高等数学(同济五版)第九章-重积分-练习题册

合集下载

高数课本课后必做习题

高数课本课后必做习题
第三章微分中值定理与导数的应用
习题3—1
1、2、3、4、5、6、7、8、9、10、11、12、13、14
习题3—2
1(1)~(16)、2
习题3—3
1、3、4、5、7、10(1)~(3)
习题3—4
1、2、3(1)~(7)、5(1)~(5)、6、8(1)~(4)、9(1)~(6)、10(1)~(3)、12、13、14
习题2—3
1(1)~(12)、3(1)~(2)、4、10(1)~(2)
习题2—4
1(1)~(4)、2、3(1)~(4)、4(1)~(4)、5(1)~(2)、6、7(1)~(2)、8(1)~(4)
习题2—5
2、3(1)~(10)、4(1)~(8)
总习题二
1、2、3、6、7、8(1)~(5)、9(1)~(2)、11、12(1)~(2)、13、14。
1、2、4、5、6(1)~(2)、8、9、11、19。
第十章重积分(二重积分)
习题10—1
4(1)~(4)、5(1)~(4)
习题10—2
1(1)~(4)、2(1)~(4)、4(1)~(4)、5、6(1)~(6)、7、8、9、10、12(1)~(4)、13(1)~(4)、14(1)~(3)、15(1)~(4)
习题4—3
1~24
习题4—4
1~24
总习题四
1~40。
第五章定积分
习题5—1
10、11、12、13
习题5—2
2、3、4、5(1)~(3)、6(1)~(11)、9(1)~(2)、11、12、13
习题5—3
1(1)~(26)、2、3、4、5、6、7(1)~(13)
习题5—4
1(1)~(10)
总习题五

同济第五版高数答案(高等数学课后习题解答)

同济第五版高数答案(高等数学课后习题解答)

习题1-11. 设A =(-∞, -5)⋃(5, +∞), B =[-10, 3), 写出A ⋃B , A ⋂B , A \B 及A \(A \B )的表达式. 解 A ⋃B =(-∞, 3)⋃(5, +∞), A ⋂B =[-10, -5), A \B =(-∞, -10)⋃(5, +∞), A \(A \B )=[-10, -5).2. 设A 、B 是任意两个集合, 证明对偶律: (A ⋂B )C =A C ⋃B C . 证明 因为x ∈(A ⋂B )C ⇔x ∉A ⋂B ⇔ x ∉A 或x ∉B ⇔ x ∈A C 或x ∈B C ⇔ x ∈A C ⋃B C , 所以 (A ⋂B )C =A C ⋃B C .3. 设映射f : X →Y , A ⊂X , B ⊂X . 证明 (1)f (A ⋃B )=f (A )⋃f (B ); (2)f (A ⋂B )⊂f (A )⋂f (B ). 证明 因为y ∈f (A ⋃B )⇔∃x ∈A ⋃B , 使f (x )=y⇔(因为x ∈A 或x ∈B ) y ∈f (A )或y ∈f (B ) ⇔ y ∈ f (A )⋃f (B ), 所以 f (A ⋃B )=f (A )⋃f (B ). (2)因为y ∈f (A ⋂B )⇒ ∃x ∈A ⋂B , 使f (x )=y ⇔(因为x ∈A 且x ∈B ) y ∈f (A )且y ∈f (B )⇒ y ∈ f (A )⋂f (B ), 所以 f (A ⋂B )⊂f (A )⋂f (B ).4. 设映射f : X →Y , 若存在一个映射g : Y →X , 使X I f g = , Y I g f = , 其中I X 、I Y 分别是X 、Y 上的恒等映射, 即对于每一个x ∈X , 有I X x =x ; 对于每一个y ∈Y , 有I Y y =y . 证明: f 是双射, 且g 是f 的逆映射: g =f -1.证明 因为对于任意的y ∈Y , 有x =g (y )∈X , 且f (x )=f [g (y )]=I y y =y , 即Y 中任意元素都是X 中某元素的像, 所以f 为X 到Y 的满射.又因为对于任意的x 1≠x 2, 必有f (x 1)≠f (x 2), 否则若f (x 1)=f (x 2) ⇒g [ f (x 1)]=g [f (x 2)] ⇒ x 1=x 2. 因此f 既是单射, 又是满射, 即f 是双射.对于映射g : Y →X , 因为对每个y ∈Y , 有g (y )=x ∈X , 且满足f (x )=f [g (y )]=I y y =y , 按逆映射的定义, g 是f 的逆映射.5. 设映射f : X →Y , A ⊂X . 证明: (1)f -1(f (A ))⊃A ;(2)当f 是单射时, 有f -1(f (A ))=A .证明 (1)因为x ∈A ⇒ f (x )=y ∈f (A ) ⇒ f -1(y )=x ∈f -1(f (A )), 所以 f -1(f (A ))⊃A . (2)由(1)知f -1(f (A ))⊃A .