(完整word版)油井含水急剧上升的原因探讨
生产油井含水突升原因分析及处理措施

生产油井含水突升原因分析及处理措施摘要:针对渤海油田某油井生产过程中出现的含水突升、产液量及井底流压上涨等情况开展了要因分析,通过要因分析认为是该井管柱原封堵工具(防上顶工具时效,丢手管柱上移)失效,原生产层位水窜所致,这也通过作业中起出丢手管柱后得到了验证。
基于此,为彻底解决油井含水突升问题,采取了现场对管柱组合由普合管柱+丢手管住更改为Y分管柱的应对措施,作业结束后启泵投产,通过跟踪生产数据分析,措施应用达到了目的要求,该油井含水恢复到了常规水平,成效显著。
同时也为后续类似情况的产生提供了相关参考依据。
关键词:生产油井;含水突升;防上顶工具;丢手管柱1油井生产现状渤海油田某口油井目前日产液93m3,日产油0.5m3,含水99%,流压11.3MPa。
1.1补孔前后数据对比该井自上返补孔作业后生产状况如下表1、表2所示:(1)该井自上返补孔作业后井底流压缓慢下降,于A年6月11日明显上升。
表1 上补孔作业前井底流压变化曲线表2 上返补孔作业后井底流压变化曲线(2)该井上返补孔前含水一直较高,上返补孔作业后含水明显下降后趋于稳定,于6月11日突然上升,如下表3、表4所示。
表3 上返补孔作业前含水率变化曲线表4 上返补孔作业后含水率变化曲线(3)该井自上返补孔作业后电机温度缓慢上升,于A年6月11日明显下降,如下表5、表6所示。
表5 上返补孔作业前电机温度变化曲线表6上返补孔作业后电机温度变化曲线(4)该井自上返补孔作业后产液量基本稳定,于A年6月11日明显上升,表下表7所示。
表7 上返补孔作业后产量变化曲线本井于A年6月11日00:30到1:10期间,井温由40℃下降至38℃,在4:00左右上升至50℃,后继续缓慢上升,目前稳定在54℃。
油压由3.5MPa上涨至4.5MPa,套压稳定在3MPa左右。
A年6月10日化验含水分别为2.3%和1.9%,平均化验含水2.1%,在现场发现参数异常后,多次取样,发现含水较高,平均含水99.1%,同时倒入计量后,产液量由40m3/d上涨至92m3/d。
联合站原油外输含水偏高的原因分析与处理对策

联合站原油外输含水偏高的原因分析与处理对策原油外输中含水偏高是指在油田生产中将含有一定量水分的原油通过输油管道、油罐船等运输设施输送至目的地的过程中,因为各种原因导致原油中的含水量偏高,这将对原油的质量造成影响,同时也可能对运输设施和环境造成一定的危害。
对于联合站原油外输含水偏高的原因分析和处理对策是非常重要的。
一、原因分析1. 油田生产工艺问题原油含水量高的一个主要原因是油田生产工艺问题。
在油田开采过程中,因为地层含水的存在,部分含水油在开采过程中会被一同开采出来。
油藏开采过程中可能存在管柱下泄、热水注入等问题,都会导致原油中的含水量增加。
2. 输油管道和储存设施问题输油管道和储存设施是原油外输过程中的重要设施,但是这些设施存在老化、漏水和腐蚀等问题,可能导致在油品输送过程中掺杂了大量的水分。
3. 操作管理不当在原油外输过程中,操作管理不当也会导致原油中含水量偏高。
比如在输送过程中,操作人员未对原油进行适当的分离和处理,或者对管道和储存设施的检查和维护不够及时,都可能导致原油中含水量的增加。
4. 环境因素环境因素也可能导致原油外输中含水量偏高,比如在运输过程中受到降雨等天气因素的影响,使得原油中含水量增加。
二、处理对策为了避免原油中含水量偏高,需要加强油田生产过程中的管理和监控。
要严格控制油田地层中水的开采,采用合理的开采工艺减少含水油的开采量。
加强对管柱下泄、热水注入等问题的监测和防范,及时进行处理和修复,减少地层水进入原油中的可能。
保障输油管道和储存设施的完好性是降低原油中含水量的重要手段。
对于老化和腐蚀严重的输油管道和储存设施,需要进行及时的维护和更新,确保其密封性和抗腐蚀性。
