7-3-3 有理数的加法与减法 (3)

合集下载

2.4有理数的加法与减法(3)

2.4有理数的加法与减法(3)
2 4
练一练:
(1)3 – 5 ; (2) 3 – ( – 5); (3)( – 3)– 5; (4)( – 3) – ( –5); (5)–6 –( –6); (6) – 7 – 0; (7)0 – ( –7) ;(8 )( – 6) – 6 (9)9 – ( –11); (10) 6-(-6)
5
3 4
拓展延伸:
3 (1)-13.75比 5 4 少多少?
5 (2)从-1中减去 12
差是多少?
7 与 8 的和,
小结与思考
减法是加法的逆运算,减去一个 数,等于加上这个数的相反数。
初中数学七年级
(苏科版)
上册
2.4有理数的加法 与减法(3)
情境创设:如果某天最高气温是5度,最低气温是 -3度,那么这天的日温差是多少?
5 - (-3) = ? : 从上往下看,从5 度到-3度, 温度下降了 5+3=8度 :减法是加法的逆运算, 因为(-3)+8 = 5 , 所以5- (-3)=8 (度)
议一议
在有理数范围内,差一定比被减数小吗?
请你计算以下各城市的日温差
北京 天津 沈阳 长春
10~1℃
哈尔滨
-14~ 5℃
0~8℃ -2~9℃ -7~2℃
例2.求出数轴上两点之间的距离: (1)表示数10的点与表示数4的点; (2)表示数2的点与表示数-4的点; (3)表示数-1的点与表示数-6的点。
议一议:比较小明、小丽的算法
5-(-3)=8 减号变成加号 -3变成它的相反数3 5+(+3)=8
有结论:5-(-3)= 5+(+3)
减去一个数,等于加上这个数的相反数。
1 1 ( ) 2 4
例题讲解 (1) 0-(-22) (2) 15-(-7)

七年级数学上册第3章有理数的运算3.1有理数的加法与减法教案(新版)青岛版

七年级数学上册第3章有理数的运算3.1有理数的加法与减法教案(新版)青岛版

3.1有理数的加法与减法(1)【教学目标】1.在实际应用中理解有理数加法的意义。

2.熟悉有理数加法法则的过程,学会灵活运用有理数的加法法则去解题,积极地参与有理数加法法则的探索活动,并学会与他人进行交流与合作。

3.能够灵活地运用有理数的加法运算解决简单的实际问题,在教学中让学生熟悉分类讨论思想。

【学习重点】异号两数相加计算方法与技巧。

【学习难点】有理数加法法则的灵活运用。

【学习过程】一、情境导入回顾课本第44页有关黄河水位的例子。

让学生体会同号两数相加,异号两数相加以及一个数与0相加的在实际问题中的不同意义,师生共同做课本第45页题目。

师提问:如何进行有理数的加法运算呢?这是我们这节课一起与大家探讨的主要问题。

(出示课题)有理数的加法。

二、合作交流,解读探究1.看课本第45页,观察水位的变化情形与学生相互交流后,教师引导学生可以把两个有理数相加归纳为(1)、同号两数相加;(2)、异号两数相加;(3)一个数同零相加这三种情形。

初步形成有理数相加的做题方法。

2.( 补充)借助数轴来进一步理解有理数的加法。

假定一个物体向前后方向运动,我们规定向前运动为正,向后为负,向前运动8m,记作+8m,那么向后运动3m,记作-3 m。

(1)(小组合作)把我们已经得出的几种有理数相加的情况在数轴上用运动的方向表示出来,并求出结果,解释它的意义。

(2)交流汇报。

(各学习小组的汇报结果,用实物投影仪展示)(3)说一说有理数相加应注意的事项是什么?(①符号,②绝对值的和与差)指导学生用自己的语言进行归纳。

(4)在学生归纳的基础上,教师出示有理数加法法则。

(用投影仪展示)有理数加法法则:①同号两数相加,取相同的符号,并把绝对值相加。

②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。

③一个数同0相加,仍得这个数。

3. 自学课本例1,并独立解决(2)(3)(4)三个小题。

七年级上册数学有理数加减混合运算

七年级上册数学有理数加减混合运算

七年级上册数学有理数加减混合运算有理数加减混合运算学习资料。

一、有理数的加减法法则。

1. 加法法则。

- 同号两数相加,取相同的符号,并把绝对值相加。

- 例如:3 + 5=8(两个正数相加,结果为正数,绝对值相加);-3+(-5)=-(3 + 5)=-8(两个负数相加,结果为负数,绝对值相加)。

- 异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。

- 例如:3+(-5)=-(5 - 3)=-2(| - 5|>|3|,结果为负,用5的绝对值减去3的绝对值);-3 + 5=+(5 - 3)=2(|5|>| - 3|,结果为正,用5的绝对值减去3的绝对值)。