另一方面, 对于任意的x ∈f -1(f (A ))⇒存在y ∈f (A ), 使f -1(y )=x ⇒f (x )=y . 因为y ∈f (A )且f 是单射, 所以x ∈A . 这就证明了f -1(f (A ))⊂A . 因此f -1(f (A ))=A . 6. 求下列函数的自然定义域: (1)23+=x y ;解 由3x +2≥0得32->x . 函数的定义域为) ,32[∞+-.(2)211xy -=;解 由1-x 2≠0得x ≠±1. 函数的定义域为(-∞, -1)⋃(-1, 1)⋃(1, +∞). (3)211x xy --=;解 由x ≠0且1-x 2≥0得函数的定义域D =[-1, 0)⋃(0, 1]. (4)241x y -=; 解 由4-x 2>0得 |x |<2. 函数的定义域为(-2, 2). (5)x y sin =;解 由x ≥0得函数的定义D =[0, +∞).(6) y =tan(x +1); 解 由21π≠+x (k =0, ±1, ±2, ⋅ ⋅ ⋅)得函数的定义域为 12-+≠ππk x (k =0, ±1, ±2, ⋅ ⋅ ⋅).(7) y =arcsin(x -3);解 由|x -3|≤1得函数的定义域D =[2, 4].(8)xx y 1arctan 3+-=;解 由3-x ≥0且x ≠0得函数的定义域D =(-∞, 0)⋃(0, 3). (9) y =ln(x +1);解 由x +1>0得函数的定义域D =(-1, +∞). (10)xe y 1=.解 由x ≠0得函数的定义域D =(-∞, 0)⋃(0, +∞). 7. 下列各题中, 函数f (x )和g (x )是否相同?为什么?(1)f (x )=lg x 2, g (x )=2lg x ; (2) f (x )=x , g (x )=2x ;(3)334)(x x x f -=,31)(-=x x x g . (4)f (x )=1, g (x )=sec 2x -tan 2x . 解 (1)不同. 因为定义域不同.(2)不同. 因为对应法则不同, x <0时, g (x )=-x . (3)相同. 因为定义域、对应法则均相相同. (4)不同. 因为定义域不同.8. 设⎪⎩⎪⎨⎧≥<=3|| 03|| |sin |)(ππϕx x x x , 求)6(πϕ, 4(πϕ, )4(πϕ-, ϕ(-2), 并作出函数y =ϕ(x )的图形. 解 216sin |)6(==ππϕ, 22|4sin |)4(==ππϕ, 22|)4sin(|)4(=-=-ππϕ, 0)2(=-ϕ.9. 试证下列函数在指定区间内的单调性:(1)x xy -=1, (-∞, 1);(2)y =x +ln x , (0, +∞).证明 (1)对于任意的x 1, x 2∈(-∞, 1), 有1-x 1>0, 1-x 2>0. 因为当x 1<x 2时,0)1)(1(112121221121<---=---=-x x x x x x x x y y , 所以函数xxy -=1在区间(-∞, 1)内是单调增加的. (2)对于任意的x 1, x 2∈(0, +∞), 当x 1<x 2时, 有 0ln )()ln ()ln (2121221121<+-=+-+=-x x x x x x x x y y , 所以函数y =x +ln x 在区间(0, +∞)内是单调增加的.10. 设 f (x )为定义在(-l , l )内的奇函数, 若f (x )在(0, l )内单调增加, 证明f (x )在(-l , 0)内也单调增加.证明 对于∀x 1, x 2∈(-l , 0)且x 1<x 2, 有-x 1, -x 2∈(0, l )且-x 1>-x 2. 因为f (x )在(0, l )内单调增加且为奇函数, 所以f (-x 2)<f (-x 1), - f (x 2)<-f (x 1), f (x 2)>f (x 1),这就证明了对于∀x 1, x 2∈(-l , 0), 有f (x 1)< f (x 2), 所以f (x )在(-l , 0)内也单调增加.11. 设下面所考虑的函数都是定义在对称区间(-l , l )上的, 证明:(1)两个偶函数的和是偶函数, 两个奇函数的和是奇函数;(2)两个偶函数的乘积是偶函数, 两个奇函数的乘积是偶函数, 偶函数与奇函数的乘积是奇函数.证明 (1)设F (x )=f (x )+g (x ). 如果f (x )和g (x )都是偶函数, 则 F (-x )=f (-x )+g (-x )=f (x )+g (x )=F (x ), 所以F (x )为偶函数, 即两个偶函数的和是偶函数.