加强对原油外输过程中的操作管理,制定严格的操作规程和标准,确保每一步操作都符合规定要求。
对于原油的分离和处理,需要按照相关标准和流程进行操作,确保原油中的含水量符合要求。
同时加强对输油管道和储存设施的定期检查和维护,确保其工作正常。
油田含水变化规律

实际工作中为了便于应用,将油水相对渗透率的比值表示为含水饱和度的函数。
从而含水率可进一步表示为:
用含水率对含水饱和度微分得:
含水率对含水饱和度微分结果表示的实际意义:当含水饱和度增加1%时,含水率变化的幅度,也就是说采出程度增加1%时含水率变化的幅度,即含水上升率。应用能代表油藏的相渗曲线,根据含水上升率的理论表达式,就可以计算油藏的理论含水率变化曲线。
4、含水上升规律变化模型特征分析3-7-6.7
新区或开采时间不长的单元来说,一般应用理论含水特征即相渗理论分析今后含水变化,而对于跃1块含水已经达到90%,应该可以应用实际生产数据分析含水变化。
一般来说,实际分析含水变化的公式很多,上述的含水上升规律模型也是经常应用的方法之一。但是现场应用时一般含水率变化大,回归计算波动较大,另外一般开始时也很难知道含水上升规律是三种模式即凸型、S型和凹型其中的哪一种(图10-27)。或者有的文章加上过渡曲线即所谓的五种变化规律。往往对分析含水变化规律产生较大的误差,甚至错误。本文推荐一种常用的应用累计产油与累计产水的关系,即张金庆水驱特征曲线的应用,一方面避免了含水率的波动,另一方面这种方法出现的直线段时间早,便于早期的预测分析,在现场应用取得较好的效果。
NP—累积产油量,104t;
NR—可采储量,104t;
R*—可采储量采出程度,%;
a、b、c—计算参数。
计算步骤:
(1)由式(1)回归计算得某一时间直线段的a、b值;
(2)由式(2)、(3)计算NR和c值;
(3)由式(2)(4)计算今后已知NP或R*的f值。
计算结果,跃地1块2002年10月出现直线段,即含水87.9%。b=812074.47,a=5.5322,相关系数=0.99849,C=1.467373,NR=55.34万吨,采收率R=30.05%。与下面曲线对比,因为a大于1,从可采储量采出程度于含水率关系曲线(图10-28、10-29)可以看出,含水上升规律属于凸型。
低渗透裂缝油藏油井高含水的原因分析与治理

A油田受地下水活跃、裂缝发育及注水压力偏高等因素影响,油井含水上升快,高含水油井比例大,油田开发形势严峻,稳油控水难度大。
通过认真分析引起油井高含水的原因,因井制宜,一井一策,详细制定治理方案,主要通过层段降水、周期注水、化学调堵及机械堵水等措施手段,共治理高含水油井32口,取得较好的增油控水效果,有效减缓了油田含水上升速度,油田开发效果得到持续改善。
1 油井高含水的原因分析1.1 地下水活跃,边水或底水推进过快导致油井含水上升在油田边水或底水能量充足的地方,随着油井开采时间的延长,油层压力下降,边水或底水在外压的作用下侵入油层,使油水边界向油藏内部不断压缩。
结果地下水与油层原油混合在一起,由于油水在地层中的渗透性差异,导致地下水推进过快,先于原油到达油井,使这些地区的油井过早含水或含水上升过快。
而那些处在油水过渡带的油井,甚至在开发初期就进入中高含水阶段。
1.2 油水层解释难度加大,误射水层或油水同层所致低渗透油田油层发育差,油藏孔隙度低、含油性差,局部井区纯油层和油水同层在测井响应上差别不大,反应在测井曲线上幅度差异不明显;加上油水层解释标准存在地区差异性和极强的经验性,导致在测井解释的时候,容易把油水同层、水层误解释为油层而进行射孔。
或者是在投产开发时,放宽了射开标准,为获取更多的油量而射开油水同层。
1.3 天然裂缝发育、油水井压裂投产,裂缝贯通油水井A油田为低渗透裂缝型油田,断层附近及构造高部位是裂缝相对发育区。
断层走向多为南北向,通过微地震裂缝测试等监测手段,判断裂缝走向以近东西向为主。
因此该油田井网为线状注水井网,线状注水被认为是目前低渗透裂缝油田最佳的注水方式。