- 一个数同0相加,仍得这个数。

例如:0+3 = 3,-5+0=-5。

2. 减法法则。

- 减去一个数,等于加上这个数的相反数。

- 例如:5-3 = 5+(-3)=2;3-5=3+(-5)=-2;-3-(-5)=-3 + 5 = 2。

二、有理数加减混合运算的步骤。

1. 统一成加法运算。

- 有理数的加减混合运算,可以通过减法法则将减法转化为加法。

- 例如:3 - 5+2可以转化为3+(-5)+2。

2. 运用加法交换律和结合律进行简便运算。

- 加法交换律:a + b=b + a。

- 加法结合律:(a + b)+c=a+(b + c)。

- 例如:计算3+(-5)+2,可以根据加法交换律和结合律进行计算。

- 先将3+2结合起来,得到(3 + 2)+(-5)=5+(-5)=0。

- 再如:计算-2+3 - 1+(-4),转化为加法后为-2+3+(-1)+(-4)。

- 可以将-2+(-4)结合,3+(-1)结合,即[-2+(-4)]+[3+(-1)]=-6 + 2=-4。

三、有理数加减混合运算的易错点。

1. 符号问题。

- 在进行有理数加减混合运算时,符号的处理是关键。

- 例如:计算-3-(-5),如果错误地理解为-3 - 5=-8就错了,正确的应该是-3+5 = 2。

七年级数学有理数的加法与减法3

七年级数学有理数的加法与减法3

二次结构泵:https:// 下列传染过程哪种感染类型增多,会造成该疾病的传播流行A.病原体被消灭或排出体外B.潜在性感染C.隐性感染D.病原携带状态E.显性感染 证券经纪商对委托人的首要义务是。A.承担赔偿责任B.维护委托人的权益C.严格按照委托人的要求办理委托事务D.尽量使买卖双方按自己意愿成交 调查某桥钢筋焊接点100个,其中不合格的有14个,不合格率为14%,为查清甲、乙、丙三个焊工操作哪个存在主要问题,宜采用的质量分析方法是()。A.分层法B.Байду номын сангаас查表法C.排列图法D.因果分析图法 献血者有下列哪种情况不能判定为暂缓献血。A.妇女月经期前后三天B.近五年内输注全血或血液成分者C.分娩未满一年者D.感冒病愈未满一周者E.肺结核未满一年者 关于输血的原则,错误的是A.必须保证ABO血型相合B.输同型血经交叉配血试验主、次侧均不凝集为首选C.紧急情况下O型血可少量缓慢接受其他型血液D.AB型的人可少量缓慢接受其他类型血液E.反复输血的病人必须保证Rh血型相合 女性,53岁,高血压痛史14年,不规律降压治疗血压控制不佳。10岁时曾患"急性肾炎",经内科治疗尿检转阴。今日体检发现血压175/100mmHg(23.2/13.3kPa),心界向左下扩大,尿蛋白(+),血肌酐140μmol/L,眼底检查示小片出血渗出,此患者最可能的诊断为A.原 发性高血压肾损害B.慢性肾炎高血压型C.高血压危象D.恶性高血压E.嗜铬细胞瘤 不属于生活性中毒的是A.谋杀B.结核患者服用药物过量C.洗澡时煤气中毒D.矿山打眼时发生的CO中毒E.被毒蛇咬伤 如果宝宝的粪便呈水便分离且次数多,怀疑A、乳母摄入糖份过多B、宝宝吃不饱C、母乳中蛋白质过多 对于链球菌感染后急性肾炎,下列说法不正确的是A.