高中数学立体几何单元检测 (测)

合集下载

高中数学立体几何初步单元测

高中数学立体几何初步单元测

第八章 立体几何初步 (单元测)第八章 立体几何初步(单元测试)_一、单选题1.已知圆锥的底面半径为1,侧面展开图的圆心角为,则该圆锥的高为( )A.B.C.D.42.若水平放置的四边形按“斜二测画法”得到如图所示的直观图,其中,,,,则原四边形中的长度为( )A.B.C.2D.3.如图,古希腊数学家阿基米德的墓碑上刻着一个圆柱,圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等.相传这个图形表达了阿基米德最引以为豪的发现.记图中圆柱的体积为,表面积为,球的体积为,表面积为,则下列说法正确的是( )A.B.C.D.4.已知,是两条不同的直线,,是两个不同的平面,给出下列四个命题:①如果,,,,那么;②如果,,那么;③如果,,,那么;④如果,,,那么.其中正确命题的个数有( )A.4 个B.3 个C.2 个D.1 个5.梯形ABCD中,,∠ABC=90°,AD=1,BC=2,∠DCB=60°,在平面ABCD内过点C作l⊥CB以l所在直线为轴旋转一周,则该旋转体的表面积为( )A.B.C.D.6.如图所示,在棱长为2的正方体ABCD﹣A1B1C1D1中,E,F,G分别为所在棱的中点,则下列结论中正确的序号是( )①三棱锥D1﹣EFG的体积为;②BD1∥平面EFG;③BD1∥EG;④AB1⊥EG. A.③④B.①②④C.②③④D.①③7.直三棱柱中,,,则与平面所成的角为( )A.B.C.D.8.在棱长为1的正方体ABCD﹣A1B1C1D1中,点M,N分别是棱BC,CC1的中点,动点P在正方形BCC1B1(包括边界)内运动.若平面AMN,则P A1的最小值是( )A.1B.C.D.二、多选题9.如图是一个正方体的展开图,如果将它还原为正方体,则下列说法中正确的是( )A .直线与直线共面B.直线与直线异面C .直线与直线共面D.直线与直线异面10.高空走钢丝是杂技的一种,渊源于古代百戏的走索,演员手拿一根平衡杆,在一根两头拴住的钢丝上来回走动,并表演各种动作.在表演时,假定演员手中的平衡杆是笔直的,水平地面内一定存在直线与演员手中的平衡杆所在直线( )A.垂直B.相交C.异面D.平行11.在长方体中,O为与的交点,若,则( )A.B.C.三棱锥的体积为D.二面角的大小为12.攒尖是我国古代建筑中屋顶的一种结构形式,通常有圆形攒尖、三角攒尖、四角攒尖、八角攒尖,多见于亭阁式建筑、园林建筑下面以四角攒尖为例,如图,它的屋顶部分的轮廓可近似看作一个正四棱锥,已知此正四棱锥的侧面与底面所成的二面角为30°,侧棱长为米,则该正四棱锥的( )A.底面边长为6米B.侧棱与底面所成角的余弦值为C.侧面积为平方米D.体积为立方米三、填空题13.如图,某几何体由共底面的圆锥和圆柱组合而成,且圆柱的两个底面圆周和圆锥的顶点均在体积为的球面上,若圆柱的高为2,则圆锥的侧面积为______.14.《九章算术》中将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥为鳖臑,平面,,,三棱锥的四个顶点都在球O的球面上,则球O的体积为___________15.在正四面体ABCD中,E为BC的中点,则异面直线AE与CD所成角的余弦值为_ __________.16.如图,在正方体中,E为的中点,F为正方体棱的中点,则满足条件直线平面的点F的个数是___________.四、解答题17.如图,四棱锥中,底面为边长为2的菱形且对角线与交于点O,底面,点E是的中点.(1)求证:∥平面;(2)若三棱锥的体积为,求的长.18.如图,已知四棱锥的底面是直角梯形,,,,,.(1)若为侧棱的中点,求证:平面;(2)求三棱锥的体积.19.如图,在棱长为的正方体中,、分别为棱、的中点.(1)证明:平面平面;(2)求异面直线与所成角的余弦值.20.如图,直三棱柱的体积为4,的面积为.(1)求到平面的距离;(2)设D为的中点,,平面平面,求线段BC的长度.21.在等腰梯形(图1)中,,是底边上的两个点,且.将和分别沿折起,使点重合于点,得到四棱锥(图2).已知分别是的中点.(1)证明:平面.(2)证明:平面.(3)求二面角的正切值.22.如图,垂直于⊙所在的平面,为⊙的直径,,,,,点为线段上一动点.(1)证明:平面AEF⊥平面PBC;(2)当点F与C点重合,求 PB与平面AEF所成角的正弦值.一、单选题23.南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔时,相应水面的面积为;水位为海拔时,相应水面的面积为,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔上升到时,增加的水量约为()( )A.B.C.D.24.已知正三棱台的高为1,上、下底面边长分别为和,其顶点都在同一球面上,则该球的表面积为( )A.B.C.D.25.甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为,侧面积分别为和,体积分别为和.若,则( )A.B.C.D.26.已知正四棱锥的侧棱长为l,其各顶点都在同一球面上.若该球的体积为,且,则该正四棱锥体积的取值范围是( )A.B.C.D.二、多选题27.如图,四边形为正方形,平面,,记三棱锥,,的体积分别为,则( )A.B.C.D.28.已知正方体,则( )A.直线与所成的角为B.直线与所成的角为C.直线与平面所成的角为D.直线与平面ABCD所成的角为三、填空题29.已知一个圆锥的底面半径为6,其体积为则该圆锥的侧面积为________. 30.已知直四棱柱ABCD–A1B1C1D1的棱长均为2,∠BAD=60°.以为球心,为半径的球面与侧面BCC1B1的交线长为________.31.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2 cm,高为2 cm,内孔半径为0.5 cm,则此六角螺帽毛坯的体积是 ____ cm3.四、解答题32.如图,四面体中,,E为AC的中点.(1)证明:平面平面ACD;(2)设,点F在BD上,当的面积最小时,求三棱锥的体积.参考答案:1.C【分析】由扇形弧长公式求圆锥的母线长,再根据圆锥的母线、高和底面半径的关系求高.【详解】因为底面半径,所以母线长,所以圆锥的高.故选:C2.B【分析】过点作,垂足为,求出直观图中的长度即得解.【详解】解:过点作,垂足为.因为,,,;,所以原四边形中的长度为2.故选:B3.B【分析】根据已知条件得出球的直径恰好与圆柱的高相等,设球的半径为r,进而分别表示出圆柱的体积为,表面积为,球的体积为,表面积为,进而求出.【详解】由已知条件,设球的半径为r,可知圆柱的底面半径为r,圆柱的高为2r,则圆柱的表面积,体积,球表面积,答案第1页,共2页体积,.故选:B.4.D【分析】根据空间中线线、线面、面面的位置关系一一判断即可.【详解】解:对于①如果,,,,那么或与相交,故①错误;对于②如果,,由线面垂直的性质可知,故②正确;对于③如果,,,那么或或与相交(不垂直)或与异面(不垂直),故③错误;对于④如果,,,那么或与相交(不垂直),当且仅当,,,,那么,故④错误.故选:D5.B【分析】旋转体为圆柱去去掉一个圆锥,计算圆柱的高和圆锥的底面半径和母线长,分别计算各面的面积,得出表面积.【详解】解:旋转体为圆柱去去掉一个圆锥,过作于,则,,,,圆锥的底面半径为,圆柱的底面半径为,圆柱和圆锥的高均为,圆锥的母线为,几何体的表面积为.故选:B.6.B【分析】利用等积法处理①,用面面平行得到线面平行处理②,用平行的传递性处理③,利用线面垂直得到线线垂直处理④.【详解】对于①,由等体积法可得:,故正确;对于②,连接,由面面平行的判定易得平面平面,由平面与平面平行的性质可得平面,故正确;对于③,如下图,连接,取的中点,连接,则,若,则,矛盾,故错误;对于④,由题意,,,可得平面,又平面,可得,故正确.故选:B.7.A【分析】将直三棱柱补全为正方体,根据正方体性质、线面垂直的判定可得面,由线面角的定义找到与平面所成角的平面角,进而求其大小.【详解】由题意,将直三棱柱补全为如下图示的正方体,为上底面对角线交点,所以,而面,面,故,又,面,故面,则与平面所成角为,若,所以,,则,故.故选:A8.C【分析】由平面,可以找到点在右侧面的运动轨迹,从而求出的最小值【详解】如图所示,取的中点,的中点,连接,因为分别是棱 的中点,所以,,又因为,,,所以平面平面,平面,且点在右侧面,所以点的轨迹是,且,,所以当点位于中点处时,最小,此时,.故选:C9.ACD【分析】作出正方体的直观图,逐项判断可得出合适的选项.【详解】如图,点与点重合,则与相交,故A正确;在正方体中,且,故四边形为平行四边形,,则、共面,故B错误;因为,故、共面,故C正确;由图可知,、不在同一个平面,且、既不平行也不相交,、为异面直线,故D正确.故选:ACD.10.AC【分析】对直线l与平面的任何位置关系,平面内均存在直线与直线l垂直;平衡杆所在直线与水平地面的位置关系:平行或相交,根据线面关系可知:若直线与平面平行,则该直线与平面内的直线的位置关系:平行或异面若直线与平面相交,则该直线与平面内的直线的位置关系:相交或异面;理解判断.【详解】根据题意可得:对直线l与平面的任何位置关系,平面内均存在直线与直线l垂直,A正确;平衡杆所在直线与水平地面的位置关系:平行或相交根据线面关系可知:若直线与平面平行,则该直线与平面内的直线的位置关系:平行或异面若直线与平面相交,则该直线与平面内的直线的位置关系:相交或异面C正确;B、D错误;故选:AC.11.BCD【分析】由题意,根据长方体的结合性质,结合线面垂直判定定理以及二面角的平面角定义和三棱锥的体积公式,可得答案.【详解】连接.因为,所以,又易证平面,所以,所以,所以为二面角的一个平面角.在中,,因为在中,,,所以,所以二面角的大小为..故选:BCD.12.AD【分析】画出几何体的直观图,结合已知条件求得棱锥的底面边长,逐项求解,即可得到答案.【详解】对A,如图所示,在正四棱锥中,为正方形的中心,且,设底面边长为,正四棱锥的侧面与底面所成的二面角为,所以,则,在直角中,可得,即,解得,所以正四棱锥的底面边长为,所以A正确;对B,因为平面,所以为侧棱与底面所成的角,在直角中,可得,所以B错误;对C,正四棱锥的侧面积为平方米,所以C错误;对D,正四棱锥的体积为立方米,所以D正确.故选:AD.13.【分析】根据题意画出该几何体的轴截面,如图,设是球心,是圆锥的顶点,是圆锥的母线,求出球的半径,从而可求出,进而可求得圆锥的侧面积.【详解】其中,是球心,是圆锥的顶点,是圆锥的母线,由题意可知,解得,由于圆柱的高为2,,,,母线,∴圆锥的侧面积为.故答案为:14.【分析】根据题意,得到为球的直径,求得的长,得到球的半径,进而求得球的体积,得到答案.【详解】如图所示,取的中点,根据直角三角形的性质,可得,所以为球的直径,且,可得球的半径为,所以球的体积为.故答案为:.15.##【分析】取BD的中点F,作出异面直线AE与CD所成的角,再利用三角形计算作答.【详解】在正四面体ABCD中,取BD的中点F,连接,如图,设,因E为BC的中点,则,,即有是异面直线AE与CD所成的角或其补角,而,在等腰中,,所以异面直线AE与CD所成角的余弦值为.故答案为:16.【分析】为了得到直线平面,只需求得平面平面,即平面内的任意一条直线都与平面平行,进而求得点的个数.【详解】分别取的中点,连接,,在正方体中,,,四边形是平行四边形,,,又平面,平面,平面,同理平面,又,平面,平面,平面平面,平面内的任意一条直线都与平面平行,则满足条件直线平面的点可以是的任何一个,点F的个数是个.故答案为:.17.(1)证明见解析(2)【分析】(1)由中位线证得,即可证得∥平面;(2)取中点F,证得平面,再由结合棱锥的体积公式即可求解.【详解】(1)证明:连接.∵点O,E分别为的中点,∴,∵平面平面,∴∥平面;(2)取中点F,连接.∵E为中点,∴为的中位线,∴,且.由菱形的性质知,为边长为2的等边三角形.又平面,∴平面,,点E是的中点,∴,∴.18.(1)证明见解析(2)【分析】(1)取的中点,通过,即可证明平面;(2)利用等积法,即求解即可【详解】(1)取的中点,连接,,在中,,在梯形中,,∴,,∴四边形是平行四边形,∴,而平面,平面,∴平面;(2)∵,,而∴平面,即为三棱锥的高,因为,,所以,又,所以19.(1)证明见解析(2)【分析】(1)证明出平面,平面,再利用面面平行的判定定理可证得结论成立;(2)分析可知异面直线与所成角为或其补角,计算出的三边边长,利用余弦定理可求得结果.【详解】(1)证明:连接,因为四边形为平行四边形,则且,、分别为、的中点,则且,所以,四边形为平行四边形,则且,因为且,且,故四边形为平行四边形,所以,,平面,平面,平面,同理可证且,所以,四边形为平行四边形,所以,,平面,平面,平面,,所以,平面平面.(2)解:,所以,异面直线与所成角为或其补角,在中,,,由余弦定理可得,所以,异面直线与所成角的余弦值为.20.(1)到平面的距离为(2)线段BC的长为2【分析】(1)利用体积法可求点到平面的距离;(2)利用面面垂直,线面垂直得线线垂直,最后利用的面积为即可求得线段BC的长.【详解】(1)解:由直三棱柱的体积为4,可得,设到平面的距离为,由,,,解得.即到平面的距离为;(2)解:连接交于点由直三棱柱,故四边形为正方形,,又平面平面,平面平面,平面,,由直三棱柱知平面,,又,平面,,,,又,解得,则线段BC的长为2.21.(1)证明见解析;(2)证明见解析;(3).【分析】(1)由题可得四边形是平行四边形,然后利用线面平行的判定定理即得;(2)利用线面垂直的判定定理可得平面,进而即得;(3)过点作,由题可得是二面角的平面角,结合条件即得.【详解】(1)由题意可得,在等腰梯形中,,在中,因为,所以,四边形为正方形.在四棱锥中,连接,因为分别是的中点,所以,且,在正方形中,因为是的中点,所以,且,所以,且,∴四边形是平行四边形,,因为平面,平面,所以平面;(2)由(1)知,在中,,因为为的中点,所以,在等腰梯形中,,所以在四棱锥中,,因为, 平面,平面,所以平面,因为平面,所以,又因为,,平面,平面,所以平面;(3)在中,过点作,垂足为,连接,由(2)知平面,平面,所以,因为,平面,平面,所以平面,平面,∴,故是二面角的平面角,由(1)知,在四棱锥中,,设,则,在中,,所以,在中,,故二面角的正切值为.22.(1)证明见解析(2)【分析】(1)由垂直于⊙所在的平面,可得,再由圆的性质可得,则由线面垂直的判定可得平面,则,从而平面,进而由面面垂直的判定可证得结论,(2)过点作∥交于点,则,设点到平面的距离为,利用可求出,然后由可求得结果.【详解】(1)证明:因为垂直于⊙所在的平面,即平面,平面,所以,又为⊙的直径,所以,因为,所以平面,又平面,所以,因为,所以平面,又平面,所以平面平面.(2)因为,,所以,又,所以,由,得,如图,过点作∥交于点,则,可得,又,所以,所以,设点到平面的距离为,由,可得,所以解得,所以当点移动到点时,与平面所成角的正弦值为.23.C【分析】根据题意只要求出棱台的高,即可利用棱台的体积公式求出.【详解】依题意可知棱台的高为(m),所以增加的水量即为棱台的体积.棱台上底面积,下底面积,∴.故选:C.24.A【分析】根据题意可求出正三棱台上下底面所在圆面的半径,再根据球心距,圆面半径,以及球的半径之间的关系,即可解出球的半径,从而得出球的表面积.【详解】设正三棱台上下底面所在圆面的半径,所以,即,设球心到上下底面的距离分别为,球的半径为,所以,,故或,即或,解得符合题意,所以球的表面积为.故选:A.25.C【分析】设母线长为,甲圆锥底面半径为,乙圆锥底面圆半径为,根据圆锥的侧面积公式可得,再结合圆心角之和可将分别用表示,再利用勾股定理分别求出两圆锥的高,再根据圆锥的体积公式即可得解.【详解】解:设母线长为,甲圆锥底面半径为,乙圆锥底面圆半径为,则,所以,又,则,所以,所以甲圆锥的高,乙圆锥的高,所以.故选:C.26.C【分析】设正四棱锥的高为,由球的截面性质列方程求出正四棱锥的底面边长与高的关系,由此确定正四棱锥体积的取值范围.【详解】∵球的体积为,所以球的半径,[方法一]:导数法设正四棱锥的底面边长为,高为,则,,所以,所以正四棱锥的体积,所以,当时,,当时,,所以当时,正四棱锥的体积取最大值,最大值为,又时,,时,,所以正四棱锥的体积的最小值为,所以该正四棱锥体积的取值范围是.故选:C.[方法二]:基本不等式法由方法一故所以当且仅当取到,当时,得,则当时,球心在正四棱锥高线上,此时,,正四棱锥体积,故该正四棱锥体积的取值范围是27.CD【分析】直接由体积公式计算,连接交于点,连接,由计算出,依次判断选项即可.【详解】设,因为平面,,则,,连接交于点,连接,易得,又平面,平面,则,又,平面,则平面,又,过作于,易得四边形为矩形,则,则,,,则,,,则,则,,,故A、B错误;C、D正确.故选:CD.28.ABD【分析】数形结合,依次对所给选项进行判断即可.【详解】如图,连接、,因为,所以直线与所成的角即为直线与所成的角,因为四边形为正方形,则,故直线与所成的角为,A正确;连接,因为平面,平面,则,因为,,所以平面,又平面,所以,故B正确;连接,设,连接,因为平面,平面,则,因为,,所以平面,所以为直线与平面所成的角,设正方体棱长为,则,,,所以,直线与平面所成的角为,故C错误;因为平面,所以为直线与平面所成的角,易得,故D正确.故选:ABD29.【分析】利用体积公式求出圆锥的高,进一步求出母线长,最终利用侧面积公式求出答案.【详解】∵∴∴∴.故答案为:.30..【分析】根据已知条件易得,侧面,可得侧面与球面的交线上的点到的距离为,可得侧面与球面的交线是扇形的弧,再根据弧长公式可求得结果.【详解】如图:取的中点为,的中点为,的中点为,因为60°,直四棱柱的棱长均为2,所以△为等边三角形,所以,,又四棱柱为直四棱柱,所以平面,所以,因为,所以侧面,设为侧面与球面的交线上的点,则,因为球的半径为,,所以,所以侧面与球面的交线上的点到的距离为,因为,所以侧面与球面的交线是扇形的弧,因为,所以,所以根据弧长公式可得.故答案为:.【点睛】本题考查了直棱柱的结构特征,考查了直线与平面垂直的判定,考查了立体几何中的轨迹问题,考查了扇形中的弧长公式,属于中档题.31.【分析】先求正六棱柱体积,再求圆柱体积,相减得结果.【详解】正六棱柱体积为圆柱体积为所求几何体体积为故答案为:【点睛】本题考查正六棱柱体积、圆柱体积,考查基本分析求解能力,属基础题. 32.(1)证明详见解析(2)【分析】(1)通过证明平面来证得平面平面.(2)首先判断出三角形的面积最小时点的位置,然后求得到平面的距离,从而求得三棱锥的体积.【详解】(1)由于,是的中点,所以.由于,所以,所以,故,由于,平面,所以平面,由于平面,所以平面平面.(2)[方法一]:判别几何关系依题意,,三角形是等边三角形,所以,由于,所以三角形是等腰直角三角形,所以.,所以,由于,平面,所以平面.由于,所以,由于,所以,所以,所以,由于,所以当最短时,三角形的面积最小过作,垂足为,在中,,解得,所以,所以过作,垂足为,则,所以平面,且,所以,所以.[方法二]:等体积转换,,是边长为2的等边三角形,连接。

