×0.8=0.295×0.8=0.2362. 电抗器的标幺值。
(1)出线电抗器:电抗百分数UR1%=6%(2)母线电抗器: UR3%=12%(按该母线上事故切除最大一台发电机时,可能通过电抗器的电流计算。
一般取该台发电机50~80%In )In查50MW发电机参数为3440A=3.44kA(按80%计算)∴选3000A得XR3*=0.2093. 三绕组变压器电抗值计算三绕组变压器容量为50MVA2.3 发电厂中的短路电流计算2.3.1 短路电流计算步骤1. 选择计算短路点画等值网络(次暂态网络)图,首先去掉系统中的所有负荷分支,线路电容、各元件的电阻,发电机电抗用次暂态电抗Xd "。