电镜可见肾小球上皮细胞下有驼峰状大块电子致密物沉积B.免疫病理可见IgG、C3呈线条样沿毛细血管壁和系膜区沉积C.多在感染后1~3周起病,起病急、预后良好D.有持续性高血压、大量蛋白尿和肾功能损害者预后差E. 有的患者可表现为肾病综合征 继发性贫血 桃核承气汤主治症中不包括A.少腹急结B.小便自利C.小便不利D.神志如狂E.烦躁谵语 铸件上常出现金属小结的原因是A.包埋材料透气性差B.包埋材料调得过稠C.包埋时未完全包埋措型D.包埋材料调得过稀E.包埋材料中气泡末排尽 作为工业产权保护的对象,发明、实用新型和工业品外观设计属于A.识别性标记权利B.智力创造权利C.创造性成果权利D.技术成果权利 属固有免疫应答的是。A.外周淋巴器官B.补体C.骨髓D.淋巴结E.T及B淋巴细胞 尾矿库使用到最终设计高程前年,应进行闭库设计,当需要扩建或新建尾矿库接续生产时,应根据建设周期提前制定扩建或新建尾矿库的规划设计工作,确保新老库使用的衔接。A.1~2B.2~3C.3~4D.4~5 目视比色法测定水的浊度时,浊度低于10度的水样,与浊度标准液进行比较时,在观察,浊度为10度以上的水样,比色时应对照观察。 癫痫持续状态的定义,下面哪项是正确的A.短时间内有频繁的癫痫发作B.30分钟内有2次以上的发作C.一次发作持续时间超过30分钟或全身性发作在2次发作之间意识不清楚D.1小时内有2次以上发作E.2次发作之间有定向力障碍 在未来的社会中,教育的阶级性将随着阶级的消灭而A.呈现超阶级性B.交替出现C.不变D.消灭 [单选,共用题干题]患者男,48岁,因“发现双侧颈淋巴结肿大3个月”来诊。无发热、盗汗和体重减轻。否认高血压、心脏病和糖尿病病史。查体:ECOG=1;双侧颈部数枚肿大淋巴结,质韧、活动;余无阳性体征。实验室检查:血常规、肝功能、肾功能、电解质、凝血功能 无异常;LDH128U/L;乙型肝炎5项:HBsAg(-),HBsAb(-),HBeAg(-),HBeAb(-),HBcAb(-)。颈部和胸部CT:双侧颈部多发肿大淋巴结。腹部和盆腔CT:未见异常。左侧颈淋巴结活检:弥漫大B细胞淋巴瘤,CD20(+)。其IPI评分为。A.0分B.1分 C.2分D.3分E.4分F.5分 导流泄水建筑物封堵后,如永久性泄洪建筑物尚未具备设计泄洪能力,坝体度汛洪水标准应分析坝体施工和运行要求后按规范规定执行,2级混凝土坝设计标准为年一遇。A.50~20B.100~50C.200~100D.500~200 人民法院适用简易程序审理案件,应当在立案之日起()个月内审结。A.9B.6C.3D.2 家庭成员间相互理解、表达和交流彼此的深层情绪与感受,这表现了家庭的哪种功能.A.经济功能B.抚养和赡养功能C.满足情感需要的功能D.社会化功能E.生殖和性需要功能 关于急性扁桃体炎,下列说法中哪项是不正确的A.急性单纯性扁桃体炎隐窝内及扁桃体实质有明显的炎症改变B.急性隐窝性扁桃体炎隐窝表面有时可有连成一片假膜的渗出物C.急性滤泡性扁挑体炎炎症侵及扁桃体实质内的淋巴滤泡D.急性单纯性扁桃体炎多为病毒引起E.急性 单纯性扁桃体炎的全身症状和局部症状均轻 分离式闸室结构是在上设置永久缝。A.闸墩中间B.