高中数学选择性必修一第一章《空间向量与立体几何》单元测试卷

高中数学选择性必修一第一章《空间向量与立体几何》单元测试卷

高中数学选择性必修一第一章《空间向量与立体几何》单元测试卷注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知向量()2,4,5=a ,)3(x y =,,b 分别是直线1l 、2l 的方向向量,若12l l ∥,则( ) A .6x =,1y =B .6x =,152y =C .3x =,15y =D .3x =,152y =2.若()1,2,1A -,()4,2,3B ,()6,9,4C -,则ABC △的形状是( ) A .锐角三角形 B .直角三角形 C .钝角三角形D .等腰三角形3.如图,空间四边形C OAB 中,OA =a ,OB =b ,C O =c ,点M 在OA 上,23OM =OA ,点N 为C B 中点,则MN 等于( )A .121232-+a b cB .211322-++a b cC .111222+-a b cD .221332+-a b c4.在空间直角坐标系Oxyz 中,点()2,2,1A 关于xOy 平面对称的点的坐标为( )A .()1,2,2B .()2,2,1--C .()2,2,1-D .()2,2,1---5.已知空间上的两点()121A -,,,()203B -,,,以AB 为体对角线构造一个正方体,则该正方体的体积为( ) A .3B .23C .9D .336.把边长为2的正方形ABCD 沿对角线BD 折起,使得平面ABD ⊥平面CBD ,则异面直线AD ,BC 所成的角为( ) A .120︒B .30︒C .90︒D .60︒7.如图所示,在正方体1111ABCD A B C D -中,已知M ,N 分别是BD 和AD 的中点, 则1B M 与1D N 所成角的余弦值为( )A 30B 30C 30D 15 8.设()321=--,,a 是直线l 的方向向量,()121=-,,n 是平面的法向量,则( ) A .l a ⊥B .l a ∥C .l a ⊂或l a ⊥D .l a ∥或l a ⊂9.在正方体1111ABCD A B C D -中,直线1BC 与平面1A BD 所成角的余弦值为( ) A .24B .23C .33D .3210.在正四棱锥S ABCD -中,O 为顶点S 在底面的射影,P 为侧棱SD 的中点, 且SO OD =,则直线BC 与平面PAC 所成的角是( ) A .75︒B .60︒C .45︒D .30︒11.如图,四棱锥P ABCD -中,PB ⊥平面ABCD ,底面ABCD 为直角梯形,AD BC ∥,AB BC ⊥,3AB AD PB ===,点E 在棱PA 上,且2PE EA =,则平面ABE 与平面BED 的夹角的余弦值为( )A .23B .66C .33D .6312.如图,已知正方体ABCD EFGR -的上底面中心为H ,点O 为AH 上的动点,P 为FG 的三等分点(靠近点F ),Q 为EF 的中点,分别记二面角P OQ R --,Q OR P --,R OP Q --的平面角为α,β,γ,则( )A .γαβ<<B .αγβ<<C .αβγ<<D .βαγ<<二、填空题(本大题有4小题,每小题5分,共20分.请把答案填在题中横线上)13.设平面α的法向量为()122-,,,平面β的法向量为()24λ,,,若αβ∥,则λ的值 为______.14.已知()1,2,1A -,()2,2,2B ,点P 在z 轴上,且PA PB =,则点P 的坐标 为____________.15.如图,直三棱柱111ABC A B C -的所有棱长都是2,以A 为坐标原点建立空间直角坐标系, 则顶点1B 的坐标是__________.16.正四棱锥S ABCD -的八条棱长都相等,SB 的中点是E ,则异面直线AE ,SD 所成角的余弦为__________.三、解答题(本大题有6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(10分)如图,PD 垂直正方形ABCD 所在平面,2AB =,E 是PB 的中点,,3cos DP AE =. (1)建立适当的空间坐标系,求出E 的坐标; (2)在平面PAD 内求一点F ,使EF ⊥平面PCB .18.(12分)如图,已知三棱锥O ABC -的侧棱OA ,OB ,OC 两两垂直,且1OA =,2OB OC ==,E 是OC 的中点.(1)求异面直线BE 与AC 所成角的余弦值; (2)求直线BE 和平面ABC 的所成角的正弦值.19.(12分)如图,在四棱锥P ABCD -中,底面ABCD 是边长为23的菱形, 60BAD ∠=︒,PD ⊥平面ABCD ,23PD =,E 是棱PD 上的一个点,23DE =,F 为PC 的中点.(1)证明:BF ∥平面ACE ;(2)求直线AF 与平面ACE 所成角的正弦值.20.(12分)如图,在四棱锥P ABCD -中,底面ABCD 为矩形,PA AB ⊥,PA BC ⊥,//AP CQ ,22AB BC ==,332CQ AP ==. (1)求直线PD 与平面BPQ 所成角的正弦值; (2)求二面角A PQ B --的余弦值.21.(12分)如图,已知四棱锥P ABCD -的底面为直角梯形,AD BC ∥,90ADC ∠=︒, 且22AD BC CD ==,PA PB PD ==. (1)求证:平面PAD ⊥平面ABCD ;(2)设45PAD ∠=︒,求二面角B PD C --的余弦值.22.(12分)如图,四棱锥P ABCD -中,底面ABCD 为平行四边形,PA ⊥面ABCD ,M 是棱PD 的中点,且2AB AC PA ===,22BC =. (1)求证:CD ⊥面PAC ; (2)求二面角M AB C --的大小;(3)若N 是AB 上一点,且直线CN 与平面MAB 成角的正弦值为105,求ANNB的值.高中数学选择性必修一第一章《空间向量与立体几何》单元测试卷一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.【答案】B【解析】,解得:6x =,152y =.故选B . 2.【答案】C【解析】因为()3,4,2AB =、()5,7,3AC =-、()2,11,1BC =-,所以0AB AC ⋅<可知角A 为钝角,故ABC △的形状是钝角三角形.选C . 3.【答案】B【解析】由题意1132MN MA AB BN OA OB OA BC =++=+-+211211322322OA OB OC OB OA OB OC =-++-=-++;又OA =a ,OB =b ,C O =c ,∴211322MN =-++a b c .故选B .4.【答案】C【解析】关于xOy 平面对称的点横坐标、纵坐标不变,竖坐标变为它的相反数, 从而有点()2,2,1A 关于xOy 平面对称的点的坐标为()2,2,1-,选C . 5.【答案】D【解析】∵()121A -,,,()203B -,,,∴3AB ==,设正方体的棱长为a 3=,解得a =∴正方体的体积为3=D .6.【答案】D 【解析】如图建立如图所示的空间直角坐标系O xyz -,则()002A ,,,()200B ,,,()020C ,,,()200D -,,,故()202AD =--,,,()220BC =-,,, 则2AD BC ⋅=,2AD =,2BC =, 所以1cos 2AD BC =,,故选D . 7.【答案】A【解析】建立如图所示的空间坐标系,设边长为a .则()000D ,,,()1002D a ,,,()1222B a a a ,,,()0M a a ,,,()00N a ,,, 故()102ND a a =-,,,()12B M a a a =---,,, 所以15ND a =,16B M a =,2113ND B M a ⋅=-, 则211330cos 56a ND B M a a-==,,应选答案A .8.【答案】D【解析】因为()()()3122110⋅=⨯+-⨯+-⨯-=a n ,所以⊥a n ,即l a ∥或l a ⊂.故选D .9.【答案】C【解析】分别以DA,DC,1DD为x,y,z轴建立如图所示空间直角坐标系设正方体的棱长为1,可得()0,0,0D,()1,1,0B,()10,1,1C,()11,0,1A,∴()11,0,1BC=-,()11,0,1A D=--,()1,1,0BD=--,设(),,x y z=n是平面1A BD的一个法向量.∴1A DBD⋅=⋅⎧⎪⎨⎪⎩=nn,即x zx y+=+=⎧⎨⎩取1x=,得1y z==-,∴平面1A BD的一个法向量为()1,1,1=--n,设直线1BC与平面1A BD所成角为θ,∴11126sin cos,323BCBCBCθ⋅-=〈〉===⨯nnn,∴23cos1sin3θθ=-=,即直线1BC与平面1A BD所成角的余弦值是33.故选C.10.【答案】D【解析】如图所示,以O为原点建立空间直角坐标系O xyz-.设OD SO OA OB OC a=====,则00A a(,,),00B a(,,),00C a-(,,),022a aP⎛⎫-⎪⎝⎭,,,()2,0,0CA a=,,,22a aPA a⎛⎫=--⎪⎝⎭,设平面PAC的法向量为(),,x y z=n,则2022axa aax y z=⎧--+=⎪⎨⎪⎩可求得()0,1,1=n,则1cos ,2BC=n, ,60BC=︒n,∴直线BC与平面PAC所成的角为906030︒-︒=︒.故选D.11.【答案】B【解析】以B为坐标原点,分别以BC、BA、BP所在直线为x、y、z轴,建立空间直角坐标系,则()0,0,0B,()0,3,0A,()0,0,3P,()3,3,0D,()0,2,1E,∴()0,2,1BE=,()3,3,0BD=,设平面BED的一个法向量为(),,x y z=n,则20330BE y zBD x y⋅=+=⋅=+⎧⎪⎨⎪⎩=nn,取1z=,得11,,122⎛⎫=-⎪⎝⎭n,平面ABE的法向量为()1,0,0=m,∴162,6612cos==⨯n m.∴平面ABE与平面BED的夹角的余弦值为66.故选B.12.【答案】D【解析】建立如图所示的空间直角坐标系.考虑点与点A重合时的情况.设正方体的棱长为1,则1103P ⎛⎫ ⎪⎝⎭,,,1Q 002⎛⎫⎪⎝⎭,,,()R 010,,,()O 001,,. 设平面的一个法向量为()1x y z =,,n ,由()()1110102211002323x OQ x y z z x y PQ x y z ⎛⎫⋅=⋅-=-=⎧⎪⎪⎨⎪⎪ ⎪⎝⎭⎛⎫⋅=⋅--⎩=--= ⎪⎝⎭,,,,,,,,n n ,得322x y x z ⎧=-⎪⎪⎨⎪=⎪⎩,令2x =,得()12,3,1=-n .同理可得平面OPR 和平面OQR 的法向量分别为()2233=,,n ,()3637=,,n . 结合图形可得:13cos cos 747α==⨯,n n ,23cos cos 1147β==⨯,n n ,12cos cos 711γ==⨯,n n cos cos cos γαβ<<,又0γ<,,αβ<π,∴γαβ>>.故选D .二、填空题(本大题有4小题,每小题5分,共20分.请把答案填在题中横线上) 13.【答案】4-【解析】设平面α的法向量()122=-,,m ,平面β的法向量()24λ=,,n , 因为αβ∥,所以∥m n ,所以存在实数k ,使得k =m n ,所以有12224kk k λ=-==⎧⎪⎨⎪⎩,解得4λ=-,故答案为4-.14.【答案】()003,, 【解析】设0(0)P z ,,,由PA PB =,得()()22141442z z ++-=++-,解得3z =,故点P 的坐标为()003,,. 15.【答案】()3,1,2【解析】2sin 33x =π=,2cos 13y =π=,2z = ,即顶点1B 的坐标是()3,1,2.16.【答案】33【解析】以正方形ABCD 的中心O 为原点,平行于AB 的直线为x 轴,平行于AD 的直线为y 轴,SO 为z 轴建立如图所示空间直角坐标系O xyz -,设四棱锥S ABCD -棱长为2,则()1,1,0A --,()1,1,0B -,()0,0,2S ,()1,1,0D -,112,,222E ⎛⎫- ⎪ ⎪⎝⎭,所以312,,222AE ⎛⎫= ⎪ ⎪⎝⎭,()1,1,2SD =--,∴311322cos ,3911112442AE SD -+-==-++⋅++. 故异面直线AE ,SD 所成角的余弦值为33.三、解答题(本大题有6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.【答案】(1)111(,,);(2)点F 的坐标是100(,,),即点F 是AD 的中点. 【解析】(1)分别以DA 、DC 、DP 所在直线分别为x 轴、y 轴、z 轴建立空间坐标系,如图,则200A (,,),220B (,,),020C (,,),设2PD m =,002P m (,,),则11E m (,,),∴11AE m =-(,,),002DP m (,,=) ∴22,23cos 3112m DP AE m m==++⋅,解得1m =.∴点E 坐标是111(,,); (2)∵F ∈平面PAD ,∴可设0F x z (,,),111EF x z ---=(,,), 又EF ⊥平面PCB ,∴EF CB ⊥⇒()()1102?20x z --⋅-=,,-1,,,解得1x =; 又∵EF PC ⊥∴()()1110220x ---⋅-=,,z ,,0z ⇒=, ∴点F 的坐标是100(,,),即点F 是AD 的中点. 18.【答案】(1)25;(2)30.【解析】(1)以O 为原点,OB 、OC 、OA 分别为X 、Y 、Z 轴建立空间直角坐标系.则有001A (,,)、200B (,,)、020C (,,)、010E (,,) ∴210EB -=(,,),021AC -=(,,),∴cos 5525EB AC ==-⋅,,所以异面直线BE 与AC 所成角的余弦为25. (2)设平面ABC 的法向量为()1x y z =,,n ,则1AB ⊥n 知120AB x z ⋅=-=n ,1AC ⊥n 知120AC y z ⋅=-=n 取()11,1,2=n ,则1sin3030EB=,n,故BE和平面ABC的所成角的正弦值为3030.19.【答案】(1)见解析;(2)26.【解析】(1)证明:连接BD,设BD AC O=,取PE的中点G,连接BG,OE,FG,在BDC△中,因为O,E分别为BD,DG的中点,所以OE BG∥,又BG⊄平面AEC,所以BG∥平面AEC,同理,在PEC△中,FG CE∥,FG∥平面AEC,因为BF⊂平面AEC,所以BF∥平面AEC.(2)以O为坐标原点,分别以OB,OC所在的直线为x,y轴,建立如图所示的空间直角坐标系O xyz-,在等边三角形ABD中,因为23AB=3OA=,3OB=因此()0,3,0A-,()0,3,0C,233,0,E⎛⎝⎭,(3,0,23P,3332F⎛⎝,且233,3,EC⎛=⎭,()0,3,0OC=,3932AF⎛=-⎝,设平面ACE的一个法向量为(),,x y z=n,则23033030EC x yOCy⎧⎪⎨⎪⎩⎧⋅=+-=⎪⇒⎨⋅=⎪=⎩nn,取2x=,得()2,0,3=n,直线AF 与平面ACE 所成的角为θ,则33326sin 2638149344AF AFθ-+⋅===⋅+++n n .20.【答案】(1)55;(2)755.【解析】∵PA AB ⊥,PA BC ⊥,∴PA ⊥底面ABCD ,又底面ABCD 为矩形, ∴分别以AB ,AD ,AP 为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系, 则()0,0,0A ,()2,0,0B ,()0,1,0D ,()0,0,2P ,()2,1,3Q . ∴()0,0,2AP =,()2,0,2BP =-,()2,1,1PQ =,()0,1,2PD =-. (1)设平面BPQ 的一个法向量()1111,,x y z =n ,则11111110220 200BP x z x y z PQ ⎧⎪⎨⎪⋅=-+=⎧⇒⎨++⋅=⎩⎩=n n ,令11z =,得()11,3,1=-n ,∴PD 与平面BPQ 所成角的正弦值11555sin 11511PD PDθ⋅===⨯n n .(2)设平面APQ 的一个法向量()2222,,n x y z =,则222222020200AP z x y z PQ ⎧⎪⎨⋅==⎧⇒⎨++=⋅=⎩⎪⎩n n 令21x =,得 ()21,2,0=-n ,∴1212127755cos ,55115⋅===⨯n n n n n n ,∴二面角A PQ B --的余弦值为75555. 21.【答案】(1)见解析;(2)63. 【解析】(1)证明:如图,取AD ,AB 的中点O ,G ,连接OB ,OP ,OG ,PG , 则四边形OBCD 为正方形,∴OA OB =,∴OG AB ⊥. 又PA PB =,∴PG AB ⊥, 又OGPG G =∴AB ⊥平面POG ,又PO ⊂平面POG ,∴AB PO ⊥. ∵PA PD =,∴PO AD ⊥. 又ABAD A =,∴PO ⊥平面ABCD .又PO ⊂平面PAD ,∴平面PAD ⊥平面ABCD .(2)解:由(1)知OB ,OD ,OP ,两两垂直,建立如图所示的空间直角坐标系O xyz -,∵45PAD ∠=︒,PO AD ⊥,∴PO OA OB OD ===.令1OA OB OD ===,则()0,0,1P ,()1,0,0B ,()1,1,0C ,()0,1,0D , ∴()1,0,1PB =-,()0,1,1PD =-,()1,0,0CD =-. 设平面PBD 的一个法向量为()1111,,x y z =n ,由11PBPD⊥⊥⎧⎪⎨⎪⎩nn,得111111PB x zPD y z⋅=-=⋅⎧⎪⎨⎩==⎪-nn,取11x=,得()11,1,1=n.又设平面PCD的法向量为()2222,,x y z=n,由22CDPD⊥⊥⎧⎪⎨⎪⎩nn得22222CD xPD y z⋅=-=⋅=⎧⎪⎨⎪⎩-=nn,取21y=,得()20,1,1=n,∴1212120116cos,332⋅++===⋅⋅n nn nn n,由图形得二面角B PD C--为锐角,∴二面角B PD C--的余弦值为63.22.【答案】(1)见解析;(2)4π;(3)1ANNB=.【解析】证明:(1)连结AC.因为在ABC△中,2AB AC==,22BC=,所以222BC AB AC=+,所以AB AC⊥.因为AB CD∥,所以AC CD⊥.又因为PA⊥地面ABCD,所以PA CD⊥.因为AC PA A=,所以CD⊥平面PAC.(2)如图建立空间直角坐标系,则()0,0,0A,()0,0,2P,()2,0,0B,()0.2.0C,()2,2,0D-.因为M是棱PD的中点,所以()1,1,1M-.所以()1,1,1AM=-,()2,0,0AB=.设(),,x y z=n为平面MAB的法向量,所以0AM AB ⎧⋅=⎪⎨⋅=⎪⎩n n ,即020x y z x -++=⎧⎨=⎩,令1y =,则011x y z =⎧⎪=⎨⎪=-⎩,所以平面MAB 的法向量()0,1,1-n =.因为PA ⊥平面ABCD , 所以()0,0,2AP =是平面ABC 的一个法向量. 所以2cos 22AP AP AP⋅===-⨯n n,n .因为二面角M AB C --为锐二面角, 所以二面角M AB C --的大小为4π. (3)因为N 是棱AB 上一点,所以设(),0,0N x ,(),2,0NC x =-.设直线CN 与平面MAB 所成角为α, 因为平面MAB 的法向量()0,1,1=-n ,所以210sin cos 224ACAC x ααπ⋅⎛⎫=-== ⎪⎝⎭⨯+n n . 解得1x =,即1AN =,1NB =,所以1ANNB=.。

高中数学第二册(下B)立体几何单元测试题-旧人教[原创

高中数学第二册(下B)立体几何单元测试题-旧人教[原创

上杭二中2006—2007学年第二学期三月份月考高二数学试题(考试时间:120分钟 满分:150分)一.选择题(本大题共12小题,每小题5分,共60分)1.过空间三个不同的点可以确定的平面的个数是 ( C ) A . 1个 B .无数个 C . 1个或无数个 D .无法确定2.两条异面直线是指 ( D )A .分别位于两个不同平面内的两条直线;B .空间内不相交的两条直线;C .某一平面内的一条直线与这个平面外的一条直线;D .空间中两条既不平行也不相交的直线。

3.在空间中,有下列命题:①有两组对边相等的四边形是平行四边形。

②四边相等的四边形是菱形。

③平行于同一条直线的两条直线平行。

④连结空间四边形各边中点得到的四边形一定是平行四边形。

上述命题中,真命题的个数是( B )个A . 1B . 2C . 3D . 4 4.三棱锥P —ABC 中,若PA ⊥平面ABC ,∠ACB =90°,那么在三棱锥的侧面和底面中,直角三角形的个数为 ( A ) A .4个 B . 3个C . 2个D . 1个5.已知P 是矩形ABCD 所在平面外一点,PA ⊥平面 ABCD ,则下列各式中,可能不成立的是( B )A .0=⋅AB PAB .0=⋅BD PCC .0=⋅AB PD D .0=⋅CD PA6.点P 在正方形ABCD 所在平面外,PD ⊥平面 ABCD ,PD =AD ,则PA 与BD 所成的角为( C )A . 30°B . 45°C . 60°D .90°7.在△ABC 中,∠ACB =90°,点P 是平面ABC 外一点,PA =PB =PC ,AC =12,P 到平面ABC 的距离为8,则P 到BC 的距离为 ( C )A . 6B . 8C . 10D . 128.一棱锥被平行于底面的平面所截,若截面面积与底面面积之比为1:2,则此棱锥的高被分成的两段(自上而下)之比为 ( D ) A .2:1 B .1:4 C .)12(:1+ D .)12(:1- 9.在北纬60°圈上有A 、B 两地,它们的纬线圈上的劣弧长等于R 2π(R 为地球半径),则这两点的球面距离是 ( A )A .R 3πB .4arcsinπ⋅R C .4arcsin2π⋅R D . 2R10.自二面角内一点,到两个面的距离分别为22和4 ,到棱的距离为24,则此二面角的度数为 ( D )A . 60°B . 75°C . 165°D .75°和165°11.(理科)直平行六面体的底面是菱形,一个底面面积为4,两个对角面面积分别为5和6,那么它的体积为 ( C )A .302B .30C .152D . 154(文科)已知一个正四面体的顶点是一个正方体的顶点,那么正方体的表面积是正四面体的表面积的( C )倍A .22 B . 36C . 3D .2612.(理科)长方体一个顶点上的三条棱长分别是3、4、5,且它的8个顶点都在同一个球面上,则这个球的表面积是( C )A . π220B .π225C .π50D . π200(文科)设三棱锥的三个侧面两两互相垂直,且侧棱长均为32,那么其外接球的面积为( C ) A . π12 B .π32 C .π36 D . π48 二.填空题(本大题4小题,每小题4分,共16分)13.已知直线a ∥平面α,且距离为1,则到直线a 和平面α距离都为54的点的轨迹为是 .[两条平行直线]14.已知平行六面体1111D C B A ABCD -中,11===AA AD AB ,且BAD ∠=AD A 1∠=AB A 1∠=θ,则1AC = .[θcos 63+]15.下面是关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱1DEB 1BAFD 1 C A 1CB C D A BC D 1111 E O②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱 ③若四个侧面两两全等,则该四棱柱为直四棱柱④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱其中,真命题的编号是 [②④](写出所有正确结论的编号).16.有六根细木条,其中较长的两根木条长分别为3,2,其余四根长均为1,若用它们搭成一个三棱锥,则其中两条较长的棱所在直线所成的角的余弦值为 。

