1.3 有理数的减法3(1)
人教版七年级数学上册课件:第一章1.3第3课时

2. 计算: (1)(+7.2)-(+3.6); (2)(-38)-(-24)-(+65); (3)(-3)-(-17)-(-33).
解:(1)原式=7.2+(-3.6)=3.6; (2)原式=-38+24+(-65)=-79; (3)原式=-3+17+33=47.
3. 计算: (-38)+52+118+(-62).
4. -0.25比-0.52大__0_._2_7__,比-1 小2的数是
__________. 5. 计算: (1)11-(-9)-(+3);
解: 11-(-9)-(+3) =11+9+(-3) =20+(-3) =17;
(2)(+18.5)-(-18.5).
解: (+18.5)-(-18.5) =18.5+18.5 =37.
(3)如果某天A地气温是-2 ℃,B地气温是4 ℃,A地比 B地气温高多少?(列式计算)
解:_-2_-_4_=_-2_+__(-_4_)=_-_6_, _________________ ____所__以__A_地__比__B_地__气__温_高__-_6_℃__.________
【例2】计算: (1)7.21-(-9.35);(2)(-19)-(+9.5);
=100(册). 答:上周平均每天借出100册.
9. 已知m是8的相反数,n比m的相反数小2,求n比m 大多少?
解:因为m是8的相反数,所以m=-8. 因为n比m的相反数小2,所以n=8-2=6. 所以n-m=6-(-8)=14,即n比m大14.
10. 淮海中学图书馆上周借书记录如下表:(超过100 册记为正,少于100册记为负).
1.3 有理数的加减法 辅导资料(含答案)

1.3 有理数的加减法第3课时本节主要是1.经历探索有理数加法法则和运算律的过程,理解有理数的加法法则和运算律,能熟练的进行整式加法运算,并能运用运算律简化运算。
鼓励学生借助熟悉的例子解释运算结果,用自己的语言分类、归纳、概括出有理数的加法法则。
有理数的加法交换律和结合律。
2.利用有理数的加法交换律和结合律进行有理数的运算,其中加法交换律是两个数相加,交换加数的位置,和不变,即a+b=b+a;加法结合律是三个数相加,先把前两个数相加再和第三个数相加,或先把后两个数相加再和第一个数相加,和不变,即(a+b)+c=a+(b+c).本节主要讲了有理数减法的运算法则,让学生通过实例,理解有理数减法的法则,能熟练的进行整数的减法运算。
3.对有理数的加法,减法两种运算进行了比较,让学生体会到加减混合运算可以统一成加法,以及加法运算可以省略括号及前面加号的形式(即“代数和”的问题),同时由前两节的整数加减运算很自然的过渡到小数、分数的加减运算。
一. 有理数的加减法运算,能进行小数或分数在内的有理数加减混合运算,能根据具体的问题适当的运用运算律简化运算。
利用混合运算解决实际问题.这是本节的重点【典例引路】中例1,【当堂检测】中第4题,【课时作业】中第10,题,【备选题目】中第2题。
二.灵活运用有理数加减法运算的规律。
有理数的混合运算. 尤其是在计算过程中,一定要注意符号的选择,这是本节的难点.【典例引路】中例1,【当堂检测】中第5题,【课时作业】中第21题.三.易错题目【课时作业】中第7题,【典例引路】中例2,在计算过程中,一定要注意符号的选择,这是学生最容易出现错误的地方。
点击一:有理数的加法法则1.同号两数相加,取相同的符号,并把绝对值相加.2.绝对值不相等的异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加为0;3.一个数同0相加,仍得这个数.注意:运用有理数加法法则时,看清两数符号属于哪种情况,再应用哪种法则. 针对性练习:1.填上适当的符号,使下列式子成立:(1)(______5)+(-15)=-10;(2)(-3)+(______3)=0; (3)(______37)+(______313)=-1. 【解析】先判断和的绝对值与两个加数的绝对值的关系,再根据有理数的加法法则选择符号.【答案】+ + + - 点击二:有理数的加法运算律加法交换律:两个数相加,交换加数的位置,和不变;a+b=b+a. 加法结合律:三个数相加,先把前两个相加,或者先把后两个数相加,和不变. a+b+c=(a+b)+c=a+(b+c) 利用加法交换律、结合律,可以使运算简化. 点击三:有理数的减数法则减去一个数,等于加上这个数的相反数. 点击四:有理数的混合运算 统一成加法后,按加法运算来完成.类型之一:应用创新型例1、仓库内原存粮食4000千克,一周内存入和取出情况如下(存入为正,单位:千克):2000,-1500,-300,600,500,-1600,-200问第7天末仓库内还存有粮食多少千克?【解析】本题使用正负数来表示具有相反意义的量——存入和取出。