闸室底板上C.闸墩一侧D.两侧边墩 [配伍题,B1型题]“君主之官”指的脏是。</br>“相傅之官”指的脏是。A.肝B.心C.脾D.肺E.肾 建筑工程一切险的保险期终止时间可以是。A.工程动工日B.全部工程验收合格日C.工程所有人实际占有全部工程日D.施工合同约定的竣工日E.保修期满日 罪犯是社会的败类,相关报道中可以用“恶霸”、“禽兽”、“畜生”等词语。A.正确B.错误 患者男性,48岁,嗜酒多年,鼻头及双面颊发红数年,毛孔扩大,逐渐鼻头肥大,呈结节状,表面凹凸不平,舌暗红苔白腻,脉沉缓。诊断辨证为A.面游风血虚风燥证B.酒渣鼻湿热血瘀证C.酒渣鼻肺胃热盛证D.热疮肺胃风热证E.粉刺湿热蕴结证 20世纪80年代的一体化的物流管理限于A.行业内部B.同一产品的下游关系中C.企业内部D.企业外部 根据外能的形式,炸药的感度主要指的是哪几方面? 尸检时肉眼见脾被膜明显皱缩、体积变小,重量减轻;脑组织色苍白。显微镜下脾窦内含血量明显减少,部分肺泡腔内有少量水肿液,肝小叶中央静脉周围肝细胞凝固性坏死,部分近端肾小管上皮细胞也呈现凝固性坏死改变,上述病变提示A.脾功能亢进B.肝硬化C.脑膜炎D. 溶血性疾病E.失血性休克 静注利多卡因最常见的不良反应是()A.舌或唇麻木B.头痛,头晕C.惊厥D.视力模糊E.意识不清 雨期施工时,每天的砌筑高度不宜超过。A.1.2mB.1.5mC.2mD.4m 下列哪个组织中不能合成雌激素A.卵巢B.子宫C.胎盘D.黄体E.肾上腺皮质 胃插管术准备工作 在银行风险管理流程中,风险控制是指对经过识别和计量的风险采取等措施,进行有效管理和控制的过程。A.计量、担保、抵押、定价和缓释B.监测、对冲、转移、规避和补充C.监测、分散、转移、规避和补偿D.分散、对冲、转移、规避和补偿 在肺源性心脏病中,下列哪一项征象提示重度肺动脉高压A.肺动脉圆锥凸出B.右下肺动脉干增粗C.肺门残根征D.右心室重度增大E.肺淤血 阅读以下关于数据库审计建设方面的叙述,回答问题1至问题3。当前许多国家对数据库应用系统提出了明确的审计要求,要求数据库应用系统的DBA为财政、商业和卫生保健数据库保留审计跟踪信息,美国政府甚至要求保证长达7年的审计跟踪信息在线。一般在数据库中只 是插入审计跟踪信息。审计跟踪数据在正常操作期间(不管是OLTP还是数据仓库)从不获取,主要作为一种事后证据存放在磁盘上,占据一定甚至很大的磁盘空间,而且必须每个月或每年(或者间隔固定的一段时间)对其净化或归档。当前的数据库审计功能主要采用了分区 和段空间压缩技术。利用这些技术,数据库审计不仅是可以忍受的,而且很容易管理,并且将占用更少的空间。按月对审计跟踪信息分区的方法是:在第一个业务月中,只是向分区表中插入审计信息,这个月结束后,向表中增加一个新的分区,以容纳下个月的审计信息并将 上一个月的分区从可读写表空间移动到一个只读的表空间中。采用这种方式,就可以一个月备份一次该只读表空间。 票据的范围: 属于卫生部"八项承诺"之一的是A.实事求是,杜绝虚假B.尽力方便患者,主动配合临床C.遵守制度、常规,严防差错事故D.工作极端负责,准确、及时、安全E.拒绝接受患者及其亲友馈赠的&quot;红包&quot;、物品