高中数学第一章-空间向量与立体几何单元测试(基础卷)(解析版)

高中数学第一章-空间向量与立体几何单元测试(基础卷)(解析版)

第一章空间向量与立体几何单元过关基础A 版解析版学校:___________姓名:___________班级:___________考号:___________一、单选题1.空间直角坐标系中,点()2,3,5-关于y 轴对称的点的坐标是( ) A .()2,3,5--- B .()2,3,5 C .()2,3,5-- D .()2,3,5-【答案】A 【解析】 【分析】关于y 轴对称,纵坐标不变,横坐标、竖坐标变为相反数. 【详解】关于y 轴对称的两点的纵坐标相同,横坐标、竖坐标均互为相反数. 所以点()2,3,5-关于y 轴对称的点的坐标是()2,3,5---. 故选:A . 【点睛】本题考查空间平面直角坐标系,考查关于坐标轴、坐标平面对称的问题.属于基础题.2.如图所示,在一个长、宽、高分别为2、3、4的密封的长方体装置2223333DA B C D A B C -中放一个单位正方体礼盒1111DABC D A B C -,现以点D 为坐标原点,2DA 、2DC 、3DD 分别为x 、y 、z 轴建立空间直角坐标系D xyz -,则正确的是( )A .1D 的坐标为(1,0,0)B .1D 的坐标为(0,1,0)C .13B B 293D .13B B 14【答案】D【分析】根据坐标系写出各点的坐标分析即可. 【详解】由所建坐标系可得:1(0,0,1)D ,1(1,1,1)B ,3(2,3,4)B ,13B B ==.故选:D. 【点睛】本题考查空间直角坐标系的应用,考查空间中距离的求法,考查计算能力,属于基础题.3.空间直角坐标系中,已知点()()1,2,3345A B 、,,,则线段AB 的中点坐标为( ) A .()234,, B .()134,, C .()235,, D .()245,, 【答案】A 【解析】点()()1,2,3345A B 、,,, 由中点坐标公式得中得为:132435,,222+++⎛⎫⎪⎝⎭,即()234,,. 故选A.4.已知空间中三点(0,1,0)A ,(2,2,0)B ,(1,3,1)C -,则( ) A .AB 与AC 是共线向量B .AB 的单位向量是⎫⎪⎪⎝⎭C .AB 与BCD .平面ABC 的一个法向量是(1,2,5)- 【答案】D 【分析】根据向量的相关性质判断. 【详解】对于A 项,(2,1,0)AB =,(1,2,1)AC =-,所以AB AC λ≠,则AB 与AC 不是共线向量,所以A 项错误;对于B 项,因为(2,1,0)AB =,所以AB的单位向量为55⎛⎫⎪ ⎪⎝⎭,所以B 项错误; 对于C 项,向量(2,1,0)AB =,(3,1,1)BC =-,所以cos ,11AB BC AB BC AB BC⋅==-⋅,所以C 项错误;对于D 项,设平面ABC 的法向量是(,,)n x y z =,因为(2,1,0)AB =,(1,2,1)AC =-,所以00n AB n AC ⎧⋅=⎨⋅=⎩,则2020x y x y z +=⎧⎨-++=⎩,令1x =,则平面ABC 的一个法向量为(1,2,5)n =-,所以D 项正确. 故选:D. 【点睛】本题考查共线向量的判断,单位向量的求法,夹角的求法,平面法向量的求法,属于空间向量综合题.5.两平行平面 α,β 分别经过坐标原点 O 和点 ()2,1,1A ,且两平面的一个法向量()1,0,1n =-,则两平面间的距离是()A .32BC D .【答案】B 【解析】两平行平面 α,β 分别经过坐标原点 O 和点 ()2,1,1A ,()2,1,1OA =,且两平面的一个法向量()1,0,1,n =-∴两平面间的距离22n OA n⋅-+===,故选B. 6.下图是棱长为2的正方体1111ABCD A B C D -木块的直观图,其中,,P Q F 分别是11D C ,BC ,AB 的中点,平面α过点D 且平行于平面PQF ,则该木块在平面α内的正投影面积是( )A .43B .33C .23D 3【答案】A 【分析】先根据题意平面α可以平移至平面11A BC ,即木块在平面α内的正投影即可看成是在平面11A BC 的正投影,根据投影的性质可得投影为正六边形'''111A A BC C D ,最后根据正六边形面积公式可求出投影的面积. 【详解】解:根据题意可知平面α过点D 且平行于平面PQF , 则平面α可以平移至平面11A BC ,木块在平面α内的正投影即可看成是在平面11A BC 的正投影, 根据投影的性质可得投影为正六边形'''111A A BC C D 如图所示, 因为正方体1111ABCD A B C D -棱长为2, 所以221222A B =+=则投影面内正六边形的边长为:'1226cos303A A ==根据正六边形面积公式可得投影的面积为:'''111233264323A A BC C D S ⎛=⨯= ⎝⎭故投影面积为:43故选:A【点睛】本题主要考查空间几何体和正投影得概念,考查面积公式是计算,考查空间想象力和推导能力,属于难题.7.如图,已知正方体1111ABCD A B C D -棱长为3,点H 在棱1AA 上,且11HA =,在侧面11BCC B 内作边长为1的正方形1EFGC ,P 是侧面11BCC B 内一动点,且点P 到平面11CDD C 距离等于线段PF 的长,则当点P 运动时,2||HP 的最小值是( )A .21B .22C .23D .13【答案】D 【分析】建立空间直角坐标系,根据P 在11BCC B 内可设出P 点坐标,作1HM BB ⊥,连接PM ,可得222HP HM MP =+,作1PN CC ⊥,根据空间中两点间距离公式,再根据二次函数的性质,即可求得2HP 的范围. 【详解】根据题意,以D 为原点建立空间直角坐标系如图所示:作1HM BB ⊥交1BB 于M,连接PM ,则HM PM ⊥作1PN CC ⊥交1CC 于N ,则PN 即为点P 到平面11CDD C 距离. 设(),3,P x z ,则()()()1,3,2,3,3,2,0,3,F M N z ()03,03x z ≤≤≤≤ ∵点P 到平面11CDD C 距离等于线段PF 的长 ∴PN PF =由两点间距离公式可得()()2212x x z =-+-化简得()2212x z -=-,则210x -≥解不等式可得12x ≥综上可得132x ≤≤ 则在Rt HMP ∆中222HP HM MP =+()()222332x z =+-+-()223321x x =+-+-()2213x =-+132x ⎛⎫≤≤ ⎪⎝⎭所以213HP ≥(当时2x = 取等) 故选:D 【点睛】本题考查了空间直角坐标系的综合应用,利用空间两点间距离公式及二次函数求最值,属于难题. 8.如图,四个棱长为1的正方体排成一个正四棱柱,AB 是一条侧棱,(1,2,,8)i P i =⋅⋅⋅是上底面上其余的八个点,则集合{},1238i y y AB AP i =⋅=⋅⋅⋅、、、、中的元素个数( )A .1B .2C .4D .8【答案】A 【分析】本题首先可根据图像得出i i AP AB BP =+,然后将i AB AP ⋅转化为2iAB A P B B +⋅,最后根据棱长为1以及i ABBP 即可得出结果.【详解】由图像可知,i i AP AB BP =+,则()2i i i AB BP AB AP AB B AB A P B ⋅==+⋅+, 因为棱长为1,i ABBP ,所以0i AB BP ⋅=,2101i i AB AP AB AB BP ⋅=+=+=⋅, 故集合{},1238i y y AB AP i =⋅=⋅⋅⋅、、、、中的元素个数为1, 故选:A . 【点睛】本题考查向量数量积的求解问题,关键是能够利用平面向量线性运算将所求向量数量积转化为已知模长的向量和有垂直关系向量的数量积的运算问题,考查了转化与化归的思想,考查集合中元素的性质,是中档题.二、多选题9.给出下列命题,其中正确的有( ) A .空间任意三个向量都可以作为一组基底B .已知向量//a b ,则a 、b 与任何向量都不能构成空间的一组基底C .A ,B ,M ,N 是空间四点,若BA ,BM ,BN 不能构成空间的一组基底,则A ,B ,M ,N 共面D .已知{,,}a b c 是空间向量的一组基底,若m a c =+,则{,,}a b m 也是空间一组基底 【答案】BCD 【分析】选项A 、B 中,根据空间基底的概念,可判断;选项C 中,可得,,BA BM BN 共面,又由,,BA BM BN 过相同点B ,可得,,,A B M N 四点共面,由此可判断;选项D 中:基向量,a b 与向量m a c =+一定不共面,由此可判断. 【详解】选项A 中,根据空间基底的概念,可得任意三个不共面的向量都可以作为一个空间基底,所以A 不正确;选项B 中,根据空间基底的概念,可得B 正确;选项C 中,由,,BA BM BN 不能构成空间的一个基底,可得,,BA BM BN 共面,又由,,BA BM BN 过相同点B ,可得,,,A B M N 四点共面,所以C 正确;选项D 中:由{},,a b c 是空间的一个基底,则基向量,a b 与向量m a c =+一定不共面,所以可以构成空间另一个基底,所以D 正确. 故选:BCD.10.已知v 为直线l 的方向向量,1n ,2n 分别为平面α,β的法向量(α,β不重合),那么下列选项中,正确的是( ) A .1n ∥2n ⇔α∥β B .1n ⊥2n ⇔α⊥β C .v ∥1n ⇔l ∥α D .v ⊥1n ⇔l ∥α【答案】AB 【分析】根据线面直线的位置关系逐一判断即可. 【详解】解:v 为直线l 的方向向量,1n ,2n 分别为平面α,β的法向量(α,β不重合), 则1n ∥2n ⇔α∥β,1n ⊥2n ⇔α⊥β,v ∥1n ⇔l ⊥α,v ⊥1n ⇔l ∥α或l ⊂α. 因此AB 正确.故选:AB.11.在长方体ABCD A B C D ''''-中,2AB =,3AD =,1AA '=,以D 为原点,以,,DA DC DD '分别为x 轴,y 轴,z 轴正方向建立空间直角坐标系,则下列说法正确的是( ) A .(3,2,1)BD '=--B .异面直线A D '与BD '所成角的余弦值为35C .平面A CD ''的一个法向量为(2,3,6)-- D .二面角C A D D '''--的余弦值为37【答案】ACD 【分析】由向量法对每一选项进行逐一计算验证,可得答案. 【详解】由题意可得()()()3,0,0,3,2,0,0,2,0A B C ,()()()()0,0,1,3,0,1,0,2,1,3,2,1D A C B '''' 选项A: 所以(3,2,1)BD '=--,则A 正确.选项B:()3,0,1DA '=,(3,2,1)BD '=--,所以,cos ,10DA BDDA BD DA BD ''''==''⋅=所以异面直线A D '与BD '所成角的余弦值为35,则B 不正确. 选项C :设平面A C D ''的一个法向量为(),,n x y z =由()3,0,1DA '=,()0,2,1DC '=,则00n DA n DC ⎧⋅=⎨⋅=⎩'' 所以3020x z y z +=⎧⎨+=⎩ ,取6z =,得()2,3,6n =--,则C 正确.选项D :由上可得平面A C D ''的一个法向量为(2,3,6)n =-- 又平面A DD ''的法向量为()0,1,0m = 则3cos ,17n m n m n m⋅-==⨯⋅ 所以二面角C A D D '''--的余弦值为37,则D 正确. 故选:ACD12.若长方体1111ABCD A B C D -的底面是边长为2的正方形,高为4,E 是1DD 的中点,则( )A .11B E A B ⊥B .平面1//B CE 平面1A BDC .三棱锥11C B CE -的体积为83D .三棱锥111C B CD -的外接球的表面积为24π【答案】CD 【分析】以1{,,}AB AD AA 为正交基底建立空间直角坐标系,写出各点坐标,计算11B E A B ⋅值即可判断A ;分别求出平面1B CE ,平面1A BD 的法向量,判断它们的法向量是否共线,即可判断B ;利用等体积法,求出三棱锥11-B CC E 的体积即可判断C ;三棱锥111C B CD -的外接球即为长方体1111ABCD A B C D -的外接球,故求出长方体1111ABCD A B C D -的外接球的表面积即可判断D.【详解】以1{,,}AB AD AA 为正交基底建立如图所示的空间直角坐标系,则 (0,0,0)A ,(2,0,0)B ,(2,2,0)C ,(0,2,0)D ,1(0,0,4)A ,1(2,0,4)B ,(0,2,2)E ,所以1(2,2,2)B E =--,1(2,0,4)A B =-,因为1140840B E A B ⋅=-++=≠,所以1B E 与1A B 不垂直,故A 错误; 1(0,2,4)CB =-,(2,0,2)CE =-设平面1B CE 的一个法向量为111(,,)n x y z =,则由100n CB n CE ⎧⋅=⎨⋅=⎩,得1111240220y z x z -+=⎧⎨-+=⎩,所以11112y z x z =⎧⎨=⎩,不妨取11z =,则11x =,12y = 所以(1,2,1)n =,同理可得设平面1A BD 的一个法向量为(2,2,1)m =,故不存在实数λ使得n λm =,故平面1B CE 与平面1A BD 不平行,故B 错误; 在长方体1111ABCD A B C D -中,11B C ⊥平面11CDD C ,故11B C 是三棱锥11B CEC -的高, 所以111111111184223323三棱锥三棱锥CEC C B CE CEC B V V S B C --==⋅=⨯⨯⨯⨯=△, 故C 正确;三棱锥111C B CD -的外接球即为长方体1111ABCD A B C D -的外接球,故外接球的半径22222462R ++==,所以三棱锥111C B CD -的外接球的表面积2424S R ππ==,故D 正确. 故选:CD. 【点睛】本题主要考查用向量法判断线线垂直、面面平行,等体积法的应用及几何体外接球的表面积.三、填空题13.若直线l 的方向向量为()4,2,m ,平面α的法向量为()2,1,1-,且l α⊥,则m =______. 【答案】2- 【分析】由已知可知,直线l 的方向向量与平面α的法向量平行,根据空间向量平行的充要条件可得到一个关于λ和m 的方程组,解方程组即可得到答案. 【详解】 解:l α⊥,直线l 的方向向量为()4,2,m ,平面α的法向量为()2,1,1-,∴直线l 的方向向量与平面α的法向量平行.则存在实数λ使()4,2,m λ=()2,1,1-,即422m λλλ=⎧⎪=⎨⎪=-⎩,∴2m =-. 故答案为:2-.【点睛】本题考查向量语言表述线面垂直,直线的方向向量与平面的法向量平行是解本题的关键,属于基础题.14.若(1,1,0),(1,0,2),a b a b ==-+则与同方向的单位向量是________________【答案】【解析】 试题分析:,与同方向的单位向量是考点:空间向量的坐标运算;15.如图,在正四面体P ABC -中,,M N 分别为,PA BC 的中点,D 是线段MN 上一点,且2ND DM =,若PD xPA yPB zPC =++,则x y z ++的值为_______.【答案】23【分析】利用基向量表示PD ,结合空间向量基本定理可得. 【详解】1111111()2323366PD PM MD PA MN PA PN PM PA PB PC =+=+=+-=++ 所以11,36x y z ===,所以23x y z ++=.【点睛】本题主要考查空间向量的基本定理,把目标向量向基底向量靠拢是求解的主要思路.16.如图所示的正方体是一个三阶魔方(由27个全等的棱长为1的小正方体构成),正方形ABCD 是上底面正中间一个正方形,正方形1111D C B A 是下底面最大的正方形,已知点P 是线段AC 上的动点,点Q 是线段1B D 上的动点,则线段PQ 长度的最小值为_______.334【分析】建立空间直角坐标系,写出点的坐标,求出目标PQ 的表达式,从而可得最小值. 【详解】以1B 为坐标原点,1111,B C B A 所在直线分别为x 轴,y 轴建立空间直角坐标系,则()()()()10,0,0,1,2,3,2,1,3,2,2,3B A C D , 设11B Q B D λ=,AP AC μ=,[],0,1λμ∈.()12,2,3B Q λλλ=,()1111,2,3B P B A AP B A AC μμμ=+=+=+-. ()1112,22,33QP B P B Q μλμλλ=-=+----, ()()()2222122233QP μλμλλ=+-+--+-222215191730221417217234λλμμλμ⎛⎫⎛⎫=-+-+=-+-+ ⎪ ⎪⎝⎭⎝⎭当1517λ=且12μ=时,2QP 取到最小值934,所以线段PQ 长度的最小值为33434. 【点睛】本题主要考查空间向量的应用,利用空间向量求解距离的最值问题时,一般是把目标式表示出来,结合目标式的特征,选择合适的方法求解最值.四、解答题17.如图,已知1111ABCD A B C D -是四棱柱,底面ABCD 是正方形,132AA AB ==,,且1160C CB C CD ︒∠=∠=,设1,,CD C a b B CC c ===.(1)试用,,a b c 表示1AC ; (2)已知O 为对角线1A C 的中点,求CO 的长.【答案】(1)1AC a b c =---;(2)292. 【分析】(1)由11AC A A AD DC =++可表示出来; (2)由21||()4CO a b c =++可计算出. 【详解】(1)11AC A A AD DC =++1AA BC CD =-+- 1CC CB CD c b a a b c =---=---=---;(2)由题意知||2,||2,||3a b c ===,110,233,23322a b a c a b ⋅=⋅=⨯⨯=⋅=⨯⨯=,111()22CO CA a b c ==++,∴21||()4CO a b c =++ ()22212224a b c a b a c b c =+++⋅+⋅+⋅, ()2221292922302323442=⨯++++⨯+⨯==. 【点睛】本题考查空间向量的线性运算,考查利用向量计算长度,属于基础题.18.如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥底面ABCD ,E 为PD 中点,O 为AC 中点,222AD AB AP ===.(1)证明:OE //平面PAB ;(2)异面直线PC 与OE 所成角的余弦值.【答案】(1)见详解; (2)33【分析】(1)连接BD ,得到O 为BD 中点,然后利用中位线定理,可得//OE PB ,根据线面平行的判定定理,可得结果.(2)通过建系,可得,PC OE ,然后利用向量的夹角公式,可得结果. 【详解】(1)证明:连接BD ,则O 为BD 中点, 又E 为PD 中点,∴OE //PB .∵PB ⊂平面PAB ,OE ⊄平面PAB , ∴OE //平面PAB(2)以A 为原点建立空间直角坐标系, 如图,则(0,0,1),(1,2,0),(0,2,0)P C D ,110,1,,,1,022E O ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭∴11(1,2,1),,0,22PC OE ⎛⎫=-=-⎪⎝⎭, ∴3cos ,162PC OE ==⋅即异面直线PC 与OE 3【点睛】本题考查线面平行的判定定理以及建系通过利用向量的方法解决线线角,将几何问题用代数方法来解决,化繁为简,属基础题.19.如图,在多面体ABCDEF 中,底面ABCD 是边长为2的菱形,60BAD ∠=,四边形BDEF 是矩形,平面BDEF ⊥平面ABCD ,2DE =,M 为线段BF 的中点.(1)求M 到平面DEC 的距离及三棱锥M CDE -的体积; (2)求证:DM ⊥平面ACE .【答案】(1)M 到平面DEC 的距离为3,233M CDE V -=;(2)证明见解析. 【分析】 (1)设ACBD O =,以O 为原点,OB 所在直线为x 轴,OC 所在直线为y 轴,过O 且与平面ABCD 垂直的直线为z 轴,建立空间直角坐标系,利用空间向量法可求得点M 到平面DEC 的距离,计算出CDE △的面积,利用锥体的体积公式可计算出三棱锥M CDE -的体积;(2)利用向量法证明出0AC DM ⋅=,0AE DM ⋅=,可得出DM AC ⊥,DM AE ⊥,再利用线面垂直的判定定理可证得DM ⊥平面ACE . 【详解】 (1)设ACBD O =,以O 为原点,OB 所在直线为x 轴,OC 所在直线为y 轴,过O 且与平面ABCD 垂直的直线为z 轴,建立空间直角坐标系,如图所示.易知z 轴在平面BDEF 内,且////BF DE z 轴,则()0,3,0C 、()1,0,0D -、()1,0,2E -、()1,0,1M ,()0,0,2DE ∴=,()1,3,0DC =,()2,0,1DM =,设平面DEC 的一个法向量(),,n x y z =,则2030n DE z n DC x y ⎧⋅==⎪⎨⋅=+=⎪⎩,取3x =,得()3,1,0n =-,M ∴到平面DEC 的距离23331DM n h n⋅===+, 又1122222DECSDE DC =⨯⨯=⨯⨯=, 因此,三棱锥M CDE -的体积112323333M CDE DEC V S h -=⨯⨯=⨯⨯=△; (2)证明:由(1)易知()0,3,0A -,则()0,23,0AC =,()1,3,2AE =-,02230010AC DM ⋅=⨯+⨯+⨯=,1230210AE DM ⋅=-⨯+⨯+⨯=,DM AC ∴⊥,DM AE ⊥,ACAE A =,DM ∴⊥平面ACE .【点睛】本题考查利用空间向量法计算点到平面的距离、三棱锥体积的计算,同时也考查了利用空间向量法证明线面垂直,考查推理能力与计算能力,属于中等题.20.如图所示,在四棱锥P ABCD -中,底面四边形ABCD 是正方形,侧面PDC 是边长为a 的正三角形,且平面PDC ⊥底面ABCD ,E 为PC 的中点.(1)求异面直线PA 与DE 所成角的余弦值; (2)求直线AP 与平面ABCD 所成角的正弦值. 【答案】(16(26【分析】取CD 的中点O ,连接PO ,证明出PO ⊥平面ABCD ,然后以点O 为坐标原点,OC 、OP 所在的直线分别为y 、z 轴建立空间直角坐标系.(1)写出PA 、DE 的坐标,利用空间向量法可求得异面直线PA 与DE 所成角的余弦值; (2)求得平面ABCD 的一个法向量,并写出PA ,利用空间向量法可求得直线AP 与平面ABCD 所成角的正弦值. 【详解】取DC 的中点O ,连接PO ,PDC △为正三角形,O 为DC 的中点,则PO DC ⊥.又平面PDC ⊥平面ABCD ,平面PDC平面ABCD DC =,PO ⊂平面PDC ,PO ∴⊥平面ABCD .以点O 为坐标原点,OC 、OP 所在的直线分别为y 、z 轴建立如下图所示的空间直角坐标系O xyz -,则30,0,2P a ⎛⎫ ⎪ ⎪⎝⎭、,,02a A a ⎛⎫- ⎪⎝⎭、0,,02a C ⎛⎫ ⎪⎝⎭、0,,02a D ⎛⎫- ⎪⎝⎭.(1)设异面直线PA 与DE 所成的角为θ,E 为PC 的中点,30,4a E ⎛⎫∴ ⎪ ⎪⎝⎭,330,4DE a ⎛⎫∴= ⎪ ⎪⎝⎭,3,,2a PA a ⎛⎫=- ⎪ ⎪⎝⎭, 233330244a a PA DE a a ∴⋅=⨯-⨯=-,2PA a =,32DE =,2364cos cos ,4322a PA DE PA DE PA DEa a θ⋅=<>===⋅⨯, 因此,异面直线PA 与DE 6 (2)设直线AP 与平面ABCD 所成的角为α,易知平面ABCD 的一个法向量为()0,0,1n =,362cos ,421aPA n PA n a PA n-⋅<>===-⨯⋅. 因此,直线AP 与平面ABCD 所成角的正弦值为64. 【点睛】本题考查利用空间向量法计算异面直线所成角的余弦值以及线面角的正弦值,考查计算能力,属于中等题.21.如图,四棱锥P ABCD -中,PA ⊥平面ABCD 、底面ABCD 为菱形,E 为PD 的中点.(1)证明://PB 平面AEC ;(2)设1,120PA BAD ︒=∠=,菱形ABCD 的面积为23D AE C --的余弦值. 【答案】(1)证明见解析;(2)14. 【分析】(1)连接BD 交AC 于点O ,连接OE ,则//PB OE ,利用线面平行的判定定理,即可得证; (2)根据题意,求得菱形ABCD 的边长,取BC 中点M ,可证AM BC ⊥,如图建系,求得点坐标及,AE AC 坐标,即可求得平面ACE 的法向量,根据AM ⊥平面P AD ,可求得面ADE 的法向量,利用空间向量的夹角公式,即可求得答案. 【详解】(1)连接BD 交AC 于点O ,连接OE ,则O 、E 分别为,AB ACAM PAD AE AC =⊥、PD 的中点,所以//PB OE , 又OE ⊂平面,ACE PB ⊄平面ACE 所以//PB 平面ACE(2)由菱形ABCD 的面积为23,120BAD ︒∠=,易得菱形边长为2, 取BC 中点M ,连接AM ,因为AB AC =,所以AM BC ⊥,以点A 为原点,以AM 方向为x 轴,AD 方向为y 轴,AP 方向为z 轴,建立如图所示坐标系.则()())10,2,0,0,0,0,0,1,,3,1,02D A E C⎛⎫ ⎪⎝⎭所以()10,1,,3,1,02AE AC ⎛⎫== ⎪⎝⎭设平面ACE 的法向量()1,,n x y z =,由11,n AE n AC ⊥⊥得10230y z x y ⎧+=⎪⎪+=⎩,令3x =3,6y z =-= 所以一个法向量()13,3,6n =-,因为AM AD ⊥,AM PA ⊥,所以AM ⊥平面P AD , 所以平面ADE 的一个法向量()21,0,0n = 所以12121231cos ,43936n n n n n n ⋅<>===++,又二面角D AE C --为锐二面角,所以二面角D AE C --的余弦值为14【点睛】解题的关键是熟练掌握证明平行的定理,证明线面平行时,常用中位线法和平行四边形法来证明;利用空间向量求解二面角为常考题型,步骤为建系、求点坐标、求所需向量坐标、求法向量、利用夹角公式求解,属基础题.22.如图,在四棱锥M ABCD -中,//AB CD ,90ADC BM C ∠=∠=,M B M C =,122AD DC AB ===,平面BCM ⊥平面ABCD .(1)求证://CD 平面ABM ; (2)求证:AC ⊥平面BCM ;(3)在棱AM 上是否存在一点E ,使得二面角E BC M --的大小为4π?若存在,求出AEAM 的值;若不存在,请说明理由.【答案】(1)证明见解析(2)证明见解析(3)存在;23AE AM=【分析】(1)由线面平行判定定理证明即可;(2)由勾股定理得出2BC =,进而得AC BC ⊥,再由面面垂直的性质定理即可证明AC ⊥平面BCM ;(3)建立空间直角坐标系,利用向量法求解即可. 【详解】证明:(1)因为AB CD ∥,AB 平面ABM ,CD ⊄平面ABM ,所以CD ∥平面ABM .(2)取AB 的中点N ,连接CN . 在直角梯形ABCD 中, 易知2AN BN CD ===CN AB ⊥.在Rt CNB △中,由勾股定理得2BC =. 在ACB △中,由勾股定理逆定理可知AC BC ⊥. 又因为平面BCM ⊥平面ABCD , 且平面BCM平面ABCD BC =,所以AC ⊥平面BCM .(3)取BC 的中点O ,连接OM ,ON . 所以ON AC ∥, 因为AC ⊥平面BCM , 所以ON ⊥平面BCM . 因为BM MC =, 所以OM BC ⊥.如图建立空间直角坐标系O xyz -,则()0,0,1M ,()0,1,0B ,()0,1,0C -,()2,1,0A -,()2,1,1AM =-,()0,2,0BC =-,()2,2,0BA =-.易知平面BCM 的一个法向量为()1,0,0m =.假设在棱AM 上存在一点E ,使得二面角E BC M --的大小为4π.不妨设AE AM λ=(01λ≤≤), 所以()22,2,BE BA AE λλλ=+=--, 设(),,n x y z =为平面BCE 的一个法向量,则0,0,n BC n BE ⎧⋅=⎪⎨⋅=⎪⎩ 即()20,220,y x z λλ-=⎧⎨-+=⎩令x λ=,22z λ=-,所以(),0,22n λλ=-.从而2cos ,2m n m nm n ⋅==⋅.解得23λ=或2λ=. 因为01λ≤≤,所以23λ=. 由题知二面角E BC M --为锐二面角.所以在棱AM 上存在一点E ,使得二面角E BC M --的大小为4π, 此时23AE AM=.【点睛】本题主要考查了证明线面平行,线面垂直以及由面面角求其他量,属于中档题.高考数学:试卷答题攻略一、“六先六后”,因人因卷制宜。