如果f (x )和g (x )都是奇函数, 则F (-x )=f (-x )+g (-x )=-f (x )-g (x )=-F (x ), 所以F (x )为奇函数, 即两个奇函数的和是奇函数.(2)设F (x )=f (x )⋅g (x ). 如果f (x )和g (x )都是偶函数, 则 F (-x )=f (-x )⋅g (-x )=f (x )⋅g (x )=F (x ), 所以F (x )为偶函数, 即两个偶函数的积是偶函数.如果f (x )和g (x )都是奇函数, 则F (-x )=f (-x )⋅g (-x )=[-f (x )][-g (x )]=f (x )⋅g (x )=F (x ), 所以F (x )为偶函数, 即两个奇函数的积是偶函数.如果f (x )是偶函数, 而g (x )是奇函数, 则F (-x )=f (-x )⋅g (-x )=f (x )[-g (x )]=-f (x )⋅g (x )=-F (x ), 所以F (x )为奇函数, 即偶函数与奇函数的积是奇函数.12. 下列函数中哪些是偶函数, 哪些是奇函数, 哪些既非奇函数又非偶函数? (1)y =x 2(1-x 2); (2)y =3x 2-x 3; (3)2211xx y +-=;(4)y =x (x -1)(x +1); (5)y =sin x -cos x +1;(6)2xx a a y -+=.解 (1)因为f (-x )=(-x )2[1-(-x )2]=x 2(1-x 2)=f (x ), 所以f (x )是偶函数. (2)由f (-x )=3(-x )2-(-x )3=3x 2+x 3可见f (x )既非奇函数又非偶函数.(3)因为())(111)(1)(2222x f x x x x x f =+-=-+--=-, 所以f (x )是偶函数.(4)因为f (-x )=(-x )(-x -1)(-x +1)=-x (x +1)(x -1)=-f (x ), 所以f (x )是奇函数. (5)由f (-x )=sin(-x )-cos(-x )+1=-sin x -cos x +1可见f (x )既非奇函数又非偶函数. (6)因为)(22)()()(x f a a a ax f xx x x =+=+=-----, 所以f (x )是偶函数.13. 下列各函数中哪些是周期函数?对于周期函数, 指出其周期: (1)y =cos(x -2); (2)y =cos 4x ; (3)y =1+sin πx ; (4)y =x cos x ; (5)y =sin 2 x .解 (1)是周期函数, 周期为l =2π. (2)是周期函数, 周期为2π=l .(3)是周期函数, 周期为l =2. (4)不是周期函数. (5)是周期函数, 周期为l =π. 14. 求下列函数的反函数: (1)31+=x y ; (2)xx y +-=11;(3)d cx b ax y ++=(ad -bc ≠0);(4) y =2sin3x ; (5) y =1+ln(x +2);(6)122+=xxy . 解 (1)由31+=x y 得x =y 3-1, 所以31+=x y 的反函数为y =x 3-1. (2)由x x y +-=11得y yx +-=11, 所以x x y +-=11的反函数为x x y +-=11.(3)由d cx b ax y ++=得a cy bdy x -+-=, 所以d cx b ax y ++=的反函数为acx b dx y -+-=. (4)由y =2sin 3x 得2arcsin 31yx =, 所以y =2sin 3x 的反函数为2arcsin 31x y =.(5)由y =1+ln(x +2)得x =e y -1-2, 所以y =1+ln(x +2)的反函数为y =e x -1-2.(6)由122+=x x y 得y y x -=1log 2, 所以122+=x x y 的反函数为xx y -=1log 2. 15. 设函数f (x )在数集X 上有定义, 试证: 函数f (x )在X 上有界的充分必要条件是它在X 上既有上界又有下界.证明 先证必要性. 设函数f (x )在X 上有界, 则存在正数M , 使|f (x )|≤M , 即-M ≤f (x )≤M . 这这就证明了f (x )在X 上有下界-M 和上界M .再证充分性. 设函数f (x )在X 上有下界K 1和上界K 2, 即K 1≤f (x )≤ K 2 . 取M =max{|K 1|, |K 2|}, 则 -M ≤ K 1≤f (x )≤ K 2≤M , 即 |f (x )|≤M .这就证明了f (x )在X 上有界.16. 