七年级数学上 第二章 2.4 有理数的加法与减法(3)

七年级数学上 第二章 2.4 有理数的加法与减法(3)

1 0 -1 a b B A 七年级数学上第二章 有理数2.4 有理数的加法与减法第3课时 有理数的加法与减法1.有理数-7,-3,+5的和比它们的绝对值的和小 ( )A .2B .7C .15D .202.下列计算中,正确的是 ( )A .(+7)+(-12)=5B .(+7)-(-12)=-19C .1113412-+= D .(-3.7)-(-3.7)=7.4 3.把+5-(+3)-(-7)+(-2)写成省略加号的和的形式是 ( )A .5-3+7-2B .5+3-7-2C .5-3-7-2D .5+3+7-24.式子-4-2-1+2的正确读法是 ( )A .减4减2减1加2B .负4减2减1加2C .负4,负2,负1加2D .4,2,1,2的和5.两个有理数的和为a ,这两个数的差为b ,那么a ,b 的大小关系是 ( )A .a >bB .a <bC .a=bD .以上都有可能6.-7,-12,+2的代数和比它们绝对值的和小 ( )A .-38B .38C .-4D .47季度 第一 第二 第三 第四盈亏额(单位:万元) 128.5 -140 -95.5280 A .盈余644万元 B .亏本173万元 C .盈余173万元 D .亏本644万元8.若a 表示一个有理数,且有33a a --=+,则a 应该是 ( )A .任意一个有理数B .任意一个正数C .任意一个负数D .任意一个非负数9.如图,数轴上A 、B 两点分别对应实数a 、b ,则下列结论正确的是A .0a b -+<B .0>-b aC .0>+b aD .0||||>-b a10.实际测量一座山的高度时,可在若干个观测点中测量每两个相邻可视观测点的相对高度,然后用这些相对高度计算出山的高度.下表是某次测量数据的部分记录(用A -C A -C C -D E -D F -E G -F B -G90m 80m -690m 50m -70m40m 根据这次测量的数据,可得观测点A 相对观测点B 的高度是( )mA .210B .130C .390D .21011.将式子(-3)-(+4)-(-5)写成省略括号的和的形式是_____,可以读作_____或______.12.计算:1322⎛⎫--- ⎪⎝⎭=________;-5-6+7=_________.13.一架飞机在飞行的过程中,飞行高度先上升了1.2 km ,然后下降了2.4 km ,最后又上升了0.6 km ,这时飞机的高度与最初的位置相比是_______(填“高”或“低”)了______千米.14.把式子(-8)-(+9)+(-2)-(-4)中符号相同的加数放在一起:____,计算的结果是____.15.填入适当的数,使下列式子成立:_______+7=4;-14+__________=-5.16.若两个数的和为-5,其中一个加数为-12,则另一个加数是_______.17.计算:(1)-8+12+7-15=________; (2)16-12-17+13=________.18.如果a ,b ,c 表示三个有理数,且它们满足条件:3a =,5b =,7c =,a >b >c .那么式子a+b -c 的值为________.19.已知5x =,y=3,则x -y=________.20.计算.(1)(+18)+(-12)-(-7)-(+4); (2)(-2.7)-(-2.5)+(-5.5)-(+7.3).21.计算.(1)2571129696⎛⎫⎛⎫+---+ ⎪ ⎪⎝⎭⎝⎭; (2)3557212212⎛⎫⎛⎫⎛⎫-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(3)()()11312 1.7557.252 2.5424⎛⎫⎛⎫-+--+---- ⎪ ⎪⎝⎭⎝⎭.22.如图,一辆货车从超市出发,向东走了3 km 到达小明家,继续走了1.5 km 到达小丽家,然后向西走了8.5 km 到达小华家,最后回到超市.如果以超市为原点,规定向东的方向为正方向,那么小华家距小明家多远?货车一共行驶了多少千米?23.某钻井队在井下三处的标高分别是点A :-26.7 m(即点A 在地下26.7 m),点B :-123.4 m ,点C :-96.5 m 那么点A 比点B 、C 分别高多少?24.计算.(1)-17.2+15.8-4.8; (2)1338.12574844-+-+.25.-5的相反数减去-8,再加上-11的绝对值,比-10大多少?26.小明在银行的存款有2800元,昨天因为急用取出了1350元.今天上午他将收回的货款3600元又存入了银行,并且下午打算去批发市场进货.如果这批货物需要5200元,那么小明银行的存款是否足够支付这批货物的费用呢?27.计算.-1+3-5+7-9+…-97+99.28.规定符号(a,b)表示a,b两个数中小的一个,符号[a,b]表示a,b两个数中大的一个,求下列式子的值.(1)(-3,5)+[-5,3]; (2)(-2,-6)-[-9,(-4,-7)].29.在1,2,3,…,,,前面任意添加“+”或“-”,并且按照顺序进行计算,那么这些数的和能否等于呢?参考答案1.D 2.C 3.A 4.B 5.D 6.B 7.C 8.D 9.D 10.A11.-3-4+5负3,负4,5的和负3减4加5 12.1 -4 13.低 0.614.(-8-9-2)+4 -15 15.-3 916.7 17.(1) -4 (2)0 18.5或-1 19.2或-820.(1)原式=18-12+7-4=18+7-12-4=9:(2)原式=-2.7+2.5-5.5-7.3=-2.7-7.2+2.5-5.5=-10-3=-13.21.(1)原式=2571212 96963 ++-=.(2)原式=35570 212212--+-=;(3)原式=12.25-1.75+5.5-7.25+2.75-2.5=9.22.8.5-1.5=7(km);3+1.5+8.8+(7-3)=17(kin),即小华家距小明家7 km,货车一共行驶了17 km.23.-26.7-(-123.4)=-26.7+123.4=96.7(m),即点A 比点B 高96.7 m ;-26.7-(-96.5)=-26.7+96.5=69.8(m),即点A 比点C 高69.8m .24.(1)原式=-17.2+11=-6.2;(2)原式=-1-4=-5.25.()()()58111058111034----+--=+++=.26.因为2 800-1 350+3 600-5 200=6 400-6 550=-150<0,所以不够支付这批货物的费用.27.原式=(-1+3)+(-5+7)+…+(-97+99)=50.28.(1)原式=-3+3=0;(2)原式=-6-[-9,-7]=1.29.能.例如,因为2 008=4×502,所以可以考虑把2 008个数分成502组,每组4个数,并且其和都等于4.从1开始将相邻的4个数的前2个较小的数前面添加“-”,后2个较大的前面添加“+”即可.。