高中数学立体几何测试题(10套)

高中数学立体几何测试题(10套)

∴ BD ∥平面 PMN ,
位置关系为
平行

∴ O 到平面 PMN 的距离即为 BD 到平面 PMN 的距离。
11 、a,b 为异面直线,且 a,b 所成角为 40 °,直线 c 与 a,b 均异面,且所成角均为
∵ BD ⊥ AC , MN ∥ BD
∵ PA⊥面 ABCD
θ,若这样的 c 共有四条,则 θ的范围为 (70 °, 90° ) 。
D
C
A
B
D1 A1
C1 B1
17 、 已知异面直线 a, b 的公垂线段 AB 的中点为 O,平面 满足 a∥ , b∥ , 且 O , M 、 N 是 a, b 上的任意两点, MN ∩ = P,求证: P 是 MN 的中

A aM
O
P
BN b
.
立几面测试 001
参考答 案
一、 1- 8 ACDDBDBA
2、已知 m, n 为异面直线, m∥平面 , n∥平面 , ∩ =l ,则 l( ) ( A)与 m, n 都相交 ( B)与 m,n 中至少一条相交 ( C)与 m, n 都不相交 ( D )与 m, n 中一条相交
3、已知 a, b 是两条相交直线, a∥ ,则 b 与 的位置关系是 ( )
A 、 b∥
PAM
∵ AB=2 , BM=1 , CM=1
∴ AM= 5 ,
P
A H
O
.
B
F M
B
D N C
立几面测试 003
一、选择题
1.异面直线是指
(A) 在空间内不能相交的两条直线
(B) 分别位于两个不同平面的两条直线
(C) 某一个平面内的一条直线和这个平面外的一条直线

第八章 立体几何初步单元检测(提升卷)高一数学新教材单元双测卷(人教A版2019必修第二册)

第八章 立体几何初步单元检测(提升卷)高一数学新教材单元双测卷(人教A版2019必修第二册)