该油田油水井均压裂投产,但是,压裂时并不能完全控制裂缝的延伸方向,实际上在其他方向也产生裂缝,加上油水井距过小,油水井间的次裂缝很容易沟通,注入水沿次裂缝方向很容易到达油井,导致油井含水上升过快。
1.4 注水量、注水压力超标,导致注入水推进过快低渗透油田普遍注水受效差。
油田含水变化规律

对于任何一个油藏,在注水开发的过程中,油水粘度比影响着阶段含水率和含水上升率,含水率与采出程度之间存在一定的内在联系。按照童宪章推导出的水驱曲线关系式lg(fw/(1-fw))=7.5×(R-Rm)+1.69描述的含水率与采出程度的关系是一条大致S型曲线。
2、水驱系列法
实际上含水率分析可以用水驱系列法,但是由于含水率变化大,只是作为分析用。
4、含水上升规律变化模型特征分析3-7-6.7
新区或开采时间不长的单元来说,一般应用理论含水特征即相渗理论分析今后含水变化,而对于跃1块含水已经达到90%,应该可以应用实际生产数据分析含水变化。
一般来说,实际分析含水变化的公式很多,上述的含水上升规律模型也是经常应用的方法之一。但是现场应用时一般含水率变化大,回归计算波动较大,另外一般开始时也很难知道含水上升规律是三种模式即凸型、S型和凹型其中的哪一种(图10-27)。或者有的文章加上过渡曲线即所谓的五种变化规律。往往对分析含水变化规律产生较大的误差,甚至错误。本文推荐一种常用的应用累计产油与累计产水的关系,即张金庆水驱特征曲线的应用,一方面避免了含水率的波动,另一方面这种方法出现的直线段时间早,便于早期的预测分析,在现场应用取得较好的效果。
Ⅱ 凸-S过渡型
E=1-e(A-3.912B)
Ⅲ S型
E=A+3.892B
Ⅳ S-凹过渡型
E=e(A+0.98B)
Ⅴ 凹型
a:
b:
E=e(A-0.020203B)
E=1-e(A-0.020203B)
根据表中给出的七种表达式,利用濮城油田各开发单元实际开发数据进行回归处理。选择相关系数最大,符合油藏地质特点和开发状况的合理表达式,求出相应的采收率。
#3机主油箱含水量大的原因及防范措施

#3机主油箱油含水量大的原因及防范措施油中进水的原因有两个,一个是冷油器泄漏,另一个是汽轮机高、中压轴封漏汽量大。
经过检查,现已排除冷油器泄漏的可能,因此我们就从高、中压轴封上采取下面的防范措施:
1、在保证机组凝汽器真空的前提下调低轴封母管压力,由
原来的0.015MPA调至0.008MPA。
2、加强主油箱底部放水,增加次数或每班不定期的放水,
注意监视主油箱油位。
3、疏通中压后轴封与中轴承箱处的保温,使该处留出空隙,
以保证上下能对流,减少蒸汽在此处积聚,对蒸汽进入
轴承箱能有所减少。
以上措施的第一条和第二条已经实施,第三条由于机组运行中,处理不了,等机组停运时处理。
2006-10-24。
油井含水急剧上升的原因探讨

一般从两方面入手:1、含水上升主要是由于注入水引起的含水上升分析日注水量(注水强度)与含水的关系,注水强度大的下调注水,注水强度低的上调注水(特别是有孔隙水的高水饱油藏来说,这点尢为重要)如果是因裂缝引起的含水上升,一方面化堵调剖面、封堵高含水层,动用其它层,一方面停注,另外就直接转注如果是尖峰吸水引起注入水突进的,采用下调注水、剖面改造等方法2、含水上升主要是由于油井引起的分析采液强度与含水的关系,确定合理的采液强度(对于底水油藏、油水粘度比大的油藏来说,非常重要)分析流压(动液面)与含水、产量的关系,适当提高流压如果剩余油低(一般油井含水缓慢自然上升,采出程度高)的井,提高采液量对于油井含水上升,我认为主要从下面几点入手1.首先分析含水上升原因,通过化验鉴定水的矿化度,从而判断水的来源。
2.若水是来自生产层位,说明是水淹或根据地质图件判断出水具体层位,若是来自地表水,说明是窜层或上部有漏点,则可以通过找漏等措施,判断漏点以后,执行堵漏。