有理数的加法与减法运算技巧

有理数的加法与减法运算技巧

有理数的加法与减法运算技巧一、有理数加法运算技巧1.同号有理数相加:–取相同符号,并保留原有绝对值;–将绝对值相加,结果的绝对值即为两数相加的绝对值,符号与原数相同。

2.异号有理数相加:–取绝对值较大的数的符号;–用较大的绝对值减去较小的绝对值,结果的绝对值为两数相加的绝对值,符号与绝对值较大的数相同。

–任何有理数加零,结果为该有理数本身。

3.加法交换律:–对于任何两个有理数a和b,a + b = b + a。

二、有理数减法运算技巧1.同号有理数相减:–取相同符号,并保留原有绝对值;–将绝对值相减,结果的绝对值即为两数相减的绝对值,符号与原数相同。

2.异号有理数相减:–转换为加法运算,即将被减数取相反数后与减数相加;–按照同号有理数相加的方法进行计算。

–任何有理数减零,结果为该有理数本身。

3.减法交换律:–对于任何两个有理数a和b,a - b = b - a。

4.减法的性质:– a - (b + c) = (a - b) - c;– a - b = a + (-b)。

三、加减法运算技巧1.结合律:–对于任何三个有理数a、b和c,(a + b) + c = a + (b + c)。

2.分配律:–对于任何三个有理数a、b和c,a × (b + c) = a × b + a × c;–对于任何三个有理数a、b和c,(a + b) × c = a × c + b × c。