在下列各题中, 求由所给函数复合而成的函数, 并求这函数分别对应于给定自变量值x 1和x 2的函数值:(1) y =u 2, u =sin x , 61π=x , 32π=x ;(2) y =sin u , u =2x , ,81π=x ,42π=x ; (3)u y =, u =1+x 2, x 1=1, x 2= 2; (4) y =e u , u =x 2, x 1 =0, x 2=1;(5) y =u 2 , u =e x , x 1=1, x 2=-1.解 (1)y =sin 2x , 4121(6sin 221===πy ,4323(3sin 222===πy .(2)y =sin2x , 224sin )82sin(1==⋅=ππy ,12sin )42sin(2==⋅=ππy .(3)21x y +=, 21121=+=y , 52122=+=y . (4)2x e y =, 1201==e y , e e y ==212.(5)y =e 2x , y 1=e 2⋅1=e 2, y 2=e 2⋅(-1)=e -2.17. 设f (x )的定义域D =[0, 1], 求下列各函数的定义域:(1) f (x 2); (2) f (sin x ); (3) f (x +a )(a >0);(4)f (x +a )+f (x -a )(a >0).解 (1)由0≤x 2≤1得|x |≤1, 所以函数f (x 2)的定义域为[-1, 1].(2)由0≤sin x ≤1得2n π≤x ≤(2n +1)π (n =0, ±1, ±2⋅ ⋅ ⋅), 所以函数f (sin x )的定义域为 [2n π, (2n +1)π] (n =0, ±1, ±2⋅ ⋅ ⋅) .(3)由0≤x +a ≤1得-a ≤x ≤1-a , 所以函数f (x +a )的定义域为[-a , 1-a ].(4)由0≤x +a ≤1且0≤x -a ≤1得: 当210≤<a 时, a ≤x ≤1-a ; 当21>a 时, 无解. 因此当210≤<a 时函数的定义域为[a , 1-a ], 当21>a 时函数无意义.18. 设⎪⎩⎪⎨⎧>-=<=1|| 11|| 01|| 1)(x x x x f , g (x )=e x , 求f [g (x )]和g [f (x )], 并作出这两个函数的图形.解 ⎪⎩⎪⎨⎧>-=<=1|| 11|| 01|| 1)]([x x x e e e x g f , 即⎪⎩⎪⎨⎧>-=<=0 10 00 1)]([x x x x g f . ()⎪⎩⎪⎨⎧>=<==-1|| 1|| e 1|| ][101)(x e x x e e x f g x f , 即()⎪⎩⎪⎨⎧>=<=-1|| 1|| 11|| ][1x e x x e x f g .19. 已知水渠的横断面为等腰梯形, 斜角ϕ=40︒(图1-37). 当过水断面ABCD 的面积为定值S 0时, 求湿周L (L =AC +CD +DB)与水深h 之间的函数关系式, 并说明定义域. 图1-37 解40sin h DC Ab ==, 又从)]40cot 2([21Sh BC BC h =⋅++ 得h hS BC ⋅-=40cot 0, 所以 h h S L40sin 40cos 20-+=.自变量h 的取值范围应由不等式组h >0,040cot 0>⋅-h hS 确定, 定义域为 40cot 00S h <<.20. 收敛音机每台售价为90元, 成本为60元. 厂方为鼓励销售商大量采购, 决定凡是订购量超过100台以上的, 每多订购1台, 售价就降低1分, 但最低价为每台75元. (1)将每台的实际售价p 表示为订购量x 的函数; (2)将厂方所获的利润P 表示成订购量x 的函数; (3)某一商行订购了1000台, 厂方可获利润多少? 解 (1)当0≤x ≤100时, p =90.令0. 01(x 0-100)=90-75, 得x 0=1600. 因此当x ≥1600时, p =75. 当100<x <1600时,p =90-(x -100)⨯0. 01=91-0. 01x . 综合上述结果得到⎪⎩⎪⎨⎧≥<<-≤≤=1600 751600100 01.0911000 90x x x x p.(2)⎪⎩⎪⎨⎧≥<<-≤≤=-=1600 151600100 01.0311000 30)60(2x x x x x x x x p P .(3) P =31⨯1000-0. 01⨯10002=21000(元).习题1-21. 观察一般项x n 如下的数列{x n }的变化趋势, 写出它们的极限:(1)n n x 21=;(2)n x n n 1)1(-=;(3)212n x n +=;(4)11+-=n n x n ; (5) x n =n (-1)n . 解 (1)当n →∞时, nn x 21=→0, 021lim=∞→nn .