必修第二册第八章立体几何初步提升卷学校:___________姓名:___________班级:___________考号:___________ 本卷共22小题,其中单选8小题,多选4小题,填空4小题,解答题6小题,满分150分一、单选题1.一个棱柱是正四棱柱的条件是()A.底面是正方形,有两个面是矩形的四棱柱B.底面是正方形,两个侧面垂直于底面的四棱柱C.底面是菱形,且有个顶点处的两条棱互相垂直的四棱柱D.底面是正方形,每个侧面都是全等的矩形的四棱柱【答案】D【分析】根据正四棱柱的概念,结合反例,即可得答案;【详解】选项A、B中,两个面为相对侧面时,四棱柱不一定是直四棱柱,C中底面不是正方形,故排除选项A、B、C,故选:D.2.如图是一个正方体的平面展开图,在这个正方体中BM ED①//EF CD②//③CN与BM为异面直线④DM BN以上四个命题中,正确的序号是()A.①②③B.②④C.③④D.②③④【答案】D【分析】作出直观图,根据正方体的结构特征进行判断.【详解】作出正方体得到直观图如图所示:由直观图可知,BM 与DE 为互相垂直的异面直线,故①不正确;////EF AB CD ,故②正确;CN 与BM 为异面直线,故③正确;由正方体性质可知BN ⊥平面DEM ,故BN DM ⊥,故④正确.故选:D【点睛】本题考查了正方体的结构特征,直线,平面的平行于垂直,属于基础题.3.设1l 、2l 、3l 是三条不同的直线,α、β、γ是三个不同的平面,则下列命题是真命题的是( ) A .若1//l α,2//l α,则12l l //B .若1l α⊥,2l α⊥,则12l l ⊥C .若12//l l ,1l α⊂,2l β⊂,3l αβ⋂=,则13//l lD .若αβ⊥,1l αγ=,2l βγ⋂=,则12l l //【答案】C【分析】利用已知条件判断1l 与2l 的位置关系,可判断AD 选项的正误;利用线面垂直的性质定理可判断B 选项的正误;利用线面平行的性质定理可判断C 选项的正误.【详解】对于A 选项,若1//l α,2//l α,则1l 与2l 平行、相交或异面,A 选项错误;对于B 选项,若1l α⊥,2l α⊥,由线面垂直的性质定理可得12//l l ,B 选项错误;对于C 选项,12//l l ,1l α⊂,2l β⊂,α、β不重合,则1l β⊄,1//l β∴,1l α⊂,3l αβ⋂=,13//l l ∴,C 选项正确;对于D 选项,若αβ⊥,1l αγ=,2l βγ⋂=,则1l 与2l 相交或平行,D 选项错误.故选:C.【点睛】方法点睛:对于空间线面位置关系的组合判断题,解决的方法是“推理论证加反例推断”,即正确的结论需要根据空间线面位置关系的相关定理进行证明,错误的结论需要通过举出反例说明其错误,在解题中可以以常见的空间几何体(如正方体、正四面体等)为模型进行推理或者反驳. 4.在直三棱柱111ABC A B C -中,16AA AB ==,8BC =,10AC =,则该三棱柱内能放置的最大球的表面积是( )A .16πB .24πC .36πD .64π 【答案】A【分析】先由题意可得球的半径为底面三角形内切圆的半径r ,易得2r ,又1r AA <,可得该三棱柱内能放置的最大球半径为2,最后由球的表面积计算公式计算即可.【详解】由题意,球的半径为底面三角形内切圆的半径r ,∵底面三角形的边长分别为6、8、10,∴底面三角形为直角三角形, 6810222AB BC AC r +-+-===, 又∵16AA =,26<,∴该三棱柱内能放置的最大球半径为2,此时2244216S r πππ==⨯=表面积.故选:A .【点睛】关键点睛:解题关键是得出所求球的半径为直三棱柱底面三角形内切圆的半径r ,继而进行分析计算. 5.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为( )A .20°B .40°C .50°D .90°【答案】B【分析】画出过球心和晷针所确定的平面截地球和晷面的截面图,根据面面平行的性质定理和线面垂直的定义判定有关截线的关系,根据点A 处的纬度,计算出晷针与点A 处的水平面所成角.【详解】画出截面图如下图所示,其中CD 是赤道所在平面的截线;l 是点A 处的水平面的截线,依题意可知OA l ⊥;AB 是晷针所在直线.m 是晷面的截线,依题意依题意,晷面和赤道平面平行,晷针与晷面垂直,根据平面平行的性质定理可得可知//m CD 、根据线面垂直的定义可得AB m ⊥..由于40,//AOC m CD ∠=︒,所以40OAG AOC ∠=∠=︒,由于90OAG GAE BAE GAE ∠+∠=∠+∠=︒,所以40BAE OAG ∠=∠=︒,也即晷针与点A 处的水平面所成角为40BAE ∠=︒.故选:B【点睛】本小题主要考查中国古代数学文化,考查球体有关计算,涉及平面平行,线面垂直的性质,属于中档题. 6.《九章算术》卷五《商功》中描述几何体“阳马”为“底面为矩形,一棱垂直于底面的四棱锥”.现有阳马P ABCD -(如图),PA ⊥平面ABCD .1==PA AB ,3AD =,点E ,F 分别在AB ,BC 上,当空间四边形PEFD 的周长最小时,三棱锥P ADF -外接球的表面积为( )A .9πB .11πC .12πD .16π【答案】B【分析】 把平面PAB 展开到与平面ABCD 共面的P AB '的位置,根据图象可得当P ',E ,F ,D 四点共线时,空间四边形PEFD 的周长最小,进而可求得各个边长,根据正弦定理,可求得AFD 外接圆的半径r ,在三棱锥P ADF -中,可确定外接球球心的位置,根据勾股定理,可求得外接球半径,即可得答案.【详解】把平面PAB 展开到与平面ABCD 共面的P AB '的位置(如下图),延长DC 到D ,使得1CD '=,则DF D F '=,因为PD 的长度为定值,故只需求PE EF FD P E EF FD ''++=++最小,只需P ',E ,F ,D 四点共线,因为4P D '=,2DD '=,CF CD P D DD '='',所以2CF =,所以2AF =,5DF =,45DAF ∠=︒,由正弦定理得,AFD 外接圆的半径15102222r =⨯=. 设ADF 外接圆的圆心为O ',则三棱锥P ADF -外接球的球心O 一定在过O '且与平面ADF 垂直的直线上,因为O 到点P ,A 的距离相等,所以22101112442PA OA r ⎛⎫=+=+= ⎪⎝⎭, 此即为三棱锥P ADF -外接球的半径, 所以该球的表面积为2114π11π2⎛⎫⨯= ⎪ ⎪⎝⎭. 故选:B.【点睛】难点在于,需将平面PAB 展开到与平面ABCD 共面的位置,当P ',E ,F ,D 四点共线时,空间四边形PEFD 的周长最小,求得各个边长,进而再结合正弦定理,勾股定理求解,考查数形结合,分析计算的能力,属中档题.7.已知正方体1111ABCD A B C D -的棱长为2,AB ,AD 中点分别为E ,F ,若过EF 的平面截该正方体所得的截面是一个五边形,则该五边形周长的最大值为( )A .2213+B .213+C .3225+D .325+【答案】A【分析】 将面11BCC B 展开与面11ABB A 处于同一平面要使1l E QC C Q FH H +++最大,则沿面1C QEFH 切才能保证五点共面,展开图计算求解即可.【详解】将面11BCC B 展开与面11ABB A 处于同一平面要使1l E QC C Q FH H +++最大,则沿面1C QEFH 切才能保证五点共面,在1Rt ECC △中,112,12CC BC BE AB ====,此时()22122113EQ QC +=++=,又113FH HC EQ QC +=+=.∴周长()122213EF EQ QC =++=+故选:A8.(chuhong ),中国古代算术中的一种几何形体,《九章算术》中记载“刍甍者,下有褒有广,而上有褒无广.刍,草也.甍,屋盖也.”翻译为“底面有长有宽为矩形,顶部只有长没有宽为一条棱,刍甍字面意思为茅草屋顶”,如图为一“刍甍”的五面体,其中ABCD 为矩形,ADE 和BCF △都是等腰三角形,2AE ED BF CF AD ====,//EF AB ,若3AB EF =,且2AD EF =,则异面直线AE 与CF 所成角的大小为( )A .6πB .4πC .3πD .2π 【答案】C【分析】作平行四边形AGFE ,得到//AE GF ,异面直线AE 与CF 所成角为GFC ∠,求出GFC 的边长求角即可.【详解】设1EF =,在AB 上取点G 满足1AG EF ==,故//AG EF 且AG EF =,故四边形AGFE 是平行四边形,故//AE GF异面直线AE 与CF 所成角为GFC ∠,22GF CF == 22222222CG GB BC =+=+=故GFC 为等边三角形故3GFC π∠=故选:C【点睛】平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下:①平移:平移异面直线中的一条或两条,作出异面直线所成的角;②认定:证明作出的角就是所求异面直线所成的角;③计算:求该角的值,常利用解三角形;④取舍:由异面直线所成的角的取值范围是0,2π⎛⎤ ⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.二、多选题9.如图,在透明塑料制成的长方体ABCD -A 1B 1C 1D 1容器内灌进一些水,将容器底面一边BC 固定于地面上,再将容器倾斜,随着倾斜度的不同,有下列四个说法中正确的是( )A .水的部分始终呈棱柱状;B .水面四边形EFGH 的面积不改变;C .棱A 1D 1始终与水面EFGH 平行;D .当E ∈AA 1时,AE +BF 是定值.【答案】ACD【分析】从棱柱的特征平面可判断A ;由水是四棱柱或者五棱柱时或者三棱柱时可判断B ;由11//B C 平面EFGH ,棱1111//B C A D 可判断C ;由体积是定值,高BC 为定值,则底面积EABF 为定值,可判断D.【详解】由于BC 固定,所以倾斜的过程中,始终有AD //EH //FG //BC ,且平面AEFB //平面DHGC ,故水的部分始终呈现棱柱状(三棱柱、四棱柱、五棱柱);当水是四棱柱或者五棱柱时,水面面积与上下底面面积相等,当水是三棱柱时,则水面四边形EFGH 的面积可能变大,也可能变小,水面的面积改变;BC 为棱柱的一条侧棱,随着倾斜度的不同, 但水的部分始终呈棱柱状,且棱11//B C 平面EFGH ,棱1111//B C A D ,∴11//A D 平面EFGH ;∵体积是定值,高BC 为定值,则底面积EABF 为定值,即EA BF +为定值,综上ACD 正确.故选:ACD.【点睛】方法点睛:本题考查了线面平行的判定、棱柱的结构特征,对于证明线线关系,线面关系,面面关系等方面的问题,必须在熟练掌握有关的定理和性质的前提下,再利用已知来进行证明,对于棱柱的结构特征要非常熟悉.10.如图,在棱长为a 的正方体1111ABCD A B C D -中,P 为11A D 的中点,Q 为11A B 上任意一点,E 、F为CD 上两点,且EF 的长为定值,则下面四个值中是定值的是( )A .点P 到平面QEF 的距离B .直线PQ 与平面PEF 所成的角C .三棱锥P QEF -的体积D .QEF △的面积【答案】ACD【分析】 由Q 为11A B 上任意一点,知平面QEF 是确定,从而判断A ,而11//A B CD ,因此11A B 与平面PCD 平行,根据直线与平面所成的角的定义可判断B ,由棱锥体积公式和三角形面积公式可判断CD .【详解】平面QEF 就是平面11A B CD ,是确定的平面,因此点P 到平面QEF 的距离为定值,A 正确; 平面PEF 即平面PCD ,而Q 在直线11A B 上,11//A B CD ,因此11A B 与平面PCD 平行,Q 到平面PEF 的距离为定值,但Q 运动时,PQ 的长度在变化,因此直线PQ 与平面PEF 所成的角也在变化,B 错误; P 点到直线CD 的距离是确定,而EF 的长度不变,因此PEF S △为定值,又Q 到平面PEF 的距离为定值,从而三棱锥P QEF -的体积为定值,C 正确;11//A B CD ,Q 到EF 的距离为定值,EF 的长度不变,∴QEF △的面积为定值,D 正确.故选:ACD .【点睛】关键点点睛:本题考查点到平面的距离,直线与平面所成的角,棱锥的体积等知识,解题关键是抓住11//A B CD ,由此得平面QEF 是确定的平面,再结合定点和定长,从而确定各选项中的定值. 11.如图所示,有一正四面体形状的木块,其棱长为a ,点P 是ACD △的中心.劳动课上,需过点P 将该木块锯开,并使得截面平行于棱AB 和CD ,则下列关于截面的说法中正确的是( )A .截面与侧面ABC 的交线平行于侧面ABDB .截面是一个三角形C .截面是一个四边形D .截面的面积为24a【答案】AC 【分析】先作出符合题意的截面,分别取BC 、AC 、BD 、AD 的三等分点E 、M (靠近C 点),F 、N (靠近D 点),四边形EMNF 是平行四边形,即为所作截面,即可逐一判断四个选项的正误. 【详解】因为正四面体的四个面都是等边三角形, 点P 是ACD △的中心,所以P 位于CD 中线的23处, 分别取BC 、AC 、BD 、AD 的三等分点E 、M (靠近C 点),F 、N (靠近D 点), 则//EM AB ,//EF CD ,且截面EMNF 经过点P ,满足题意, 因为//EM FN 且=EM FN ,所以四边形EMNF 是平行四边形, 平面EMNF ⋂平面ABC EM =,//EM FN ,NF ⊂平面ABD , 所以//EM 平面ABD ,所以选项A 正确;截面是一个四边形,故选项B 不正确;选项C 正确;四边形EMNF 是边长为23a 的菱形,所以面积不是24a ,故选项D 不正确,故选:AC 【点睛】本题主要考查了线面平行判断的应用以及空间几何体的截面图形,属于中档题12.如图所示,在棱长为1的正方体1111—ABCD A B C D 中,M ,N 分别为棱11A D ,1DD 的中点,则以下四个结论正确的是( )A .1//BC MN B .1B C ⊥平面1MNC C .A 到直线MN 的距离为324D .过MN 作该正方体外接球的截面,所得截面的面积的最小值为38π 【答案】ACD 【分析】由11//A D B C 可得判断AB ,利用11AD A D ⊥,1AD MN ⊥,求出距离可判断C ,由对称性得过MN 作该正方体外接球的截面,所得截面的面积的最小的圆是以MN 所在弦为直径的圆,圆心为MN 中点F ,求出圆面积断D . 【详解】正方体中,11//A D B C ,而M ,N 分别为棱11A D ,1DD 的中点,则1//MN A D ,所以1//B C MN ,A 正确,B 错误;设1AD 与1,A D MN 分别交于点,E F ,则11AD A D ⊥,1AD MN ⊥, 由M ,N 分别为棱11A D ,1DD 的中点,知F 是1ED 中点,133244AF AD ==,C 正确;正方体外接球球心是正方体对角线交点O ,由对称性知过MN 作该正方体外接球的截面,所得截面的面积最小的圆是以MN 所在的弦为直径的截面圆,即截面圆圆心为F ,13OD =,124DF =,11126cos 3AD OD F BD ∠===, 222111112cos OF D F D O D F D OFD O =+-⋅∠23236321648=+-⨯⨯⨯=, 截面圆半径为r ,则2221333488r OD OF =-=-=,面积为238S r ππ==,D 正确. 故选:ACD .【点睛】关键点点睛:本题考查正方体中的平行与垂直,考查球的截面圆问题.特殊的几何图形如正方体、正四面体等几何体中有许多直线、平面间的平行与垂直关系,我们必须掌握,并能应用,在判断D 时,利用正方体的对称性是解题的关键.这样可得到面积最小的截面圆的直径是MN 所在的弦,从而求得半径长.三、填空题13.如图,矩形O A B C ''''水平放置的一个平面图形OABC 的直观图,其中6O A ''=,3O C ''=,//B C x '''轴,则原平面图形OABC 的面积为______.【答案】362 【分析】还原图形后可知原图形的高是直观图中矩形高的22底不变,由此可得面积比,利用直观图的面积求得原图形的面积.【详解】设B C ''与y '轴交于点D ,还原后BC 与y 轴交于点DO D ''在y '轴上 ∴OD 在y 轴上且2OD O D ''=,可还原图形如下:OD ∴为还原后的平行四边形OABC 的高 222OD O D O C ''''==,OA O A ''=∴原平面图形OABC 的面积S 为矩形O A B C ''''的面积S '的2222222263362S S O A O C '''''∴==⋅=⨯=故答案为:362【点睛】本题考查根据直观图计算原图形的面积的问题,关键是能够通过高的比例关系得到直观图面积与原图形面积的比例关系,进而求得结果.14.中国南北朝时期,祖冲之与他的儿子祖暅通过对几何体体积的研究,早于西方1100多年,得出一个原理:“幂势既同,则积不容异”,“幂”是面积,“势”是高.也就是说:夹在两个平行平面间的两个几何体,被平行于这两个平行平面的任何平面所截,如果截得两个截面的面积总相等,那么这两个几何体的体积相等.上述原理被称为祖暅原理.现有水平放置的三棱锥和圆锥各一个,用任何一个平行于底面的平面去截它们时,所截得的两个截面面积都相等,若圆锥的侧面展开图是半径为4的半圆,根据祖暅原理可知这个三棱锥的体积为______. 83π【分析】根据圆锥侧面积展开图是半径为4的半圆,求得圆锥底面半径,进一步求圆锥的高,计算出圆锥的体积,由此求出三棱锥的体积. 【详解】设圆锥的底面半径为r ,则12242r ππ=⨯⨯,解得2r ,圆锥的高为224223h =-=,所以圆锥的体积即为三棱锥的体积为218322333V ππ=⨯⨯=. 故答案为:833π. 15.早期的毕达哥拉斯学派学者注意到:用等边三角形或正方形为表面可构成四种规则的立体图形,即正四面体、正六面体、正八面体和正二十面体,它们的各个面和多面角都全等.如图,正二十面体是由20个等边三角形组成的正多面体,共有12个顶点,30条棱,20个面,是五个柏拉图多面体之一.如果把sin36︒按35计算,则该正二十面体的表面积与该正二十面体的外接球表面积之比等于___________.【答案】336π【分析】可得正二十面体的外接球即为上方正五棱锥的外接球,设外接球半径为R ,正五边形的外接圆半径为r ,正二十面体的棱长为l ,可得56l r =,311R =,即可表示出外接球的表面积和正二十面体的表面积,得出答案. 【详解】由图知正二十面体的外接球即为上方正五棱锥的外接球,设外接球半径为R ,正五边形的外接圆半径为r ,正二十面体的棱长为l ,则3sin 3652lr =︒=,得56lr =, 所以正五棱锥的顶点到底面的距离是22225116l h l r l ⎛⎫=-=-= ⎪⎝⎭,所以222()R r R h =+-,即22251166l R R ⎛⎫⎛⎫=+- ⎪ ⎪ ⎪⎝⎭⎝⎭,解得311R =.所以该正二十面体的外接球表面积为222311364411S R l l πππ⎛⎫==⨯= ⎪ ⎪⎝⎭球,而该正二十面体的表面积是2120sin 60532S l l l =⨯⨯⨯⨯︒=正二十面体, 所以该正二十面体的表面积与该正二十面体的外接球表面积之比等于55336π. 故答案为:553. 【点睛】本题考查几何体的外接球问题,解题的关键是将正二十面体的外接球等价于上方正五棱锥的外接球,表示出半径.16.如图,已知边长为1的正方形ABCD 与正方形BCFE 所在平面互相垂直,P 为EF 的中点,Q 为线段FC 上的动点,当三棱锥P ABQ -的体积最大时,三棱锥P ABQ -的外接球的表面积为______.【答案】4116π 【分析】由题意知三棱锥P ABQ -的体积最大时,点Q 与点C 重合,问题转化为求三棱锥P ABC -外接球的表面积,然后,利用勾股定理求出外接球半径R ,进而可求解 【详解】如图,由题意知三棱锥P ABQ -的体积最大时,点Q 与点C 重合,即求三棱锥P ABC -外接球的表面积,因为正方形ABCD 与正方形BCFE 的边长均为1,点P 为EF 的中点,所以1AB BC ==,2AC =,5BP PC ==过点P 作PG BC ⊥,垂足为G ,由正方形ABCD 与正方形BCFE 所在平面互相垂直,得PG ⊥平面ABC .设三棱锥P ABC -外接球的球心为O ,AC 的中点为1O ,连接1OO ,则1OO ⊥平面ABC .延长1OO 到点H ,使1O H PG =.连接,,PH OP OA ,设1OO x =,则1OH x =-,()222221122x x ⎛⎛⎫+=+- ⎪ ⎝⎭⎝⎭,解得38x =,设三棱锥P ABC -外接球的半径为R ,则2221314128264R x ⎛⎫=+=+=⎪⎝⎭.故所求表面积24141446416S R πππ==⨯= 故答案为:4116π 【点睛】关键点睛:三棱锥的体积与底面积和高有关,若底面面积不变,高增大时,体积增大;若高不变,底面面积增大时,体积增大,本题中,点A 到平面PBQ 的距离不变,当三角形PBQ 的面积最大时,三棱锥P ABQ -的体积取最大值,另外求球的半径,可以根据题意先确定出球心的位置,然后可在直角三角形中表示球的半径,此类问题考查空间想象能力和运算求解能力,难度比较大.四、解答题17.如图,在三棱柱111ABC A B C -中,平面11A ABB ⊥平面ABC ,AB BC ⊥,114===B B AB AB ,3BC =,D 为AC 的中点.(1)求证:1//AB 平面1BC D ; (2)求三棱锥11-B A CB 体积. 【答案】(1)证明见解析;(2)3【分析】(1)设1B C 与1C B 交于点O ,连接OD ,得1//OD AB ,可证得线面平行;(2)设1B A 与1A B 交于点O ',证明1'B O 是三棱锥11-B A CB 的高,由体积公式可得. 【详解】(1)证明:设1B C 与1C B 交于点O ,连接OD , 在三棱柱111ABC A B C -中,侧面11B C CB 是平行四边形, 因为对角线1B C 与1C B 交于点O ,所以O 为1B C 的中点, 因为D 为AC 的中点,所以1//OD AB 因为OD ⊂平面1BC D ,1AB ⊄平面1BC D , 所以1//AB 平面1BC D ;(2)设1B A 与1A B 交于点O ',在三棱柱111ABC A B C -中,侧面11A ABB 是平行四边形, 因为114===B B AB AB ,所以侧面11A ABB 是菱形,1322443A B BO '===, 因为1B A ,1A B 为菱形11A ABB 的对角线,所以11B A A B ⊥因为平面11A ABB ⊥平面ABC ,平面11A ABB ⋂平面ABC AB =,AB BC ⊥,BC ⊂平面ABC ,所以BC ⊥平面11A ABB ,因为11,⊂A B B A 平面11A ABB ,所以1⊥BC B A ,1BC A B ⊥ 因为1BC A B B ⋂=,1,⊂BC A B 平面ABC ,1B A ⊥平面1A CB 所以三棱锥11-B A CB 的高为1'B O , 所以三棱锥11-B A CB 的体积11111143344332212V BA BC B A =⨯⨯⨯⨯=⨯⨯= 【点睛】思路点睛:本题考查证明线面平行,考查求三棱锥的体积.证明线面平行的方法是利用中位线定理得线线平行,然后根据线面平行的判定定理得出结论.求棱锥的体积的方法是棱锥体积公式,找到棱锥的高,求出底面积即可得体积.18.如图,在直角梯形ABCD 中,//AB DC ,90BAD ∠=︒,4AB =,2AD =,3DC =,点E 在CD 上,且2DE =,将ADE 沿AE 折起,使得平面ADE ⊥平面ABCE (如图),G 为AE 中点.(1)求证:DG ⊥平面ABCE ; (2)求四棱锥D ABCE -的体积;(3)在线段BD 上是否存在点P ,使得//CP 平面ADE ?若存在,求BPBD的值;若不存在,请说明理由.【答案】(1)证明见解析;(2)523;(3)存在,34BP BD = 【分析】(1)证明DG AE ⊥,再根据面面垂直的性质得出DG ⊥平面ABCE ; (2)分别计算DG 和梯形ABCE 的面积,即可得出棱锥的体积;(3)过点C 作//CF AE 交AB 于点F ,过点F 作//FP AD 交DB 于点P ,连接PC ,可证明//PCF 平面ADE ,故//CP 平面ADE ,根据//PF AD 计算BPBD的值. 【详解】(1)因为G 为AE 中点,2AD DE ==, 所以DG AE ⊥,因为平面ADE ⊥平面ABCE , 平面ADE平面ABCE AE =,DG ⊂平面ADE ,所以DG ⊥平面ABCE ; (2)在直角三角形ADE 中,2AD DE ==,22AE ∴=,122DG AE ∴== 所以四棱锥D ABCE -的体积为()111521422332D ABCE ABCE V S DG -=⋅=⨯⨯+⨯=梯形; (3)如图,过点C 作//CF AE 交AB 于点F ,过点F 作//FP AD 交DB 于点P ,连接PC , 因为//CF AE ,AE ⊂平面ADE ,CF ⊄平面ADE , 所以//CF 平面ADE , 同理//PF 平面ADE , 又因为CF PF F ⋂=, 所以平面//PCF 平面ADE , 因为CP ⊂平面CFP , 所以//CP 平面ADE ,所以BD 上存在点P ,使得//CP 平面ADE ,//AE CF ,//AF CE∴四边形AECF 是平行四边形,1AF CE ∴==, 3FB ∴=,又//PF AD ,34BP BF BD AB ∴==. 19.在四棱锥P -ABCD 中,侧面PAD ⊥ 底面ABCD ,底面ABCD 为直角梯形,//BC AD ,∠ADC =90°,BC =CD =12AD =1,PA =PD ,E ,F 分别为AD ,PC 的中点.(1)求证://PA 平面BEF ;(2)若PC 与AB 所成角为45°,求二面角F -BE -A 的余弦值.【答案】(1)证明见解析;(2)33-. 【分析】(1)连接AC 交BE 于O ,并连接FO ,根据条件可证//OF PA ,从而可证明结论.(2)由ABCE 为平行四边形可得//EC AB ,PCE ∠为PC 与AB 所成角,即45PCE ∠=︒,又由条件可得PE ABCD ⊥平面,可得2PE EC ==,取PD 中点M ,连,ME MA MF ,,可得MEA ∠为F BE A --的平面角,可得答案.【详解】(1)证明:连接AC 交BE 于O ,并连接FO ,1,2BC AD BC AD =∥,E 为AD 中点,∴//AE BC ,且AE =BC . ∴四边形ABCE 为平行四边形,∴O 为AC 中点, 又F 为AD 中点,//OF PA ∴,OF ⊂平面,BEF PA ⊄平面BEF ,//PA ∴平面BEF .(2)由BCDE 为正方形可得22EC BC ==由ABCE 为平行四边形可得//EC AB .PCE ∴∠为PC 与AB 所成角,即45PCE ∠=︒.PA PD =E 为AD 中点,所以PE AD ⊥.侧面PAD ⊥底面,ABCD 侧面PAD底面,ABCD AD PE =⊂平面PAD ,PE ∴⊥平面ABCD ,PE EC ∴⊥,2PE EC ∴==.取PD 中点M ,连,ME MA MF ,,由M F ,,分别为,PD PC 的中点,所以//,MF CD 又//CD BE ,所以//MF BE ,所以,,,B E M F 四点共面. 因为平面PAD ⊥平面ABCD ,且平面PAD平面,ABCD AD BE AD =⊥,BE ∴⊥平面PAD ,,EM AE ⊂平面PAD所以,BE AE BE EM ⊥⊥,则MEA ∠为F BE A --的平面角.又311,1,EM AE AM ===,3cos MEA ∴∠=-. 所以二面角F BE A --的余弦值为3-. 【点睛】本题考查证明线面平行和求二面角的平面角,解答本题的关键是取PD 中点M ,连,ME MA MF ,,证明出,BE AE BE EM ⊥⊥,得到MEA ∠为F BE A --的平面角,属于中档题.20.如图所示,已知平行四边形ABCD 和矩形ACEF 所在平面互相垂直,1AB =,2AD =,ADC 60∠=,1AF =,M 是线段EF 的中点.(1)求证:AC BF ⊥;(2)求直线AD 与平面BDF 所成角的余弦值;(3)设点P 为一动点,若点P 从M 出发,沿棱按照→→M E C 的路线运动到点C ,求这一过程中形成的三棱锥P BFD -的体积的最小值.【答案】(1)证明见解析;(2;(3.【分析】(1)利用余弦定理求出AC ,利用勾股定理可得出AB AC ⊥,由已知可得出AF AC ⊥,利用线面垂直的判定定理可得出AC ⊥平面ABF ,由此可得出AC BF ⊥;(2)设点A 在平面BDF 内的射影为点O ,连接DO ,可得出ADO ∠为直线AD 与平面BDF 所成角,利用等体积法计算出AO ,可求得sin ADO ∠,再利用同角三角函数的基本关系可求得直线AD 与平面BDF 所成角的余弦值;(3)设AC 与BD 相交于N ,连接FN 、CM ,推导出//FN CM ,可得出//CM 平面BDF ,结合图形可知,当点P 在M 或C 时,三棱锥P BFD -的体积最小,可得()min P BFD C BFD F BCD V V V ---==,利用锥体体积公式可求得结果. 【详解】(1)在平行四边形ABCD 中,ADC 60∠=,1CD AB ==,2AD =,由余弦定理可得2222cos 3AC AD CD AD CD ADC =+-⋅∠=,AC ∴=2BC AD ==,222AB AC BC ∴+=,90BAC ∴∠=,AB AC ∴⊥,因为四边形ACEF 为矩形,则AF AC ⊥,AB AF A =,AC ∴⊥平面ABF ,BF ⊂平面ABF ,所以AC BF ⊥;(2)在ABD △中,1AB =,2AD =,180120BAD ADC ∠=-∠=, 由余弦定理可得2222cos 7BD AB AD AB AD BAD =+-⋅∠=,AB AC ⊥,平面ABCD ⊥平面ACEF ,平面ABCD 平面ACEF AC =,AB 平面ABCD ,AB ∴⊥平面ACEF ,AF ⊂平面ACEF ,AB AF ∴⊥,则BF == AF AC ⊥,AB AC A ⋂=,AF ∴⊥平面ABCD ,AD ⊂平面ABCD ,AD AF ∴⊥,DF ∴=,222BF DF BD ∴+=,由勾股定理的逆定理知90BFD ∠=,11022BDF S BF DF ∴=⋅=△, 设点A 在平面BFD内的射影为O ,连接DO ,则ADO ∠为直线AD 与平面BDF 所成角,132ABD ABC S S AB AC ==⋅=△△, 由A BDF F ABD V V --=,可得1133BDF ABD AO S AF S ⋅=⋅△△,可得313021010ABD BDFAF S AO S ⨯⋅===△△,又2AD =,30130sin 2AO ADO AD ∠==⨯=,2370cos 1sin ADO ADO ∴∠=-∠=, 因此,直线AD 与平面BDF 所成角的余弦值为37020; (3)设AC 与BD 相交于N ,连接FN 、CM ,因为四边形ABCD 为平行四边形,且AC BD N ⋂=,则N 为AC 的中点,//AC EF 且AC EF =,M 为EF 的中点,//CN FM ∴且CN FM =,所以,四边形CMFN 为平行四边形,则//CM FN ,FN ⊂平面BDF ,CM ⊄平面BDF ,//CM ∴平面BDF ,由图可知,当点P 在M 或C 时,三棱锥P BFD -的体积最小,()min 11321sin120132P BFD C BFD F BCD V V V ---===⋅⋅⋅⋅⋅=. 【点睛】方法点睛:计算线面角,一般有如下几种方法:(1)利用面面垂直的性质定理,得到线面垂直,进而确定线面角的垂足,明确斜线在平面内的射影,即可确定线面角;(2)在构成线面角的直角三角形中,可利用等体积法求解垂线段的长度h ,从而不必作出线面角,则线面角θ满足sin hlθ=(l 为斜线段长),进而可求得线面角; (3)建立空间直角坐标系,利用向量法求解,设a 为直线l 的方向向量,n 为平面的法向量,则线面角θ的正弦值为sin cos ,a n θ=<>.21.已知四棱锥P ABCD -的底面是菱形,60,BCD PD AD ∠=︒⊥,点E 是BC 边的中点.(Ⅰ)求证:AD ⊥平面PDE ;(Ⅱ)若二面角P AD C --的大小等于60︒,且34,3AB PD == ①点P 到平面ABCD 的距离;②求直线PB 与平面ABCD 所成角的大小. 【答案】(Ⅰ)证明见解析;(Ⅱ)①4,②3π. 【分析】(Ⅰ)连接BD ,点E 是BC 边的中点,得出DE BC ⊥,DE AD ⊥再由DP AD ⊥,得出结果; (Ⅱ)DE AD ⊥,PD AD ⊥,PDE ∠为二面角P AD C --的平面角,60PDE ∠=︒,过P 在平面PDE 内做PK DE ⊥于K ,易证PK ⊥面ABCD ,PK 为点到面的距离,PBK ∠即为线面角. 【详解】(Ⅰ)连接BD ,底面ABCD 是菱形,∠BDC =60°, ∴△BCD 是正三角形.∵点E 是BC 边的中点,∴DE ⊥BC ,∵AD ∥BC ,∴DE ⊥AD .∵DP ⊥AD ,DP ∩AD =D , ∴AD ⊥平面PDE ;(Ⅱ)①∵DE ⊥AD ,PD ⊥AD ,∴PDE ∠为二面角P -AD -C 的平面角,∴60PDE ∠=︒, 过P 在平面PDE 内做PK DE ⊥于K ,由(Ⅰ)易AD PK ⊥. ∴PK ⊥面ABCD . ∵83PD =∴43DK =,4PK =, 即点P 到平面ABCD 的距离是4. ②AB =4,∴23DE =∴23DK DE =,∴K 为BCD △重心. 连接BK ,∵BCD △为正三角形,所以BK 为BP 在面ABCD 内的射影. ∴PB ⊥AB ,PBK ∠为直线PB 与平面ABCD 所成角,RT PKB △中,tan 3PK PK PKB KB DK ∠===3PKB π∠=, 直线PB 与平面ABCD 所成角的大小为3π.【点睛】求直线与平面所成的角的一般步骤:①找直线与平面所成的角,即通过找直线在平面上的射影来完成; ②计算,要把直线与平面所成的角转化到一个三角形中求解.22.北京大兴国际机场的显著特点之一是各种弯曲空间的运用.刻画空间的弯曲性是几何研究的重要内容.用曲率刻画空间弯曲性,规定:多面体顶点的曲率等于2π与多面体在该点的面角之和的差(多面体的面的内角叫做多面体的面角,角度用弧度制),多面体面上非顶点的曲率均为零,多面体的总曲率等于该多面体各顶点的曲率之和.例如:正四面体在每个顶点有3个面角,每个面角是3π,所以正四面体在各顶点的曲率为233πππ-⨯=,故其总曲率为4π.。