3.运算顺序:–先算乘除,后算加减;–同一级运算,按照从左到右的顺序进行计算。

4.带符号移项:–将含有未知数的项移到等式的一边,将常数项移到等式的另一边;–移项时,注意改变移项后项的符号。

5.运用括号:–括号前面是加号时,括号内的数不变号;–括号前面是减号时,括号内的数变号。

通过以上知识点的学习与理解,同学们可以掌握有理数加减法的运算技巧,并在实际运算中灵活运用,提高解题速度和正确率。

最新数学教案:有理数的加法与减法精选

最新数学教案:有理数的加法与减法精选

数学教案:有理数的加法与减法教学目标1. 会把有理数的加减法混合运算统一为加法运算;2. 会把省略加号和括号的有理数加减混合运算看成几个有理数的加法运算;3.进一步感悟“转化”的思想.教学重点把有理数的加减法混合运算统一为加法运算.教学难点省略负数前面的加号的.有理数加法,运用运算律交换加数位置时,符号不变.教学过程根据有理数的减法法则,有理数的加减速混合运算可以统一为加法运算.1.完成下列计算:归纳: 根据有理数的减法法则,有理数的加减混合运算可以统一为运算;(2)式统一成加法是________________________________;省略负数前面的加号和()后的形式是______________________;读作____________________ 或 _______________________.展示交流1.把下列运算统一成加法运算:(3) 2+5-8=_________________________________;2. 将下列有理数加法运算中,加号省略:(1)12+(-8)=________________;3.将下列运算先统一成加法,再省略加号:=_________________________.4. 仿照本P37例6,完成下列计算:5. 仿照本P38例7,巡道员沿东西方向的铁路巡视维护,从住地出发,他先向东巡视了6km,休息之后,继续向东维护了4km;然后折返向西巡视了12.5 km,此时他在住地的什么方向?与驻地的距离是多少?盘点收获个案补充课堂反馈1.计算:2.早晨6:00的气温为℃,到中午2:00气温上升了8℃,到晚上10:00气温又下降了9℃.晚上10:00的气温是多少?迁移创新一架飞机做特技表演,它起飞后的高度变化情况为:上升4.5千米,下降3.2千米,上升1.1千米,下降1.4千米,求此时飞机比起飞点高了多少千米?课堂作业本P39 习题2 .5第6题(1)、 (3)、(5),第7题 .教学目标1.了解有理数加法的意义,理解有理数加法法则的合理性;2.能运用有理数加法法则,正确进行有理数加法运算;3.经历探索有理数加法法则的过程,感受数学学习的方法;4.通过积极参与探究性的数学活动,体验数学来源于实践并为实践服务的思想,激发学生的学习兴趣,同时培养学生探究性学习的能力.教学重点能运用有理数加法法则,正确进行有理数加法运算.教学难点经历探索有理数加法法则的过程,感受数学学习的方法.教学过程(教师)一、创设情境小学里,我们学过加法和减法运算,引进负数后,怎样进行有理数的加法和减法运算呢?1.试一试甲、乙两队进行足球比赛.如果甲队在主场赢了3球,在客场输了2球,那么两场比赛后甲队净胜1球.你能把上面比赛的过程及结果用有理数的算式表示出来吗?做一做:比赛中胜负难料,两场比赛的结果还可能有哪些情况呢?动动手填表:2.我们知道,求两次输赢的总结果,可以用加法来解答,请同学们先个人研究,后小组交流.你还能举出一些应用有理数加法的实际例子吗?二、探究归纳1.把笔尖放在数轴的原点,沿数轴先向左移动5个单位长度,再向右移动3个单位长度,这时笔尖停在“”的位置上.用数轴和算式可以将以上过程及结果分别表示为:算式:________________________2.把笔尖放在数轴的原点,沿数轴先向右移动3个单位长度,再向左移动2个单位长度,这时笔尖停在“1”的位置上.用数轴和算式可以将以上过程及结果分别表示为:算式:________________________3.把笔尖放在数轴的原点,沿数轴先向左移动3个单位长度,再向左移动2个单位长度,这时笔尖的位置表示什么数?请用数轴和算式分别表示以上过程及结果:算式:________________________仿照上面的做法,请在数轴上呈现下面的算式所表示的笔尖运动的过程和结果.4.观察、思考、讨论、交流并得出有理数加法法则.讨论:两个有理数相加时,和的符号及绝对值怎样确定?你能找到有理数相加的一般方法吗?《2.5有理数的加法与减法》课时练习1.七年级(3)班同学李亮在一次班级运动会上参加三级跳远比赛,共跳了5次,他第一次跳了6m,第二次比第一次多跳0.1m,第三次比第二次少跳0.3m,第四次比第三次多跳0.5m,第五次比第四次少跳了0.4m.他那一次跳得最远?成绩是多少?2.一只小虫从某点P出发,在一条直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬行各段路程(单位:厘米)依次为:+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)通过计算说明小虫是否回到起点P.(2)如果小虫爬行的速度为0.5厘米/秒,那么小虫共爬行了多长时间.2.5有理数的加法与减法:同步练习1.高速公路养护小组,乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:km)(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)养护过程中,最远外离出发点有多远?(3)若汽车耗油量为0.09升/km,则这次养护共耗油多少升?【数学教案:有理数的加法与减法】。

1.2 有理数的加法与减法(第3课时 有理数的减法)(课件)六年级数学上册(沪教版2024)

1.2  有理数的加法与减法(第3课时 有理数的减法)(课件)六年级数学上册(沪教版2024)
3 1 4
=7+( + - )
7 7 7
=7+0
=7
分层练习-基础
1. [2023·绍兴]计算2-3的结果是( A
A. -1
B. -3
C. 1
D. 3
)
2. 某大楼地上共有16层,地下共有3层,某人从地上9层下降到地下2层,电梯一
共下降的层数为( A
)
A. 10
B. 11
C. 12
D. 13
3. 将(-2)-(+1)-(-5)+(+4)统一成加法运算,正确的是( B



(2)0-8;