1.3.2有理数的减法(有理数的减法法则)教案

举例解释:
-通过具体的计算题,如3-2、-5-(-2)、7/4-3/4等,强调减法法则的应用,确保学生掌握重点知识。
-通过实际情境,如“小明向东走了5米,然后向西走了3米,他现在离起点多远?”,让学生将减法法则应用于实际问题中,加深对重点内容的理解。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了有理数减法的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对有理数减法的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的课堂中,我们探讨了有理数的减法法则,我发现学生们对这个概念的理解程度不尽相同。有的同学能够迅速掌握减法法则,而有的则在正负号的转换上犯了难。这让我意识到,在讲解理论知识时,需要更加注重个别差异,给予不同层次的学生更多的关注和指导。
在讲授过程中,我尝试通过数轴和实际案例来解释减法法则,希望让抽象的数学概念变得具体形象。从学生的反馈来看,这种方法似乎起到了一定的效果,但仍有一部分同学在应用时感到困惑。我想,下次可以尝试引入更多的生活实例,让学生在具体的情境中感受和理解减法的运用。
2.教学难点
-相反数的概念及其在减法运算中的应用。
-减法运算中正负号的处理,尤其是负负得正的规则。
-在实际问题中识别和应用减法法则。
人教版七年级数学上册《一章 有理数 1.3 有理数的加减法 实验与探究 填幻方》优质课教案_1

《有理数》教学设计一、教材分析(一)教学内容的地位和作用本堂课是在引入了负数和学习了运用正数与负数表示具有相反意义的量的基础上,将算术数扩充到有理数并对有理数进行分类,既是算术数到有理数的衔接与过渡,也是后面学习数轴、相反数、绝对值以及有理数运算的基础.由于本堂课还初步渗透了集合的思想和分类的方法,所以本堂课不仅是发展学生原有的认知结构,形成新的知识体系的主要通道,而且是渗透数学思想方法,感受数的应用价值以及增强学生数感的有效载体.因此,本节内容在教材中处于十分重要的地位.(二)教学目标1.知识与技能①了解有理数的意义.②理解有理数的概念.③会将有理数按照两种不同的标准进行分类.2.过程与方法简单回顾数的应用,感受数的初步扩展,经历有理数概念的形成过程,渗透集合思想及分类的数学方法.3.情感、态度与价值观激发学生的学习兴趣,体验有理数的应用价值,增强数感,树立学生“学数学、用数学”的信心.(三)重点与难点1.重点:理解有理数的概念.2.难点:初步领会有理数的分类方法.二、学情分析通过小学阶段的学习,学生对算术数已经有了比较全面深刻的的认识,不过同时思维也造成了一定程度的定势,这就容易与数的概念的扩充发生冲突.另外,刚刚步入初中的学生年龄小,对概念的理解能力不强,对枯燥的数字不如具体事物感兴趣,抽象思维能力弱,好奇、好动、好表现,不能长时间集中精力,因此,他们更喜欢参与生动有趣的教学活动,更容易接受形象直观的教学模型,更渴望得到老师的表扬与鼓励.三、教法与学法1.教法:情趣激发、启发诱导、归纳概括、评价激励.2.学法:观察思考、比较发现、交流探索、分析归纳.五、板书设计六、教学设计与反思(一)教学流程图(二)教学反思1.本堂课利用多媒体辅助教学,以探究性活动为主线,通过对教材进行深入的挖掘和适当的整合,设计生动有趣的教学活动激发学生的学习兴趣,借助形象直观的教学模型启迪学生的思维,为学生提供充分的活动时空,引导学生主动参与,积极探索,体验知识的形成过程,发展原有的知识结构,构建新的知识体系,让学生对知识的理解更加深入全面.2.《数学课程标准》提出:数学学习应使学生获得适应未来社会生活和进一步发展所必需的重要数学知识以及基本的数学思想方法.因此,本堂课的教学在使学生掌握知识、形成技能的同时注重渗透分类的方法和集合思想,为后继学习奠定了良好的基础.