高中数学 第3章 空间向量与立体几何单元检测(A卷)苏教版选修2-1

高中数学 第3章 空间向量与立体几何单元检测(A卷)苏教版选修2-1

第3章 单元检测(A 卷)(时间:120分钟 满分:160分)一、填空题(本大题共14小题,每小题5分,共70分)1.已知向量a =(2,-1,3),b =(-4,2,x ),使a ⊥b 成立的x 与使a ∥b 成立的x 分别为________.2.设a =(x,4,3),b =(3,2,z ),且a∥b ,则xz 的值为________.3.已知直线l 与平面α垂直,直线l 的一个方向向量为u =(1,-3,z ),向量v =(3,-2,1)与平面α平行,则z =______.4.若向量(1,0,z )与向量(2,1,2)的夹角的余弦值为25,则z =________.5.已知a 、b 、c 是不共面的三个向量,则下列选项中能构成空间一个基底的一组向量是________.(填序号) ①2a ,a -b ,a +2b ; ②2b ,b -a ,b +2a ; ③a,2b ,b -c ; ④c ,a +c ,a -c .6.设点C (2a +1,a +1,2)在点P (2,0,0)、A (1,-3,2)、B (8,-1,4)确定的平面上,则a =________.7.设直线a ,b 的方向向量是e 1,e 2,平面α的法向量是n ,则下列命题中错误的是________.(写出所有错误命题的序号) ①⎭⎪⎬⎪⎫e 1∥e 2e 1∥n ⇒b ∥α; ②⎭⎪⎬⎪⎫e 1∥n e 2∥n ⇒a ∥b ;③⎭⎪⎬⎪⎫e 1∥n b ⊄αe 1⊥e 2⇒b ∥α; ④⎭⎪⎬⎪⎫e 1∥e 2e 1∥n ⇒b⊥α.8.如图所示,已知正四面体ABCD 中,AE =14AB ,CF =14CD ,则直线DE 和BF 所成角的余弦值为________.9.二面角的棱上有A 、B 两点,直线AC 、BD 分别在这个二面角的两个半平面内,且都垂直于AB .已知AB =4,AC =6,BD =8,CD =217,则该二面角的大小为________.10.若两个不同平面α,β的法向量分别为u =(1,2,-1),v =(-3,-6,3),则α与β的关系为________.11.在三棱柱ABC —A 1B 1C 1中,底面是棱长为1的正三角形,侧棱AA 1⊥底面ABC ,点D 在棱BB 1上,且BD =1,若AD 与平面AA 1C 1C 所成的角为α,则sin α的值是________. 12.如果平面的一条斜线与它在这个平面上的射影的方向向量分别是a =(1,0,1),b =(0,1,1),那么这条斜线与平面所成的角是________.13.已知力F1=(1,2,3),F2=(-2,3,-1),F3=(3,-4,5),若F1,F2,F3共同作用于同一物体上,使物体从M1(0,-2,1)移到M2(3,1,2),则合力作的功为________.14.若a=(2x,1,3),b=(1,-2y,9),且a∥b,则x=______,y=______.二、解答题(本大题共6小题,共90分)15.(14分)如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥底面ABCD,PA=AB=2,点E是棱PB的中点.证明:AE⊥平面PBC.16.(14分)在几何体ABCDE中,△ABC是等腰直角三角形,∠ABC=90°,BE和CD都垂直于平面ABC,且BE=AB=2,CD=1,若F是AE的中点.求证:DF∥平面ABC.17.(14分)如图,在空间四边形OABC中,OA=8,AB=6,AC=4,BC=5,∠OAC=45°,∠OAB=60°,求OA与BC所成角的余弦值.18.(16分)如图所示,已知点P在正方体ABCD—A′B′C′D′的对角线BD′上,∠PDA=60°.(1)求DP与CC′所成角的大小;(2)求DP与平面AA′D′D所成角的大小.19.(16分)在四棱锥P—ABCD中,底面ABCD是一直角梯形,∠BAD=90°,AD∥BC,AB =BC=a,AD=2a,且PA⊥底面ABCD,PD与底面所成的角为30°.(1)若AE⊥PD,垂足为E,求证:BE⊥PD;(2)求异面直线AE与CD所成角的余弦值.20.(16分)如图,正方形ABCD和四边形ACEF所在的平面互相垂直,CE⊥AC,EF∥AC,AB=2,CE =EF=1.(1)求证:CF⊥平面BDE;(2)求二面角A -BE -D 的大小.第3章 空间向量与立体几何(A)1.103,-6 解析 若a ⊥b ,则-8-2+3x =0,x =103;若a∥b ,则2∶(-4)=(-1)∶2=3∶x ,x =-6. 2.9解析 ∵a =(x,4,3),b =(3,2,z ),且a∥b , ∴存在实数λ使得a =λb ,∴⎩⎪⎨⎪⎧x =3λ,4=2λ,3=z λ,解得⎩⎪⎨⎪⎧x =6,z =32.∴xz =9.3.-9解析 ∵l ⊥α,∴u ⊥v ,∴(1,-3,z )·(3,-2,1)=0,即3+6+z =0,∴z =-9.4.2或12解析 由题知,0,z ,1,1+z 2·3=2+2z 1+z 2·3=25, 即2z 2-5z +2=0,得z =2或12.5.③解析 ∵a ,b 不共线,由共线向量定理知由a ,b 表示出的向量与a ,b 共面,即①、②中的向量因共面不能构成空间一个基底,同理④中的三向量也不能构成空间一个基底. 6.16解析 PA →=(-1,-3,2),PB →=(6,-1,4).根据共面向量定理,设PC →=xPA →+yPB →(x 、y ∈R ),则(2a -1,a +1,2)=x (-1,-3,2)+y (6,-1,4)=(-x +6y ,-3x -y,2x +4y ), ∴⎩⎪⎨⎪⎧2a -1=-x +6y ,a +1=-3x -y ,2=2x +4y ,解得x =-7,y =4,a =16.7.① 8.413解析 因四面体ABCD 是正四面体,顶点A 在底面BCD 内的射影为△BCD 的垂心,所以有BC ⊥DA ,AB ⊥CD .设正四面体的棱长为4,则BF →·DE →=(BC →+CF →)·(DA →+AE →)=0+BC →·AE →+CF →·DA →+0=4×1×cos 120°+1×4×cos 120°=-4,BF =DE =42+12-2×4×1×cos 60°=13,所以异面直线DE 与BF 的夹角θ的余弦值为:cos θ=|BF →·DE →||BF →||DE →|=413.9.60°解析 由条件,知CA →·AB →=0,AB →·BD →=0,CD →=CA →+AB →+BD →. ∴|CD →|2=|CA →|2+|AB →|2+|BD →|2+2CA →·AB →+2AB →·BD →+2CA →·BD →=62+42+82+2×6×8cos〈CA →,BD →〉=(217)2,∴cos 〈CA →,BD →〉=-12,即〈CA →,BD →〉=120°,所以二面角的大小为60°.10.α∥β解析 ∵v =-3u ,∴v ∥u .故α∥β.11.64解析如图所示,建立坐标系,易求点D ⎝ ⎛⎭⎪⎫32,12,1, 平面AA 1C 1C 的一个法向量是 n =(1,0,0),所以cos 〈n ,AD →〉=322=64,即sin α=64. 12.60° 解析 ∵cos θ=a·b |a|·|b |=12,∴θ=60°.13.16解析 合力F =F 1+F 2+F 3=(2,1,7),F 对物体作的功即为W =F ·M 1M 2→=(2,1,7)·(3,3,1)=2×3+1×3+7×1=16. 14.16 -32解析 ∵a∥b ,∴2x 1=1-2y =39,∴x =16,y =-32.15.证明 如图所示,以A 为坐标原点,射线AB 、AD 、AP 分别为x 轴、y 轴、z 轴的正半轴,建立空间直角坐标系A —xyz .设D (0,a,0),则B (2,0,0),C (2,a,0),P (0,0,2),E (22,0,22).于是AE →=(22,0,22),BC →=(0,a,0),PC →=(2,a ,-2),则AE →·BC →=0,AE →·PC →=0.所以AE →⊥BC →,AE →⊥PC →, 即AE ⊥BC ,AE ⊥PC . 又因为BC ∩PC =C , 所以AE ⊥平面PBC .16.证明 如图所示,以点B 为原点,BA 、BC 、BE 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,则B (0,0,0),A (2,0,0),C (0,2,0),D (0,2,1),E (0,0,2). 由中点坐标公式知F (1,0,1). ∴DF →=(1,-2,0),BE →=(0,0,2). ∵BE ⊥平面ABC , ∴BE →是平面ABC 的一个法向量. ∵DF →·BE →=(1,-2,0)·(0,0,2)=0, ∴DF →⊥BE →.又∵DFD 平面ABC ,∴DF ∥平面ABC .17.解 因为BC →=AC →-AB →,所以OA →·BC →=OA →·AC →-OA →·AB → =|OA →||AC →|cos 〈OA →,AC →〉-|OA →||AB →|cos 〈OA →,AB →〉 =8×4×cos 135°-8×6×cos 120° =-162+24.所以cos 〈OA →,BC →〉=OA →·BC →|OA →||BC →|=24-1628×5=3-225.即OA 与BC 所成角的余弦值为3-225.18.解 如图所示,以D 为原点,DA 为单位长度建立空间直角坐标系D —xyz . (1)DA →=(1,0,0),CC ′→=(0,0,1).连结BD ,B ′D ′.在平面BB ′D ′D 中, 延长DP 交B ′D ′于H . 设DH →=(m ,m,1) (m >0),由已知〈DH →,DA →〉=60°, 由DA →·DH → =|DA →||DH →|cos 〈DH →,DA →〉,可得2m =2m 2+1.解得m =22,所以DH →=⎝ ⎛⎭⎪⎫22,22,1.因为cos 〈DH →,CC ′→〉=22×0+22×0+1×11×2=22,所以〈DH →,CC ′→〉=45°,即DP 与CC ′所成的角为45°.(2)平面AA ′D ′D 的一个法向量是DC →=(0,1,0).因为cos 〈DH →,DC →〉=22×0+22×1+1×01×2=12,所以〈DH →,DC →〉=60°,可得DP 与平面AA ′D ′D 所成的角为30°. 19.(1)证明 以A 为坐标原点,建立如图所示空间直角坐标系A —xyz ,由题意知A (0,0,0),B (a,0,0),C (a ,a,0),D (0,2a,0). ∵PD 在底面的射影是DA ,且PD 与底面所成的角为30°,∴∠PDA =30°,∴P ⎝⎛⎭⎪⎫0,0,233a ,∵AE ⊥PD ,∴|AE →|=12|AD →|=a ,E ⎝ ⎛⎭⎪⎫0,12a ,32a , ∴BE →=⎝ ⎛⎭⎪⎫-a ,12a ,32a ,PD →=⎝⎛⎭⎪⎫0,2a ,-233a , ∴BE →·PD →=0·(-a )+a 2·2a +3a 2·⎝⎛⎭⎪⎫-23a =0, ∴BE →⊥PD →,即BE ⊥PD .(2)解 由(1)知AE →=⎝ ⎛⎭⎪⎫0,a 2,3a 2, CD →=(-a ,a,0),∴AE →·CD →=a 22,又|AE →|=a ,|CD →|=2a , ∴cos 〈AE →,CD →〉=AE →·CD →|AE →||CD →|=24, ∴异面直线AE 与CD 所成角的余弦值为24. 20.(1)证明 因为正方形ABCD 和四边形ACEF 所在的平面互相垂直,且CE ⊥AC ,所以CE ⊥平面ABCD .如图,以C 为原点,建立空间直角坐标系C -xyz .则C (0,0,0),A (2,2,0),B (0,2,0),D (2,0,0),E (0,0,1),F (22,22,1). 所以CF →=(22,22,1),BE →=(0,-2,1),DE →=(-2,0,1). 所以CF →·BE →=0-1+1=0,CF →·DE →=-1+0+1=0.所以CF →⊥BE →,CF →⊥DE →,即CF ⊥BE ,CF ⊥DE .又BE ∩DE =E ,所以CF ⊥平面BDE .(2)解 由(2)知,CF →=(22,22,1)是平面BDE 的一个法向量. 设平面ABE 的法向量n =(x ,y ,z ),则n ·BA →=0,n ·BE →=0, 即⎩⎨⎧ x ,y ,z 2,0,=0,x ,y ,z ,-2,=0.所以x =0,且z =2y .令y =1,则z =2,所以n =(0,1,2).从而cos 〈n ,CF →〉=n ·CF →|n ||CF →|=32. 因为二面角A -BE -D 为锐角,所以二面角A -BE -D 的大小为π6.。