3.生产层位出水一般根据隔层厚度的大小,采取的措施有卡堵、填砂、注灰、打桥塞等措施实现分层开采的目的。
4.水淹层则可以采取调整对应水井的注水量,调驱等措施达到控制含水上升的目的。
1、油井含水急剧上升的危害当油井的含水达到98%时,意味着油井失去了开采价值,可见含水对油井生产的重要性,油井含水急剧上升对油井的生产造成很大的影响,首先是减缓了单井的采油速度,由于含水的急剧上升,造成日产油量急剧下降,从而减缓了单井的采油速度;其次是由于含水急剧上升,造成油层内大量原油开采不出来,从而降低了区块的采收率;再次,由于局部油井含水的急剧上升,造成注入水沿水线突进,一方面造成局部油层水淹,另一方面造成平面矛盾加剧,使其他区域油层注水见效慢或没有注水效果。
2、油井含水急剧上升的原因油井含水急剧上升是多方面原因造成的,分析研究以下几种情况。
2.1油井措施后含水急剧上升。
油井酸化措施后,含水急剧上升,而且一直居高不下,分析原因,一方面是酸化措施时,喷挤酸化液压力过大,造成油层裂缝增多,从而水线推进通道增多;另一方面酸液的浓度较高,酸液与疏通了高渗层或底水。
如何有效控制油井含水上升

如何有效控制油井含水上升如何有效控制油井含水上升摘要:油井生产过程中,含水急剧上升会对生产造成很大的影响。
特别是随着油田勘探开发的不断深入,平面矛盾和层间矛盾日益突出,产量递减加大。
当油井含水上升到98%时,这就意味着油井失去了开采价值。
本文提出了以控制含水上升,减缓油井水淹的速度,来促进单元持续稳定开发。
关键词:综合含水平面矛盾层间矛盾渗透率生产参数常规稠油一、区块基本概况1.区块地质概况滨8-3块位于平方王油田穹隆背斜构造中部,为低渗透常压具有气顶的穹隆背斜构造多层薄层状砂岩油气藏。
有统一的油气界面(-1510m)和油水界面(-1560m)。
1.1油层分布情况滨8-3块沙四中储层比较发育。
储层厚度60.6-85.6m,平均单井15.6层68.9m。
平面上,中心部位较厚,滨4-5-52井区达85.6m 以上,在滨4-5-2井处仅为59.6m。
第1砂层组为较大的原生气顶,主力油层在2、3砂层组,全区分布。
4砂层组只在中部局部分布。
1.2 储层物性滨8-3块物性较差,渗透率低,非均质严重。
2砂层组渗透率为0.074μm2,3砂层组渗透率为0.089μm2 。
总的是在剥蚀区的中部部位渗透率较高(滨4-3-7井渗透率为0.081μm2),四周较低,最低渗透率为0.019μm2(滨4-5-7井)。
2.开采现状截止到2012年底,该块共投产油井45口,开井29口,日产液642,日产油56吨,综合含水91.3%采油速度0.46%。
投产水井25口,开井11口,日注水量641方/天,月注采比0.98。
总体处于低产能,低采油速度,高采出程度,高含水开发阶段。
二、含水上升原因1.静态因素1.1油井构造位置差异,水线方向上的井点含水上升快平方王油田沙四中油藏的注水方向与地应力方向大致相同,成条带状,造成水线方向上的井点含水上升快,而垂直于水线方向上的井点注水不受效。
另外,受构造高差的影响,在注水开发过程中构造高部位水井比构造低部位水井对油井的影响大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
油井含水急剧上升的原因探讨
1、油井含水急剧上升的危害
当油井的含水达到98%时,意味着油井失去了开采价值,可见含水对油井生产的重要性,油井含水急剧上升对油井的生产造成很大的影响,首先是减缓了单井的采油速度,由于含水的急剧上升,造成日产油量急剧下降,从而减缓了单井的采油速度;其次是由于含水急剧上升,造成油层内大量原油开采不出来,从而降低了区块的采收率;再次,由于局部油井含水的急剧上升,造成注入水沿水线突进,一方面造成局部油层水淹,另一方面造成平面矛盾加剧,使其他区域油层注水见效慢或没有注水效果。
2、油井含水急剧上升的原因
油井含水急剧上升是多方面原因造成的,分析研究以下几种情况.