以上是我对《有理数》第一课时的教学说明,敬请各位评委和专家指导!学 案一、观察各情景中的数字,与同桌交流并完成下列练习1.既是正数又是整数的数有:__________.2.既是负数又是整数的数有:_________ .3.零是正数吗?是负数吗?是整数吗? ____________________________________.4.既是正数又是分数的数有:__________.5.既是负数又是分数的数有:__________. 二、1.整数的概念:______________________. 2.分数的概念:__________________. 3.有理数的概念:______________________________________________________. 三、有理数的分类结构图四、练习巩固1.把下面的有理数填入它所属于的集合的圈内.15, ,- 5, , ,0.1, 5.32,- 80,2.333……负数集合五、课堂小结1.与同桌交流你本堂课的收获.2.顺口溜趣说有理数有理数,非有理,有理“树”,俩枝丫,(有兴趣的同学分数形式表比率,整数分数两边挂,用分类方法二补分子整数任意取,整数分零、正、负整,充完善第三段)分母整数0舍去;分数包括正、负分;六、课外作业发挥你的特长,展示你对有理数的理解.(如绘画、写作、交谈等)。
1.3有理数的加减法本节总结

1.3有理数的加减法本节总结:知识1:有理数的加法法则:⑴同号两数相加,取相同的符号,并把绝对值相加.⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.⑶一个数同0相加,仍得这个数.有理数加法速记口诀:同号相加一边倒,异号相加大减小,符号跟着大的跑;绝对值相等“0”正好。
有理数的加法运算律加法交换律:a+b=b+a加法的结合律:(a+b)+c=a+(b+c)方法:①互为相反数的两个数先相加——“相反数结合法”②符号相同的两个数先相加——“同号结合法”③分母相同的的数先相加——“同分母结合法”④几个数相加得到整数——“凑整数”⑤整数与整数,小数与小数相加——“同行结合法”。
知识点2:有理数的减法法则:已知两个数的和与其中一个加数,求另一个加数的运算,叫做减法,减法是加法的逆运算。
有理数的减法可以转化为加法来进行:减去一个数,等于加上这个数的相反数。
a—b=a+(—b) a+b—c=a+b+(—c)知识点3:加减法混合的方法和步骤:(1)运用减法法则则将有有理数混合运算中的减法转化为加法,统一成代数和的形式;(2)运用加法则、加法交换律、加法结合律进行简便运算。
知识点4:有理数的比较大小:当a—b>0,a>b;当a—b=0,a=b;a—b<0,a<b。
1.计算1—2的结果是,|—3|—2=2.当b<0,a,a—b,a+b,中最大的数是,最小的数是3.若两个数的和是—27,其中一个数比8的相反数小2,则另外一个数是4.某市某天的最高气温是5℃,最低温度是—1℃,这天的温差是5.—3,—14,7的和比它们绝对值的和小6.在正整数中,前50个偶数的和,减去前50个奇数的和的差是7.口算:3-8= -4+7= -6-9= 8-12= -15+7= 0-2= -5-9+3= 10-17+8= -3-4+19-11= -8+12-16-23=8计算:-4.2+5.7-8.4+10 6.1-3.7-4.9+1.8 9+(—7)+10+(—3)+(—9))4.2()6.0()2.1()8(-+-+-+-12-(-18)+(-7)-15 -40-28-(-19)+(-24)-(-32)(-40)-(+28)-(-19)+(-24)-(32) (+4.7)-(-8.9)-(+7.5)+(-6))31()21(54)32(21-+-++-+ 3173312741++⎪⎭⎫ ⎝⎛-+75.9)219()29()5.0(+-++-)539()518()23()52()21(++++-+- )37(75.0)27()43()34()5.3(-++++-+-+-新人教数学七年级上册第1.3有理数的加减法测试题一、填空题(每小题3分,共24分)1、+8与-12的和取___号,+4与-3的和取___号。
1.3有理数的加减法(通用)

人教版义务教育教科书 数学 七年级 上册
1.3.1有理数的加法
在观察的领域中,机遇只 偏爱那种有准备的头脑.