=0+ = .
(3)(+5)-(-3);
【解】(+5)-(-3)=(+5)+(+3)=8.
【解】0-8=0+(-8)=-8.
(4)(-1.4)-2.6;
【解】(-1.4)-2.6
=(-1.4)+(-2.6)
=-4.
10. 计算:
(1)14-(-12)+(-25)-17;
点表示的数为2+5=7或2-5=-3.
课堂小结
有理数减
法法则
有理数的减
法可以转化为
加法
______来进行

减去一个数,等于_____
相反数
这个数的_______,
用式子表示:
a-b = a+(-b)
_______________
答:桥面到江底的距离为58m。
练一练
5.某地连续四天的天气情况如下,其中温差最大的一天是( B
)
17日
18日
19日
20日
-8~-5 ℃
多云
- 4~ 1 ℃
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时教学设计
课时Biblioteka 编号课题主备人审核
7-3-3
3.1 有理数的加法与减法(3)
教学
目标
1.学习有理数减法法则与有理数的加法的相互转化过程,渗透化归思想;
2.学会熟练地进行有理数减法的运算;
3.能解决简单的实际问题,体会数学与现实生活的联系.
教学
准备
课件、任务单
教学
导入
同学们,在前面的学习中,我们知道生活中有许多地方需要用到有理数的加法,那么请同学们帮小亮和小莹解决现实生活中遇到的下面一个问题?(用投影展示)
(7)3-(-5)(8)(-3. 4)-(-5.8)
(9)( (10)0-37.5
3.填空:
(1)温度3℃比-8℃高________;
(2)温度-9℃比-1℃低_________;
(3)海拔高度-20m比-180m高_________;
(4)从海拔22m到-50m,下降了__________.
4. a,b为有理数,且 当a,b同号号时,求a-b的值。
5.x,y为有理数,
作业
①课本习题3.1第4题
②3.1任务单(3)
教学
思考
注意:两个数相减不一定是大数减去小数,当被减数小于减数时有理数的减法依然能够进行.
活动
(三)
展示例5,学习有理数减法在现实中的应用.
某足球队在两场比赛中共输球3个,已知第一场输球4个,第二场的输赢情况怎样?
挑战自我进一步理解绝对值和有理数的减法法则.
a,b为有理数,且 当a,b异号时,求a-b的值。
1.把4换成1,-1,-5,得1-(-3),(-1)-(-3),(-5)一(-3),这些数减(-3)的结果与它们加(+3)的结果相同吗?
2.计算9-8,9+(一8),15一7,15+(一7),结果是否相等呢?
教师在此基础上归纳有理数减法法则:
减去一个数,等于加上这个数的相反数.
用字母表示为a-b=a+(-b).
活动
(二)
展示课本例4
计算:(1)(+3)-(+5);(2)(-3.4)-(-5.8);
(3) - ;(4)0-(-3.75).
先请学生思考并尝试解决,然后教师板书规范解答
之后引导学生反思:“通过这几道题目的计算,你能发现什么?”
(①有理数的减法可以转化为加法;②减正数即加负数,减负数即加正数也就是说减去一个数等于加上这个数的相反数.)
北京市某天的最高气温是+4℃,最低温度为-3℃,该天的最大温差是多少,可是他不会算,请同学们能帮助他解决
这个问题如何去计算呢?---提出方案.
活动
(一)
多媒体显示温度计及以下案例:
小亮认为说:“4℃比0℃高4℃,0℃比-3℃高3℃,因此(+4)+(+3)=+7.”
小莹根据减法的意义,列出了算式(+4)-(-3)观察温度计可得(+4)-(-3)=+7
自主
训练
1.下列括号内各应填什么数?
(1)(+2)-(-3)=(-2)+();
(2)0-(-4)= 0+();
(3)(-6)-3 =(-6)+();
(4)1-(+39)=1+()
2.计算:
(1)(+3)-(-2)(2)(-1)-(+2)
(3)0-(-3)(4)(-23)-(-12)
(5)(-1.3)-2.6(6)
想一想:如何计算4-(-3)与(+4)+(+3)什么关系呢?
这时,教师可适时小结:
刚才,我们用两种方法得出了4-(-3)=(+4)+(+3)=7,从而和道4-(-3)=4+(+3).
这时教师问:你发现这个等式有什么特点?减法变为了加法且加上了减数的相反数,这个规律是不是总成立呢?
学生回答后,再换几个数试一试,并请学生分组合作计算、交流:
相关文档
最新文档