高中数学试题含答案-单元质检卷七 空间向量与立体几何

高中数学试题含答案-单元质检卷七 空间向量与立体几何

单元质检卷七 空间向量与立体几何(时间:120分钟 满分:80分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2020河北沧州一中月考)下列说法正确的是( )A.棱柱的各个侧面都是平行四边形B.底面是矩形的四棱柱是长方体C.有一个面为多边形,其余各面都是三角形的几何体是棱锥D.直角三角形绕其一边所在直线旋转一周形成的几何体是圆锥2.若圆锥的表面积是底面积的3倍,则该圆锥的侧面展开图扇形的圆心角为( ) A.2π3B.5π6C.πD.7π63.(2020宁夏六盘山高级中学高三模拟)对于不同的直线m ,n 和平面α,β,α⊥β的一个充分条件是( )A.m ⊥n ,m ∥α,n ∥βB.m ⊥n ,α∩β=m ,n ⊂αC.m ∥n ,n ⊥β,m ⊂αD.m ∥n ,m ⊥α,n ⊥β4.(2020河北博野中学高三开学考试)如图,在棱长为4的正方体ABCD-A 1B 1C 1D 1中,E 为D 1C 1的中点.过点B 1,E ,A 的平面截该正方体所得的截面周长为( ) A.6√2+4√5 B.4√2+2√5 C.5√2+3√5D.8√2+4√55.(2020山东日照五莲丶潍坊安丘、潍坊诸城、临沂兰山高三6月模拟)唐朝的狩猎景象浮雕银杯如图1所示.其浮雕临摹了国画、漆绘和墓室壁画,体现了古人的智慧与工艺.它的盛酒部分可以近似地看作是半球与圆柱的组合体(假设内壁表面光滑,忽略杯壁厚度),如图2所示.已知球的半径为R ,酒杯内壁表面积为143πR 2,设酒杯上部分(圆柱)的体积为V 1,下部分(半球)的体积为V 2,则V1V 2=( )A.2B.32C.1 D.346.已知利用3D打印技术制作如图所示的模型.该模型为在圆锥底内挖去一个正方体后的剩余部分(正方体四个顶点在圆锥母线上,四个顶点在圆锥底面上),圆锥底面直径为10√2 cm,母线与底面所成角的正切值为√2.打印所用原料密度为1 g/cm3,不考虑打印损耗,制作该模型所需原料的质量约为()(取π=3.14,精确到0.1)A.609.4 gB.447.3 gC.398.3 gD.357.3 g7.(2020全国2,理10)已知△ABC是面积为9√34的等边三角形,且其顶点都在球O的球面上.若球O的表面积为16π,则O到平面ABC的距离为()A.√3B.32C.1 D.√328.(2020山东泰安第二中学月考)菱形ABCD的边长为2,现将△ACD沿对角线AC折起使平面ACD'⊥平面ACB,则此时所成空间四面体体积的最大值为()A.16√327B.5√39C.1D.√34二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分.9.在正四面体A-BCD中,E,F,G分别是BC,CD,DB的中点,下面四个结论中正确的是()A.BC∥平面AGFB.EG⊥平面ABFC.平面AEF⊥平面BCDD.平面ABF⊥平面BCD10.如图,已知圆锥的顶点为S,底面圆O的两条直径分别为AB和CD,且AB⊥CD,若平面SAD∩平面SBC=l,则以下结论正确的是()A.AD∥平面SBCB.l∥ADC.若E是底面圆周上的动点,则△SAE的最大面积等于△SAB的面积D.l与平面SCD所成角的大小为45°11.(2020河南洛阳高三模拟)如图,已知正方体ABCD-A1B1C1D1的棱长为2,E为棱CC1的中点,F为棱AA1上的点,且满足A1F∶FA=1∶2,点F,B,E,G,H为过三点B,E,F的平面BMN与正方体ABCD-A1B1C1D1的棱的交点,则下列说法正确的是()A.HF∥BEB.三棱锥B1-BMN的体积为6C.直线MN与平面A1B1BA的夹角是45°D.D1G∶GC1=1∶312.(2020山东临沂一模)如图,点E为正方形ABCD边CD上异于点C,D的动点,将△ADE沿AE翻折成△SAE,在翻折过程中,下列说法正确的是()A.存在点E和某一翻折位置,使得SB⊥SEB.存在点E和某一翻折位置,使得AE∥平面SBCC.存在点E和某一翻折位置,使得直线SB与平面ABC所成的角为45°D.存在点E和某一翻折位置,使得二面角S-AB-C的大小为60°三、填空题:本题共4小题,每小题5分,共20分.13.(2020辽宁高三二模,理)已知一个圆柱的侧面积等于表面积的一半,且其轴截面的周长是18,则该圆柱的体积是.14.正四棱锥P-ABCD,底面边长为2,二面角P-AB-C为45°,则此四棱锥的体积为.15.(2020福建福州高三期末)《九章算术》中,将四个面都为直角三角形的四面体称之为鳖臑.在如图所示的鳖臑P-ABC中,PA⊥平面ABC,∠ACB=90°,CA=4,PA=2,D为AB中点,E为△PAC内的动点(含边界),且PC⊥DE.①当E在AC上时,AE=;②点E的轨迹的长度为.16.(2020新高考全国1,16)已知直四棱柱ABCD-A1B1C1D1的棱长均为2,∠BAD=60°.以D1为球心,√5为半径的球面与侧面BCC1B1的交线长为.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)如图,已知正方体ABCD-A1B1C1D1的棱长为3,M,N分别是棱AA1,AB上的点,且AM=AN=1.(1)证明:M,N,C,D1四点共面;(2)求几何体AMN-DD1C的体积.18.(12分)(2020广西南宁二中高三月考)如图,已知长方形ABCD中,AB=2,AD=1,M为DC的中点.将△ADM沿AM折起,使得平面ADM⊥平面ABCM.(1)求证:AD⊥BM;时,试确定点E的位置.(2)点E是线段DB上的一动点,当二面角E-AM-D大小为π319.(12分)(2020全国高三二模(文))如图,扇形AOB的圆心角为90°,半径为2,四边形SOBC为正方形,平⏜于点M,交OA于点N.面SOBC⊥平面AOB,过直线SC作平面SCMN交AB(1)求证:MN∥OB;(2)求三棱锥S-MON体积的最大值.(12分)(2020四川宜宾叙州第二中学高三一模(理))如图,已知三棱柱ABC-A 1B 1C 1中,侧棱与底面垂直,且AA 1=AB=AC=2,AB ⊥AC ,M ,N 分别是CC 1,BC 的中点,点P 在线段A 1B 1上,且A 1P ⃗⃗⃗⃗⃗⃗⃗ =λPB 1⃗⃗⃗⃗⃗⃗⃗ . (1)求证:不论λ取何值,总有AM ⊥PN ;(2)当λ=1时,求平面PMN 与平面ABC 夹角的余弦值. 21.(12分)(2020山东高三联考三模)已知直三棱柱ABC-A 1B 1C 1,AB=AC=AA 1=1,M ,N ,P 分别为A 1C 1,AB 1,BB 1的中点,且AP ⊥MN. (1)求证:MN ∥平面B 1BCC 1; (2)求∠BAC ;(3)求二面角A1-PN-M的余弦值.22.(12分)(2020重庆沙坪坝南开中学高三月考)如图,四棱锥P-ABCD中,底面ABCD是边长为2的正方形,侧面PAB⊥底面ABCD,E为PC上的点,且BE⊥平面APC.(1)求证:平面PAD⊥平面PBC;(2)当三棱锥P-ABC体积最大时,求二面角B-AC-P的余弦值.参考答案单元质检卷七空间向量与立体几何1.A对于A,根据棱柱的性质可知,棱柱的各个侧面都是平行四边形,故A正确;对于B,底面是矩形,若侧棱不垂直于底面,这时的四棱柱是斜四棱柱,不是长方体,只有底面是矩形的直四棱柱才是长方体,故B错误;对于C,有一个面为多边形,其余各面都是三角形的几何体不一定是棱锥,只有其余各面是有一个公共顶点的三角形的几何体,才是棱锥,故C错误;对于D,直角三角形绕其一条直角边所在直线旋转一周形成的几何体是圆锥,如果绕着它的斜边旋转一周,形成的几何体则是两个具有共同底面的圆锥,故D错误.故选A.2.C 设圆锥的底面半径为r ,母线长为l ,侧面展开图扇形的圆心角为θ,根据条件得πrl+πr 2=3πr 2,即l=2r ,根据扇形面积公式得θπl22π=πrl ,即θ=r ·2πl =r ·2π2r =π,故选C .3.C A 选项中,根据m ⊥n ,m ∥α,n ∥β,得到α⊥β或α∥β,所以A 错误;B 选项中,m ⊥n ,α∩β=m ,n ⊂α,不一定得到α⊥β,所以B 错误;C 选项中,因为m ∥n ,n ⊥β,所以m ⊥β, 又m ⊂α,从而得到α⊥β,所以C 正确;D 选项中,根据m ∥n ,m ⊥α,所以n ⊥α,而n ⊥β,所以得到α∥β,所以D 错误.故选C . 4.A 如图,取DD 1的中点F ,连接AF ,EF ,显然EF ∥AB 1,则四边形AB 1EF 为所求的截面. 因为D 1E=C 1E=2,所以B 1E=√22+42=2√5,AB 1=√42+42=4√2,EF=√22+22=2√2,AF=√42+22=2√5,所以截面的周长为6√2+4√5.5.A 设酒杯上部分(圆柱)的高为h ,球的半径为R ,则酒杯下部分(半球)的表面积为2πR 2,酒杯内壁表面积为143πR 2,得圆柱侧面积为143πR 2-2πR 2=83πR 2,酒杯上部分(圆柱)的表面积为2πR×h=83πR 2,解得h=43R ,酒杯下部分(半球)的体积V 2=12×43π×R 3=23πR 3,酒杯上部分(圆柱)的体积V 1=πR2×43R=43πR 3,所以V 1V 2=43πR 323πR 3=2.故选A .6.C 如图是几何体的轴截面,因为圆锥底面直径为10√2 cm,所以半径为OB=5√2 cm.因为母线与底面所成角的正切值为tan B=√2,所以圆锥的高为PO=10 cm.设正方体的棱长为a ,DE=√2a ,则√22a5√2=10-a10,解得a=5.所以该模型的体积为V=13π×(5√2)2×10-53=500π3-125(cm 3).所以制作该模型所需原料的质量为500π3-125×1=500π3-125≈398.3(g).7.C设等边三角形ABC的边长为a,球O的半径为R,△ABC的外接圆的半径为r,则S△ABC=√34a2=9√34,S球O=4πR2=16π,解得a=3,R=2.故r=23×√32a=√3.设O到平面ABC的距离为d,则d2+r2=R2,故d=√R2-r2=√4-3=1.故选C.8.A设AC的中点为O,因为D'C=D'A,所以D'O⊥AC.又因为平面ACD'⊥平面ACB,平面ACD'∩平面ACB=AC,所以D'O⊥平面ABC,设∠ABC=∠ADC=α,α∈(0,π),在△ACD中,DO=AD cos α2=2cosα2,由题意可知D'O=DO=2cosα2,S△ABC=12×2×2sin α=2sin α,V D'-ABC =13S△ABC×D'O=43sin αcosα2=83sinα2cos2α2=83sinα21-sin2α20<α2<π2.设t=sinα2,则V D'-ABC=83(t-t3),且0<t<1,所以V'D'-ABC=83(1-3t2),所以当0<t<√33时,V'D'-ABC>0,当√33<t<1时,V'D'-ABC<0,所以当t=√33时,V D'-ABC取得最大值16√327,所以四面体D'ABC体积的最大值为16√327.故选A.9.ABD∵F,G分别是CD,DB的中点,∴GF∥BC,则BC∥平面AGF,故A正确;∵E,F,G分别是BC,CD,DB的中点,∴CD⊥AF,CD⊥BF,AF∩BF=F,即CD⊥平面ABF,∵EG∥CD,∴EG⊥平面ABF,故B正确;∵CD⊥平面ABF,CD⊂平面BCD,∴平面ABF⊥平面BCD,故D正确,C错误.故选ABD.10.ABD由AB和CD是圆O的直径,且AB⊥CD,得四边形ABCD为正方形,则AD∥BC.BC⊂平面SBC,从而AD ∥平面SBC ,故A 正确;又因为AD ⊂平面SAD ,且平面SAD ∩平面SBC=l ,所以l ∥AD ,故B 正确; 因为S △SAE =12SA·SE sin ∠ASE ,当∠ASB 为钝角时,(S △SAE )max >S △SAB ,当∠ASB 为锐角或直角时,(S △SAE )max =S △SAB ,故C 不正确;由l ∥AD ,得l 与平面SCD 所成的角等于AD 与平面SCD 所成的角,即为∠ADO ,又因为∠ADO=45°,故D 正确.故选ABD .11.AD 对于A 选项,由于平面ADD 1A 1∥平面BCC 1B 1,而平面BMN 与这两个平面分别交于HF 和BE ,根据面面平行的性质定理可知HF ∥BE ,故A 正确;由于A 1F ∶FA=1∶2,而E 是CC 1的中点,故MA 1=1,C 1N=2.对于B 选项,V B 1-BMN =V B -MNB 1=13×12×MB 1×NB 1×BB 1=13×12×3×4×2=4,故B 错误;对于C 选项,由于B 1N ⊥平面A 1B 1BA ,所以直线MN 与平面A 1B 1BA 所成的角为∠NMB 1,且tan ∠NMB 1=B 1N B 1M =43≠1,故C 错误;对于D 选项,可知D 1G=12,GC 1=32,故D 正确.综上可知,正确的为AD,故选AD .12.ACD 当SE ⊥CE 时,SE ⊥AB ,SE ⊥SA ,SA ∩AB=A ,故SE ⊥平面SAB ,故SE ⊥SB ,故A 正确;若AE ∥平面SBC ,因为AE ⊂平面ABC ,平面ABC ∩平面SBC=BC ,则AE ∥CB ,与已知矛盾,故B 错误;如图所示,DF ⊥AE 交BC 于点F ,交AE 于点G ,S 在平面ABCE 的投影O 在GF 上, 连接BO ,故∠SBO 为直线SB 与平面ABC 所成的角,取二面角S-AE-B 的平面角为α,取AD=4,DE=3,故AE=DF=5,CE=BF=1,SG=125,OG=125cos α,故只需满足SO=OB=125sin α,在△OFB 中,根据余弦定理(125sinα)2=12+(135-125cosα)2-2135−125cos αcos ∠OFB , 解得cos α=23,故C 正确;过O 作OM ⊥AB 交AB 于点M ,则∠SMO 为二面角S-AB-C 的平面角, 取二面角S-AE-B 的平面角为60°,故只需满足DG=2GO=2OM , 设∠OAG=∠OAM=θ,π8<θ<π4,则∠DAG=π2-2θ,AG=DG tan(π2-2θ)=OGtanθ,化简得到2tan θtan 2θ=1,解得tan θ=√55,验证满足,故D正确.13.27π设圆柱的底面圆的半径为r,高为h.由题意可得{2πrℎ2πr2+2πrℎ=12, 2(2r+ℎ)=18,解得r=h=3,则该圆柱的体积是πr2h=27π.14.43如图,设点P在底面ABCD内的射影为点O,因为四棱锥P-ABCD为正四棱锥,所以O为正方形ABCD的中心, 取AB的中点E,连接PO,PE,OE,则PO⊥平面ABCD,OE⊥AB,又PA=PB,所以PE⊥AB,所以∠PEO为二面角P-AB-C的平面角, 所以∠PEO=45°.因为BC=2,所以OE=PO=1,所以此四棱锥的体积为13PO·S ABCD=13×1×2×2=43.15.①2②2√55①当E在AC上时,因为PA⊥平面ABC,故PA⊥DE,又PC⊥DE,故DE ⊥平面PAC.故DE⊥AC.又∠ACB=90°,D为AB中点,故DE∥BC,所以E为AC中点.故AE=12AC=2.②取AC中点F,则由①知DF⊥平面PAC,故PC⊥DF,又PC⊥DE,设平面DEF∩PC=G,则有PC⊥平面DGF.故点E的轨迹为线段FG.又此时CF=2,故sin∠PCA=√2+4=√55.所以FG=CF·sin∠PCA=2√55.16.√22π如图所示,∵∠B1C1D1=∠B1A1D1=∠BAD=60°,且B1C1=C1D1,∴△B 1C 1D 1为等边三角形. ∴B 1D 1=2.设点O 1是B 1C 1的中点,则O 1D 1=√3,易证D 1O 1⊥平面BCC 1B 1,设P 是球面与侧面BCC 1B 1交线上任意一点,连接O 1P ,则O 1D 1⊥O 1P ,∴D 1P 2=D 1O 12+O 1P 2,即5=3+O 1P 2,∴O 1P=√2.即P 在以O 1为圆心,以√2为半径的圆上.取BB 1,CC 1的中点分别为E ,F ,则B 1E=C 1F=O 1B 1=O 1C 1=1,EF=2,∴O 1E=O 1F=√2,O 1E 2+O 1F 2=EF 2=4,∴∠EO 1F=90°, ∴交线EPF⏜=14×2√2×π=√22π. 17.(1)证明∵A 1D 1∥AD ,A 1D 1=AD ,又BC ∥AD ,BC=AD ,∴A 1D 1∥BC ,且A 1D 1=BC ,连接A 1B ,则四边形A 1BCD 1是平行四边形,所以A 1B ∥D 1C.在△ABA 1中,AM=AN=1,AA 1=AB=3,所以AMAA 1=ANAB ,所以MN ∥A 1B ,所以MN ∥D 1C ,所以M ,N ,C ,D 1四点共面. (2)解因为平面ABB 1A 1∥平面DCC 1D 1,又M ,N ,C ,D 1四点共面,所以平面AMN ∥平面DD 1C , 延长CN 与DA 相交于点P ,因为AN ∥DC ,所以ANDC =PAPD ,即13=PAPA+3,解得PA=32,同理延长D 1M 与DA 相交于点Q ,可得QA=32,所以点P 与点Q 重合,所以D 1M ,DA ,CN 三线相交于一点,所以几何体AMN-DD 1C 是一个三棱台,所以V AMN -DD 1C =13×12+√12×92+92×3=132.18.解取AM 的中点O ,AB 的中点N ,则ON ,OA ,OD 两两垂直,以O 为原点建立如图所示的空间直角坐标系,则A (√22,0,0),B -√22,√2,0,M -√22,0,0,D 0,0,√22.(1)证明:由于AD ⃗⃗⃗⃗⃗ =-√22,0,√22,BM ⃗⃗⃗⃗⃗⃗ =(0,-√2,0),则AD ⃗⃗⃗⃗⃗ ·BM ⃗⃗⃗⃗⃗⃗ =0,故AD ⃗⃗⃗⃗⃗ ⊥BM ⃗⃗⃗⃗⃗⃗ ,即AD ⊥BM.(2)解:设存在满足条件的点E ,并设DE ⃗⃗⃗⃗⃗ =λDB ⃗⃗⃗⃗⃗⃗ ,λ∈(0,1],DB ⃗⃗⃗⃗⃗⃗ =-√22,√2,-√22,则DE ⃗⃗⃗⃗⃗ =λ-√22,√2,-√22, 则点E 的坐标为-√22λ,√2λ,√22−√22λ,λ∈(0,1].易得平面ADM 的法向量可以取n 1=(0,1,0),设平面AME 的法向量为n 2=(x ,y ,z ),则AM ⃗⃗⃗⃗⃗⃗ =(-√2,0,0),AE⃗⃗⃗⃗⃗ =-√22λ-√22,√2λ,√22−√22λ,则{n 2·AM ⃗⃗⃗⃗⃗⃗ =0,n 2·AE ⃗⃗⃗⃗⃗ =0,所以 {-√2x =0,(-√22λ-√22)x +√2λy +(√22-√22λ)z =0,故n 2=(0,λ-1,2λ). cos <n 1,n 2>=n 1·n 2|n 1||n 2|=√(λ-1)+4λ,由于二面角E-AM-D 大小为π3, 故cos π3=√(λ-1)+4λ=12,由于λ∈(0,1],故解得λ=2√3-3或-2√3-3(舍去).故当E 位于线段DB 之间,且DEDB =2√3-3时,二面角E-AM-D 大小为π3.19.(1)证明因为SC ∥OB ,SC ⊂平面SCMN ,OB ⊄平面SCMN ,所以OB ∥平面SCMN.又OB ⊂平面AOB ,平面SCMN ∩平面AOB=MN ,所以MN ∥OB. (2)解因为平面SOBC ⊥平面AOB ,平面SOBC ∩平面AOB=OB ,SO ⊥OB ,所以SO ⊥平面AOB ,即线段SO 的长就是三棱锥S-MON 的高. 因为OA ⊥OB ,MN ∥OB , 所以MN ⊥OA.设ON=x (0<x<2),则MN=√4-x 2,所以三棱锥S-MON 的体积为V=13SO ·12ON·MN=13×2×12×x ×√4-x 2=13x ×√4-x 2=13√4x 2-x 4=13√4-(x 2-2)2.所以,当x=√2时,三棱锥S-MON 体积有最大值,V max =23.20.解以点A 为坐标原点,以AB ,AC ,AA 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系A-xyz ,A 1(0,0,2),B 1(2,0,2),M (0,2,1),N (1,1,0),则A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(2,0,0),AA 1⃗⃗⃗⃗⃗⃗⃗ =(0,0,2),AN⃗⃗⃗⃗⃗⃗ =(1,1,0).(1)证明:∵A 1P ⃗⃗⃗⃗⃗⃗⃗ =λPB 1⃗⃗⃗⃗⃗⃗⃗ =λ(A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ −A 1P ⃗⃗⃗⃗⃗⃗⃗ ),∴A 1P ⃗⃗⃗⃗⃗⃗⃗ =λ1+λA 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(2λ1+λ,0,0),∵AP ⃗⃗⃗⃗⃗ =AA 1⃗⃗⃗⃗⃗⃗⃗ +A 1P ⃗⃗⃗⃗⃗⃗⃗ =(0,0,2)+2λ1+λ,0,0=2λ1+λ,0,2,PN ⃗⃗⃗⃗⃗⃗ =AN ⃗⃗⃗⃗⃗⃗ −AP ⃗⃗⃗⃗⃗ =(1,1,0)-(2λ1+λ,0,2)=1-λ1+λ,1,-2.∵AM ⃗⃗⃗⃗⃗⃗ =(0,2,1),∴AM ⃗⃗⃗⃗⃗⃗ ·PN ⃗⃗⃗⃗⃗⃗ =0+2-2=0,即AM ⃗⃗⃗⃗⃗⃗ ⊥PN ⃗⃗⃗⃗⃗⃗ , 因此,无论λ取何值,都有AM ⊥PN.(2)解:当λ=1时,P (1,0,2),PN ⃗⃗⃗⃗⃗⃗ =(0,1,-2),Pλ⃗⃗⃗⃗⃗⃗ =(-1,2,-1), 而平面ABC 的法向量n =(0,0,1),设平面PMN 的法向量为m =(x ,y ,z ),则{m ·PM ⃗⃗⃗⃗⃗⃗ =0,m ·PN ⃗⃗⃗⃗⃗⃗ =0,∴{-x +2y -z =0,y -2z =0,则m =(3,2,1),设平面PMN 与平面ABC 的夹角为θ,则cos θ=|m ·n ||m ||n |=√1414. 因此,平面PMN 与平面ABC 的夹角的余弦值是√1414.21.(1)证明取B 1C 1的中点Q ,连接MQ ,NP ,PQ ,则MQ ∥A 1B 1,且MQ=12A 1B 1,PN ∥AB ,且PN=12AB ,又AB ∥A 1B 1,AB=A 1B 1,所以PN ∥MQ ,且PN=MQ ,所以PNMQ 为平行四边形,所以MN ∥PQ. 又MN ⊄平面B 1BCC 1,PQ ⊂平面B 1BCC 1, 所以MN ∥平面B 1BCC 1.(2)解设AB ⃗⃗⃗⃗⃗ =a ,AC ⃗⃗⃗⃗⃗ =b ,AA 1⃗⃗⃗⃗⃗⃗⃗ =c ,∠BAC=θ,由已知可得,|a |=|b |=|c |=1,且a ·c =b ·c =0,则AP ⃗⃗⃗⃗⃗ =a +12c ,NM ⃗⃗⃗⃗⃗⃗⃗ =PQ ⃗⃗⃗⃗⃗ =12BB 1⃗⃗⃗⃗⃗⃗⃗ +12B 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12c +12b -12a , 因为AP ⊥MN ,所以AP ⃗⃗⃗⃗⃗ ·NM⃗⃗⃗⃗⃗⃗⃗ =a +12c 12c +12b -12a =12a ·b -12a 2+14c 2=12cos θ-14=0,所以cos θ=12,即∠BAC=60°.(3)解在平面ABC 内过点A 做射线l 垂直于AB ,易知AB ,l ,AA 1两两垂直,建立如图所示的空间直角坐标系A-xyz ,则P 1,0,12,M 14,√34,1,N 12,0,12,n 1=(0,1,0)为平面A 1PN 的一个法向量,MN⃗⃗⃗⃗⃗⃗⃗ =14,-√34,-12,PN ⃗⃗⃗⃗⃗⃗ =-12,0,0.设n 2=(x ,y ,z )为平面PMN 的一个法向量, 则{n 2·MN⃗⃗⃗⃗⃗⃗⃗ =0,n 2·PN ⃗⃗⃗⃗⃗⃗ =0,所以{14x -√34y -12z =0,-12x =0,令y=1,则n 2=0,1,-√32,则cos <n 1,n 2>=n 1·n 2|n 1||n 2|=11×√74=2√77,由图知二面角A 1-PN-M的平面角是锐角,所以二面角A 1-PN-M 的余弦值为2√77.22.(1)证明∵侧面PAB ⊥底面ABCD ,侧面PAB ∩底面ABCD=AB ,四边形ABCD 为正方形,∴BC ⊥AB ,∴BC ⊥平面PAB ,又AP ⊂平面PAB ,∴AP ⊥BC ,又BE ⊥平面APC ,AP ⊂平面PAC ,∴AP ⊥BE ,∵BC ∩BE=B ,BC ,BE 在平面PBC 中,∴AP ⊥平面PBC ,又AP ⊂平面PAD , ∴平面PAD ⊥平面PBC.(2)解V P-ABC =V C-APB =13×12×PA×PB×BC=13×PA×PB ,求三棱锥P-ABC 体积的最大值,只需求PA×PB 的最大值.令PA=x ,PB=y ,由(1)知,PA ⊥PB ,∴x 2+y 2=4,而V P-ABC =13xy ≤13×x 2+y 22=23,当且仅当x=y=√2,即PA=PB=√2时,V P-ABC 的最大值为23.如图所示,分别取线段AB ,CD 中点O ,F ,连接OP ,OF ,以点O 为坐标原点,以OP ,OB 和OF 分别作为x 轴,y 轴和z 轴,建立空间直角坐标系O-xyz.由已知A (0,-1,0),C (0,1,2),P (1,0,0),∴AP ⃗⃗⃗⃗⃗ =(1,1,0),AC ⃗⃗⃗⃗⃗ =(0,2,2), 令平面PAC 的一个法向量n =(x ,y ,z ),则{n ·AP⃗⃗⃗⃗⃗ =0,n ·AC ⃗⃗⃗⃗⃗ =0,∴{x +y =0,2y +2z =0,∴n =(1,-1,1).易知平面ABC 的一个法向量m =(1,0,0),设二面角B-AC-P 的平面角为θ,由图知θ为锐角,则cos θ=|n ·m|n ||λ||=|√3|=√33.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