(巴斯德)
第一个加数
第二个加数
正数 0
负数
正数
(-30)+20=-10
(-30)+30= 0
根据以上三个算式能否尝试总结异号两数相加的法则?
结论: 绝对值不相等的异号两数相加,取绝对值较大的加 数的符号,并用较大的绝对值减去较小的绝对值, 互为相反数的两个数相加得0 .
(-30)+0=-30
-30
0
• 0+(-30)=-30 • 结论:一个数同0相加,仍得这个数
3.一个数同0相加,仍得这个数.
(1) (-13)+(-8)=-(13+8)=-21
(2) 10 + (-6) =+(10-6)=4
(3) -3.5+0 =-3.5
(4)(-3.4)+ 3.4 =0
每个人手中有理数牌中,各选择 1张与同桌的牌相加,同桌间进行有理 数加法比赛,看看谁算的又快又对!
正数+正数 0+正数
负数+正数
0
正数+0 0+0
负数+0
负数
正数+负数 0+负数
负数+负数
结论:共三种类型. 即:(1)同号两个数相加; (2)异号两个数相加;
(3)一个数与0相加.
(+30) +(+20)= +50
0
30
50
(-30)+(-20) = -50
精品教案:1.3.2_第1课时_有理数的减法法则

1.3 有理数的加减法(第3课时)教学目标1.理解、掌握有理数的减法法则,会将有理数的减法运算转化为加法运算.2.通过把有理数的减法运算转化为加法运算,向学生渗透转化思想,通过有理数的减法运算,培养学生的运算能力.3.通过揭示有理数的减法法则,向学生渗透事物间普遍联系、可相互转化的辩证唯物主义思想.教学重点难点重点:有理数的减法法则.难点:有理数的混合运算.课前准备多媒体课件教学过程导入新课问题展示如图1所示,陆上最高处是珠穆朗玛峰的峰顶,最低处位于亚洲西部名为死海的湖,两处高度相差多少?如何列式?2 / 2图1答案:9 259.43 m8 844.43-(-415)师生活动教师展示问题图片,学生思考并回答.教师:减法运算和加法运算之间的关系是什么?学生:互为逆运算.教师板书:有理数的减法.探究新知图2如图2所示,北京某天的气温是-3 ℃~3 ℃,这一天的温差是多少呢?2 / 22 / 2教师先展示问题图片,学生思考并回答.教师再加以扩展:1.被减数、减数、差的关系.2.3-(-3)=3+3=6,体现了数学中的转化思想.追问:在式子3-(-3)=3+3=6中,是如何把减法转化成加法的?师生活动学生回答问题,教师总结减法的运算法则:减去一个数,等于加上这个数的相反数(板书),用字母表示为a -b =a +(-b )新知应用师:知道了有理数减法法则,我们就可以进行有理数减法的相关运算了. 例 计算:(1)(-3)-(-5);(2)0-7;(3)7.2-(-4.8);(4) (−312) -514.(3)7.2-(-4.8)=7.2+4.8=12;(4) (−312) -514= (−312) + (−514) =-834.教师展示问题,并引导学生完成(1)(2)题,学生独立完成(3)(4)题,体会有理数减法的计算法则.课堂练习(见导学案“当堂达标”)参考答案1.A2.A3.A4.-105.(1)10 (2)-69 (3)-297 (4)4 (5)-1146.(1)8-3=5 (2)(-2)-(-3)=1课堂小结1.有理数减法的法则:减去一个数,等于加上这个数的相反数.2.有理数减法的公式是a-b=a+(-b).布置作业教材第23页练习第1,2题,第24页习题1.3第3题.板书设计教学反思2 / 2有理数的减法法则是本课重点,它的探究是本课的难点.“减去一个数等于加上这个数的相反数”这一结论,应当让学生通过具体计算加以讨论,总结得出,从而形成对减法法则的充分感受.在开始运用减法法则计算时,要按照有理数减法法则,先把减法变成加法,再按加法法则运算.学生练习时,要引导学生注意,归纳有理数减法的运算规律,而不能简单机械地把减法化成加法.2 / 2。
七年级(人教版)集体备课教学设计:1.3.2《有理数的减法》(1)

七年级(人教版)集体备课教学设计:1.3.2《有理数的减法》(1)一. 教材分析《有理数的减法》是初中数学的重要内容,主要让学生掌握有理数减法的基本运算方法,理解有理数减法的运算规律,为后续的数学学习打下基础。