2.1油井措施后含水急剧上升.
油井酸化措施后,含水急剧上升,而且一直居高不下,分析原因,一方面是酸化措施时,喷挤酸化液压力过大,造成油层裂缝增多,从而水线推进通道增多;另一方面酸液的浓度较高,酸液与疏通了高渗层或底水。
所以这也是底水油藏措施中应特别注意的问题。
对于有高渗层的应该采取暂堵后进行措施,对于底水油藏应该控制措施强度,即酸化时控制喷挤酸化压力及酸液浓度.
2。
2底水发育区域油井在热洗、修井等措施之后含水大幅上升。
在地水发育区域油井在热洗、修井等措施的时候,工作液中的滤液进入地层中,形成水相堵塞。
就水湿性地层而言,油相/气相要想进入井筒,就必须克服油—水或气—水界面上的毛管压力。
若地层能量太低,无法克服这个压力,造成井筒内只有水而无油气,也就是形成了所谓的水锁损害。
一般来说,在低渗地层中,尤其是低渗气藏,水锁比较严重。
2.3注入水沿高渗透带突进。
2。
3。
1高渗透油层含水急剧上升。
在高渗透油层中,如果油水井层位对应较好,油井易受到注入水注水效果,当注入水量大大超过采出液即注采比较高时,容易加快油层水淹,待油层大面积水淹后,水驱油效率大大降低,变成了以水洗油的情况,含水居高不下。
2。
3。
2中低渗透油层含水急剧上升。
在中低渗透油层中,含水急剧上升大多数的原因是层间矛盾加剧,单层突进造成的.在中低渗透层,由于层与层之间渗透率不一样,注入水沿渗透率较高的油层突进,容易造成含水急剧上升。
还有一个原因就是平面矛盾造成的,同一层内地渗透层有高渗透带,注入水容易沿高渗透带突进,从而造成含水急剧上升。
2。
4套破井含水急剧上升
由于油井套管破,地层水沿套破位置进入油套环形空间,在进入井筒内,动液面直接返制井口,含水急剧上升.
3、油井含水急剧上升的提前预防
3.1、预防油井酸化时造成含水急剧上升.
可以在酸化的时候控制好酸化的压力及酸液的浓度。
3.2、预防油井热洗、修井等措施后含水急剧上升。
热洗或修井前首先要了解该井的地层压力及地层高压物性等参数、油层的润湿性,防止水锁造成含水急剧上升的情况发生.
3.3.1、预防注入水沿高渗透带突进造成含水急剧上升。
这个问题很复杂,首先要搞清楚水从哪里来的?哪个方向是注水受效的优势方向,在保证合
理注采比的条件下调整注采强度,应该可以收到一些效果,不过含水上升规律与流度比等油藏流体性质密切相关,应该先判断是否符合本油藏含水上升规律,如果偏差不大,那进行局部调整收到一定效果即可,否则可能是整个井网、层系、注采系统可能都要考虑调整,那就麻烦了。
判断见水方向本来就不简单,要控制那就更难了,特别是地层情况差的油田那就没辙了。
基本上先从油井开始,先控制产液量吧。
改变油水井的工作制度,加强油水井的堵水调剖作业.调整井网密度.
3.3.2、预防中低渗透油层含水急剧上升。
分层开采有利于减缓层间干扰,发挥各油层的产油能力,有利于减缓含水率上升速度。
结合分层注水实施分层开采,可以扩大注入水波及体积。
另外井网调整、加密井布井、控制好采液强度、注采关系调整、调剖、堵水等都是预防含水急剧上升有效的手段.
如果已经高含水了,可以直接大液量开采,水洗油层得了。
同时实施一些注水调剖什么的,提高波及体积。
3.4、预防套破井含水急剧上升
如果含水上升不正常,结合完井井身结构(包括固井情况)、动态监测(包括水性资料、压力、温度、工程测井、井下作业验漏)等资料,判断是否套损套漏、管外水窜等,确认后采取封堵等针对性措施。