立体几何单元测试1.(2020·浙江省湖州模拟)某多面体的三视图如图所示,其中正视图和侧视图都是由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.则该多面体的各个面中,面积最大的面的面积为()A.2 3 B.6C.6 2 D.122.(2020·黑龙江省绥化模拟)一只蚂蚁从正方体ABCD-A1B1C1D1的顶点A出发,经正方体的表面,按最短路线爬行到顶点C1的位置,则下列图形中可以表示正方体及蚂蚁最短爬行路线的正视图是()A.①① B.①①C.①① D.①①3.(2020·湖北省鄂州模拟)已知一个简单几何体的三视图如图所示,则该几何体的体积为()A .3π+6B .6π+6C .3π+12D .124.(2020·安徽省安庆模拟)体积为3的三棱锥P -ABC 的顶点都在球O 的球面上,P A ①平面ABC ,P A =2,①ABC =120°,则球O 的体积的最小值为( ) A.773π B.2873π C.19193π D.76193π 5.(2020·广东省深圳模拟)如图,在矩形ABCD 中,AB =4,AD =2,P 为边AB 的中点,现将①DAP 绕直线DP 翻转至①DA ′P 处,若M 为线段A ′C 的中点,则异面直线BM 与P A ′所成角的正切值为( )A.12B .2 C.14 D .46.(2020·山东省青岛模拟)如图,在四面体ABCD 中,若截面PQMN 是正方形,则在下列说法中,错误的为( )A.AC①BDB.AC=BDC.AC①截面PQMND.异面直线PM与BD所成的角为45°7.(2020·广西省北海模拟)如图,在矩形ABCD中,AB=3,BC=1,将①ACD沿AC折起,使得D折起后的位置为D1,且D1在平面ABC上的射影恰好落在AB上,在四面体D1ABC的四个面中,有n对平面相互垂直,则n等于()A.2 B.3C.4 D.58.(2020·陕西省宝鸡模拟)在正方体ABCD-A1B1C1D1中,E为线段B1D1上的一个动点,则下列结论中正确的是________(填序号).①AC①BE;①B1E①平面ABCD;①三棱锥E-ABC的体积为定值;①B1E①BC1.9.(2020·山东省菏泽模拟)如图1,在四棱锥P-ABCD中,底面为正方形,PC与底面ABCD垂直,图2为该四棱锥的正视图和侧视图,它们是腰长为6 cm的全等的等腰直角三角形.则该几何体的俯视图的面积为________,棱P A的长度为________.10.(2020·四川省宜宾模拟)如图所示,在侧棱长为23的正三棱锥V-ABC中,①AVB=①BVC=①CVA =40°,过A作截面AEF,①AEF周长的最小值为________.11.(2020·甘肃省酒泉模拟)榫卯是我国古代工匠极为精巧的发明,它是在两个构件上采用凹凸部分相结合的一种连接方式.我国的北京紫禁城、山西悬空寺、福建宁德的廊桥等建筑都用到了榫卯结构.图中网格纸上小正方形的边长为1,粗实线画出的是一种榫卯构件中榫的三视图,则其体积为________,表面积为________.12.(2020·云南省临沧模拟)α,β是两个平面,AB,CD是两条线段,已知α∩β=EF,AB①α于B,CD①α于D,若增加一个条件,就能得出BD①EF,现有下列条件:①AC①β;①AC与α,β所成的角相等;①AC与CD在β内的射影在同一条直线上;①AC①EF.其中能成为增加条件的序号是________.13.(2020·内蒙赤峰四中模拟)如图所示,在正四棱柱ABCD-A1B1C1D1中,E,F,G,H分别是棱CC1,C1D1,D1D,DC的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M只需满足条件________时,就有MN①平面B1BDD1.(注:请填上你认为正确的一个条件即可,不必考虑全部可能情况)14.(2020·湖南长沙模拟)如图,在三棱柱ABC-A′B′C′中,点E,F,H,K分别为AC′,CB′,A′B′,B′C′的中点,G为①ABC的重心.从K,H,G,B′四点中取一点作为P,使得该棱柱恰有2条棱与平面PEF平行,则P为________.15.(2020·安徽合肥调研)如图,已知三棱柱ABC-A1B1C1,M为棱AB上一点,BC1①平面A1MC.(1)求证:AM=BM;(2)若①ABC是等边三角形,AB=AA1,①A1AB=①A1AC=60°,①A1MC的面积为42,求三棱柱ABC -A1B1C1的体积.16.(2020·陕西省汉中模拟)如图,在四棱锥O-ABCD中,底面ABCD是边长为2的正方形,OA①底面ABCD,OA=2,M为OA的中点.(1)求四棱锥O-ABCD的体积;(2)求异面直线OC与MD所成角的正切值.17.(2020·四川成都模拟)如图,在四棱锥P-ABCD中,平面P AD①平面ABCD,P A=PD,AB=AD,P A①PD,AD①CD,①BAD=60°,M,N分别为AD,P A的中点.(1)证明:平面BMN①平面PCD;(2)若AD=6,求三棱锥P-BMN的体积.18.(2020·安徽省铜陵模拟)在如图所示的多面体中,四边形ABB1A1和四边形ACC1A1都为矩形.设D,E分别是线段BC,CC1的中点,在线段AB上是否存在一点M,使DE①平面A1MC?请证明你的结论.19.(2020·吉林省通化模拟)如图(1),在Rt①ABC中,①ABC=90°,D为AC的中点,AE①BD于点E(不同于点D),延长AE交BC于F,将①ABD沿BD折起,得到三棱锥A1-BCD,如图(2)所示.(1)若M是FC的中点,求证:直线DM①平面A1EF;(2)求证:BD①A1F;(3)若平面A1BD①平面BCD,试判断直线A1B与直线CD能否垂直?并说明理由.单元测试1.(2020·浙江省湖州模拟)某多面体的三视图如图所示,其中正视图和侧视图都是由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.则该多面体的各个面中,面积最大的面的面积为()A.2 3 B.6C.6 2 D.12【答案】B【解析】由三视图可画出直观图,如图所示,该多面体中两个全等的梯形的面,为该多面体的各个面中面积最大的面,S 梯形=12×2×(2+4)=6.故选B. 2.(2020·黑龙江省绥化模拟)一只蚂蚁从正方体ABCD -A 1B 1C 1D 1的顶点A 出发,经正方体的表面,按最短路线爬行到顶点C 1的位置,则下列图形中可以表示正方体及蚂蚁最短爬行路线的正视图是( )A .①①B .①①C .①①D .①① 【答案】D【解析】由点A 经正方体的表面,按最短路线爬行到达顶点C 1的位置,共有6种路线(对应6种不同的展开方式),若把平面ABB 1A 1和平面BCC 1B 1展开到同一个平面内,连接AC 1,则AC 1是最短路线,且AC 1会经过BB 1的中点,此时对应的正视图为①;若把平面ABCD 和平面CDD 1C 1展开到同一平面内,连接AC 1,则AC 1是最短路线,且AC 1会经过CD 的中点,此时对应的正视图为①.而其他几种展开方式对应的正视图在题中没有出现.故选D.3.(2020·湖北省鄂州模拟)已知一个简单几何体的三视图如图所示,则该几何体的体积为( )A .3π+6B .6π+6C .3π+12D .12【答案】A【解析】由三视图还原几何体如图,该几何体为组合体,左半部分是四分之一圆锥,右半部分是三棱锥,则其体积V =14×13×π×32×4+13×12×3×3×4=3π+6.故选A.4.(2020·安徽省安庆模拟)体积为3的三棱锥P -ABC 的顶点都在球O 的球面上,P A ①平面ABC ,P A =2,①ABC =120°,则球O 的体积的最小值为( ) A.773π B.2873π C.19193π D.76193π 【答案】B【解析】设AB =c ,BC =a ,AC =b ,由题可得,3=13×S ①ABC ×2,解得S ①ABC =332,因为①ABC =120°,S ①ABC =332=12ac sin 120°,所以ac =6,由余弦定理可得,b 2=a 2+c 2-2ac cos 120°=a 2+c 2+ac ≥2ac +ac =3ac =18,当且仅当a =c 时取等号,此时b min =32,设①ABC 外接圆的半径为r ,则b sin 120°=2r (b 最小,则外接圆半径最小),故3232=2r min ,所以r min =6,如图,设O 1为①ABC 外接圆的圆心,过O 作OD ①P A ,垂足为D ,R 为球O 的半径,连接O 1A ,O 1O ,OA ,OD ,PO ,设OO 1=h ,在Rt①OO 1A 中,R 2=r 2+OO 21=r 2+h 2,在Rt①OPD 中,R2=r 2+(2-h )2,联立得h =1.当r min =6时,R 2min =6+1=7,R min =7,故球O 体积的最小值为43πR 3min =43π×(7)3=287π3,故选B. 5.(2020·广东省深圳模拟)如图,在矩形ABCD 中,AB =4,AD =2,P 为边AB 的中点,现将①DAP 绕直线DP 翻转至①DA ′P 处,若M 为线段A ′C 的中点,则异面直线BM 与P A ′所成角的正切值为( )A.12B .2 C.14D .4【答案】A【解析】取A ′D 的中点N ,连接PN ,MN ,①M 是A ′C 的中点,①MN ①CD ,且MN =12CD . ①四边形ABCD 是矩形,P 是AB 的中点,①PB ①CD ,且PB =12CD , ①MN ①PB ,且MN =PB ,①四边形PBMN 为平行四边形,①MB ①PN ,①①A ′PN (或其补角)是异面直线BM 与P A ′所成的角.在Rt①A ′PN 中,tan ①A ′PN =A ′N A ′P =12, ①异面直线BM 与P A ′所成角的正切值为12.故选A. 6.(2020·山东省青岛模拟)如图,在四面体ABCD 中,若截面PQMN 是正方形,则在下列说法中,错误的为( )A .AC ①BDB .AC =BDC .AC ①截面PQMND .异面直线PM 与BD 所成的角为45°【答案】B【解析】因为截面PQMN 是正方形,所以PQ ①MN ,QM ①PN ,则PQ ①平面ACD ,QM ①平面BDA ,所以PQ ①AC ,QM ①BD ,由PQ ①QM ,可得AC ①BD ,故A 正确;由PQ ①AC ,可得AC ①截面PQMN ,故C 正确;由BD ①PN ,所以①MPN (或其补角)是异面直线PM 与BD 所成的角,且为45°,故D 正确;由上面可知,BD ①PN ,MN ①AC .所以PN BD =AN AD ,MN AC =DN AD, 而AN ≠DN ,PN =MN ,所以BD ≠AC ,故B 错误.故选B.7.(2020·广西省北海模拟)如图,在矩形ABCD 中,AB =3,BC =1,将①ACD 沿AC 折起,使得D 折起后的位置为D 1,且D 1在平面ABC 上的射影恰好落在AB 上,在四面体D 1ABC 的四个面中,有n 对平面相互垂直,则n 等于( )A .2B .3C .4D .5【解析】设D1在平面ABC上的射影为E,连接D1E,则D1E①平面ABC,①D1E①平面ABD1,①平面ABD1①平面ABC.①D1E①平面ABC,BC①平面ABC,①D1E①BC,又AB①BC,D1E∩AB=E,①BC①平面ABD1.又BC①平面BCD1,①平面BCD1①平面ABD1.①BC①平面ABD1,AD1①平面ABD1,①BC①AD1,又CD1①AD1,BC∩CD1=C,①AD1①平面BCD1.又AD1①平面ACD1,①平面ACD1①平面BCD1.①共有3对平面互相垂直.故选B.8.(2020·陕西省宝鸡模拟)在正方体ABCD-A1B1C1D1中,E为线段B1D1上的一个动点,则下列结论中正确的是________(填序号).①AC①BE;①B1E①平面ABCD;①三棱锥E-ABC的体积为定值;①B1E①BC1.【解析】因为AC①平面BDD1B1,所以AC①BE,故①正确;因为B1D1①平面ABCD,所以B1E①平面ABCD,故①正确;记正方体的体积为V,则V E-ABC=16V,为定值,故①正确;B1E与BC1不垂直,故①错误.9.(2020·山东省菏泽模拟)如图1,在四棱锥P-ABCD中,底面为正方形,PC与底面ABCD垂直,图2为该四棱锥的正视图和侧视图,它们是腰长为6 cm的全等的等腰直角三角形.则该几何体的俯视图的面积为________,棱P A的长度为________.【解析】该四棱锥的俯视图为(内含对角线)边长为6 cm的正方形,如图,其面积为36 cm2.由侧视图可求得PD=PC2+CD2=62+62=62(cm).由正视图可知AD=6 cm,且AD①PD,所以在Rt①APD中,P A=PD2+AD2=(62)2+62=63(cm).【答案】36 cm26 3 cm10.(2020·四川省宜宾模拟)如图所示,在侧棱长为23的正三棱锥V-ABC中,①AVB=①BVC=①CVA =40°,过A作截面AEF,①AEF周长的最小值为________.【解析】如图,将三棱锥沿侧棱VA剪开,并将其侧面展开平铺在一个平面上,则线段AA1的长即为所求①AEF的周长的最小值.取AA1的中点D,连接VD,则VD①AA1,①AVD=60°.在Rt①VAD中,AD=VA·sin 60°=3,所以AA1=2AD=6,即①AEF周长的最小值为6.【答案】611.(2020·甘肃省酒泉模拟)榫卯是我国古代工匠极为精巧的发明,它是在两个构件上采用凹凸部分相结合的一种连接方式.我国的北京紫禁城、山西悬空寺、福建宁德的廊桥等建筑都用到了榫卯结构.图中网格纸上小正方形的边长为1,粗实线画出的是一种榫卯构件中榫的三视图,则其体积为________,表面积为________.【解析】由三视图可知,榫卯构件中的榫由一个长方体和一个圆柱拼接而成,故其体积V=4×2×3+π×32×6=24+54π,表面积S=2×π×32+2×π×3×6+4×3×2+2×2×3=54π+36.【答案】24+54π54π+3612.(2020·云南省临沧模拟)α,β是两个平面,AB,CD是两条线段,已知α∩β=EF,AB①α于B,CD①α于D,若增加一个条件,就能得出BD①EF,现有下列条件:①AC①β;①AC与α,β所成的角相等;①AC与CD在β内的射影在同一条直线上;①AC①EF.其中能成为增加条件的序号是________.【解析】由题意得,AB①CD,所以A,B,C,D四点共面,①中,因为AC①β,EF①β,所以AC①EF.又因为AB①α,EF①α,所以AB①EF.因为AB∩AC=A,所以EF①平面ABDC.又因为BD①平面ABDC,所以BD①EF,故①正确;①中,由①可知,若BD①EF成立,则有EF①平面ABDC,则有EF①AC成立,而AC与α,β所成角相等是无法得到EF①AC的,故①错误;①中,由AC与CD在β内的射影在同一条直线上可知EF①AC,由①可知①正确;①中,仿照①的分析过程可知①错误.【答案】①①13.(2020·内蒙赤峰四中模拟)如图所示,在正四棱柱ABCD-A1B1C1D1中,E,F,G,H分别是棱CC1,C1D1,D1D,DC的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M只需满足条件________时,就有MN①平面B1BDD1.(注:请填上你认为正确的一个条件即可,不必考虑全部可能情况)【解析】连接HN,FH,FN,则FH①DD1,HN①BD,所以平面FHN①平面B1BDD1,只需M①FH,则MN①平面FHN,所以MN①平面B1BDD1.【答案】点M在线段FH上(或点M与点H重合)14.(2020·湖南长沙模拟)如图,在三棱柱ABC-A′B′C′中,点E,F,H,K分别为AC′,CB′,A′B′,B′C′的中点,G为①ABC的重心.从K,H,G,B′四点中取一点作为P,使得该棱柱恰有2条棱与平面PEF 平行,则P为________.【解析】取A′C′的中点M,连接EM,MK,KF,EF,则EM 12CC′KF,得四边形EFKM为平行四边形,若取点K为P,则AA′①BB′①CC′①PF,故与平面PEF平行的棱超过2条,不符合题意;因为HB′①MK,MK①EF,所以HB′①EF,若取点H或B′为P,则平面PEF与平面EFB′A′为同一平面,与平面EFB′A′平行的棱只有AB,不符合题意;连接BC′,则EF①A′B′①AB,若取点G为P,则AB,A′B′与平面PEF平行.【答案】G15.(2020·安徽合肥调研)如图,已知三棱柱ABC-A1B1C1,M为棱AB上一点,BC1①平面A1MC.(1)求证:AM=BM;(2)若①ABC是等边三角形,AB=AA1,①A1AB=①A1AC=60°,①A1MC的面积为42,求三棱柱ABC -A1B1C1的体积.【解析】(1)证明:如图,连接AC1交A1C于N,连接MN.①BC 1①平面A 1MC ,BC 1①平面ABC 1,平面ABC 1∩平面A 1MC =MN ,①BC 1①MN .由三棱柱ABC -A 1B 1C 1知,四边形ACC 1A 1为平行四边形,①N 为AC 1的中点.①M 为AB 的中点,即AM =BM .(2)连接A 1B ,①①ABC 是等边三角形,AB =AA 1,①A 1AB =①A 1AC =60°,①①ABC ,①AA 1B ,①AA 1C 是全等的等边三角形,由(1)知,M 为AB 的中点,①A 1M ①AB ,CM ①AB .①A 1M ∩CM =M ,①AB ①平面A 1MC .设AB =2a ,则A 1M =CM =3a ,A 1C =2a ,①①A 1MC 的面积为12·2a ·2a =2a 2=42,解得a =2,即AM =2, ①V 三棱锥A -A 1MC =13·S ①A 1MC ·AM =823, 从而V 三棱柱ABC -A 1B 1C 1=6·V 三棱锥A -A 1MC =16 2.16.(2020·陕西省汉中模拟)如图,在四棱锥O -ABCD 中,底面ABCD 是边长为2的正方形,OA ①底面ABCD ,OA =2,M 为OA 的中点.(1)求四棱锥O -ABCD 的体积;(2)求异面直线OC 与MD 所成角的正切值.【解析】(1)由已知可求得正方形ABCD 的面积S =4,所以四棱锥O -ABCD 的体积V =13×4×2=83.(2)如图,连接AC ,设线段AC 的中点为E ,连接ME ,DE ,又M 为OA 中点,①ME ①OC ,则①EMD (或其补角)为异面直线OC 与MD 所成的角,由已知可得DE =2,EM =3,MD =5, ①(2)2+(3)2=(5)2,即DE 2+EM 2=MD 2,①①DEM 为直角三角形,①tan①EMD =DE EM =23=63, ①异面直线OC 与MD 所成角的正切值为63. 17.(2020·四川成都模拟)如图,在四棱锥P -ABCD 中,平面P AD ①平面ABCD ,P A =PD ,AB =AD ,P A ①PD ,AD ①CD ,①BAD =60°,M ,N 分别为AD ,P A 的中点.(1)证明:平面BMN ①平面PCD ;(2)若AD =6,求三棱锥P -BMN 的体积.【解析】(1)证明:如图,连接BD.①AB=AD,①BAD=60°,①①ABD为正三角形.①M为AD的中点,①BM①AD.①AD①CD,CD,BM①平面ABCD,①BM①CD.又BM①平面PCD,CD①平面PCD,①BM①平面PCD.①M,N分别是AD,P A的中点,①MN①PD.又MN①平面PCD,PD①平面PCD,①MN①平面PCD.又BM,MN①平面BMN,BM∩MN=M,①平面BMN①平面PCD.(2)在(1)中已证BM①AD.①平面P AD①平面ABCD,BM①平面ABCD,①BM①平面P AD.又AD=6,①BAD=60°,①BM=3 3.①M,N分别是AD,P A的中点,P A=PD=22AD=32,①①PMN的面积S①PMN=14S①P AD=14×12×(32)2=94.①三棱锥P-BMN的体积V P-BMN=V B-PMN=13S①PMN·BM=13×94×33=934.18.(2020·安徽省铜陵模拟)在如图所示的多面体中,四边形ABB1A1和四边形ACC1A1都为矩形.设D,E分别是线段BC,CC1的中点,在线段AB上是否存在一点M,使DE①平面A1MC?请证明你的结论.【解析】存在点M为线段AB的中点,使DE①平面A1MC,证明如下:如图,取线段AB的中点M,连接A1M,MC,A1C,AC1,设O为A1C与AC1的交点.由已知,O为AC1,A1C的中点.连接MD,OE,OM,则MD,OE分别为①ABC,①ACC1的中位线,所以MD 12AC,OE12AC,因此MD OE.从而四边形MDEO为平行四边形,则DE①MO.因为DE①平面A1MC,MO①平面A1MC,所以DE①平面A1MC.即线段AB上存在一点M(线段AB的中点),使DE①平面A1MC.19.(2020·吉林省通化模拟)如图(1),在Rt①ABC中,①ABC=90°,D为AC的中点,AE①BD于点E(不同于点D),延长AE交BC于F,将①ABD沿BD折起,得到三棱锥A1-BCD,如图(2)所示.(1)若M是FC的中点,求证:直线DM①平面A1EF;(2)求证:BD①A1F;(3)若平面A1BD①平面BCD,试判断直线A1B与直线CD能否垂直?并说明理由.【解析】(1)证明:因为D,M分别为AC,FC的中点,所以DM①EF,又EF①平面A1EF,DM①平面A1EF,所以DM①平面A1EF.(2)证明:因为A1E①BD,EF①BD且A1E∩EF=E,所以BD①平面A1EF.又A1F①平面A1EF,所以BD①A1F.(3)直线A1B与直线CD不能垂直.理由如下:因为平面A1BD①平面BCD,平面A1BD∩平面BCD=BD,EF①BD,EF①平面BCD,所以EF①平面A1BD.因为A1B①平面A1BD,所以A1B①EF.又因为EF①DM,所以A1B①DM.假设A1B①CD,因为CD∩DM=D,所以A1B①平面BCD,所以A1B①BD,这与①A1BD为锐角矛盾,所以直线A1B与直线CD不能垂直.。

相关文档
最新文档