本节课的内容包括有理数减法的定义、法则以及运算方法,通过学习,让学生能够熟练地进行有理数的减法运算。
二. 学情分析七年级的学生已经掌握了有理数的基本概念和加法运算,但对减法运算可能还存在一定的困难。
因此,在教学过程中,教师需要引导学生从已有的知识出发,逐步过渡到减法运算的学习,帮助学生建立知识体系。
三. 教学目标1.让学生掌握有理数减法的基本运算方法。
2.培养学生解决实际问题的能力。
3.提高学生的数学思维能力。
四. 教学重难点1.教学重点:有理数减法的运算方法。
2.教学难点:理解有理数减法的运算规律,以及如何运用减法运算解决实际问题。
五. 教学方法1.采用问题驱动法,引导学生主动探究有理数减法的运算方法。
2.运用实例讲解法,让学生通过具体例子理解有理数减法的运算规律。
3.采用小组合作学习法,培养学生的团队协作能力。
六. 教学准备1.准备相关教学PPT,展示有理数减法的运算方法。
2.准备一些实际问题,让学生在课堂上进行练习。
3.准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾有理数加法的基本运算方法,为新课的学习做好铺垫。
2.呈现(10分钟)教师通过PPT展示有理数减法的定义和运算方法,让学生初步了解有理数减法的基本概念。
3.操练(10分钟)教师给出一些简单的有理数减法题目,让学生在课堂上进行练习,巩固所学知识。
4.巩固(10分钟)教师通过PPT展示一些复杂的有理数减法题目,引导学生运用所学知识解决问题,提高学生的运算能力。
5.拓展(10分钟)教师引导学生思考有理数减法在实际生活中的应用,让学生举例说明,培养学生的实际应用能力。
6.小结(5分钟)教师对本节课的主要内容进行总结,强调有理数减法的运算方法和规律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如何得到的. 6分钟后,比一比,谁能运用减法法则正确做
出检测题.
1·计算下列各式:
50-20= 30 50+(-20)= 30
50-10= 40 50+(-10)= 40
50-0 = 50 50+ 0
(7)0 – ( –7) ;(8 )( – 6) – 6
(9)9 – ( –11)
1减 2数
加 相反数
3·计算下列各题:
(1)9 -(-5) (2)(-3)- 1
(3)0 – 8
(4)(-5) - 0
解:(1)原式= 9 + 5 = 14 减去(-5)等于加上 -5 的相反数。
(2)原式=(-3)+(-1) 减去1等于加上 1 的 相反数。
=-4
(3)原式 = 0 +(-8)= - 8
=50
50-(-10)=60 50+10=60
50-(-20)=70 50+20=70 你能得出什么结论?
3-(-3)=?
问题2:什么数加上-3等于3?
6+(-3)=3 相反数
3-(-3)=6 3+3=6
相同结果
有理数减法法则
减去一个数,等于加上这个数的相反数
注意:减法在运算时有 2 个要素要发生变化。
2、在进行有理数减法运算时,要注意两变一不 变,“两变”即减号变成加号,减数的符号要改 变;“不变”是指被减数不变。
随堂练习
1、口算:(看谁算得快)
(1)3 – 5 ;
(2)3 –)( – 3) – (- 5);
(5)–6 –( –6); (6) – 7 – 0;
(4)原式 =(-5 )+ 0 = -5
例2世界上最高的山峰是珠穆朗玛峰,其海拔高度大约
是8 848米,吐鲁番盆地的海拔高度大约是-155米.两
处高度相差多少米?
.
8 848米有多
.
少层楼高?
解:8 848-(-155)
=8 848+155=9 003(米)
课堂小结
1、本课学习了有理数的减法运算,在进行 有理数减法运算时,我们先把减法运算转 化为加法,然后再根据加法运算的法则进 行。
4 3 2
周六
1
-3 ~ 40C
0 -1 -2
-3 -4
你能从
温度计看出 40C比 – 30C 高多少度吗?
学习目标
1.知识技能: 理解有理数的减法法则,会进行有理数的减 法运算. • 重点: • 有理数减法法则及应用. • 难点: • 运用有理数减法法则解决数学问题.
自学指导
• 认真看课本数(p21_p22) 1.回答“探究”中的问题,理解有理数的减