(2)当n →∞时, n x nn 1)1(-=→0, 01)1(lim =-∞→nn n .(3)当n →∞时, 212n x n +=→2, 2)12(lim 2=+∞→nn .(4)当n →∞时, 12111+-=+-=n n n x n →0, 111lim =+-∞→n n n . (5)当n →∞时, x n =n (-1)n 没有极限. 2. 设数列{x n }的一般项n n x n 2cos π=. 问nn x ∞→lim =? 求出N , 使当n >N 时, x n 与其极限之差的绝对值小于正数ε , 当ε =0.001时, 求出数N . 解 0lim =∞→n n x .n n n x n 12cos ||0|≤=-π. ∀ε >0, 要使|x n -0|<ε , 只要ε<n 1, 也就是ε1>n . 取]1[ε=N , 则∀n >N , 有|x n -0|<ε .当ε =0.001时, 1[ε=N =1000.3. 根据数列极限的定义证明:(1)01lim 2=∞→nn ;(2)231213lim=++∞→n n n ;(3)1lim 22=+∞→na n n(4)19 999.0lim =⋅⋅⋅∞→个n n . (1)分析 要使ε<=-221|01|n n , 只须ε12>n , 即ε1>n . 证明 因为∀ε>0, ∃]1[ε=N , 当n >N 时, 有ε<-|01|2n , 所以01lim 2=∞→n n .(2)分析 要使ε<<+=-++n n n n 41)12(21|231213|, 只须ε<n41, 即ε41>n .证明 因为∀ε>0, ∃41[ε=N , 当n >N 时, 有ε<-++231213|n n , 所以231213lim =++∞→n n n .(3)分析 要使ε<<++=-+=-+n a n a n n a n n a n n a n 22222222)(|1|, 只须ε2a n >.证明 因为∀ε>0, ∃][2εa N =, 当∀n >N 时, 有ε<-+|1|22n a n , 所以1lim 22=+∞→na n n .(4)分析 要使|0.99 ⋅ ⋅ ⋅ 9-1|ε<=-1101n , 只须1101-n <ε , 即ε1lg 1+>n .证明 因为∀ε>0, ∃]1lg 1[ε+=N , 当∀n >N 时, 有|0.99 ⋅ ⋅ ⋅ 9-1|<ε , 所以19 999.0lim =⋅⋅⋅∞→个n n . 4. a u n n =∞→lim , 证明||||lim a u n n =∞→. 并举例说明: 如果数列{|x n |}有极限, 但数列{x n }未必有极限.证明 因为a u n n =∞→lim , 所以∀ε>0, ∃N ∈N , 当n >N 时, 有ε<-||a u n , 从而||u n |-|a ||≤|u n -a |<ε .这就证明了||||lim a u n n =∞→.数列{|x n |}有极限, 但数列{x n }未必有极限. 例如1|)1(|lim =-∞→n n , 但n n )1(lim -∞→不存在.5. 设数列{x n }有界, 又0lim =∞→n n y , 证明: 0lim =∞→n n n y x .证明 因为数列{x n }有界, 所以存在M , 使∀n ∈Z , 有|x n |≤M . 又0lim =∞→n n y , 所以∀ε>0, ∃N ∈N , 当n >N 时, 有My n ε<||. 从而当n >N 时, 有εε=⋅<≤=-M M y M y x y x n n n n n |||||0|, 所以0lim =∞→n n n y x .6. 对于数列{x n }若x 2k →a (k →∞), x 2k +1→a (k →∞), 证明: x n →a (n →∞). 证明 因为x 2k →a (k →∞), x 2k +1→a (k →∞), 所以∀ε>0, ∃K 1, 当2k >2K 1时, 有| x 2k -a |<ε ;∃K 2, 当2k +1>2K 2+1时, 有| x 2k +1-a |<ε..取N =max{2K 1, 2K 2+1}, 只要n >N , 就有|x n -a |<ε . 因此x n →a (n →∞).习题1-31. 根据函数极限的定义证明: (1)8)13(lim 3=-→x x ;(2)12)25(lim 2=+→x x ;(3)424lim22-=+--→x x x ; (4)21241lim 321=+--→x x x .证明 (1)分析 |(3x -1)-8|=|3x -9|=3|x -3|, 要使|(3x -1)-8|<ε , 只须ε31|3|<-x .证明 因为∀ε >0, ∃εδ31=, 当0<|x -3|<δ时, 有|(3x -1)-8|<ε , 所以8)13(lim 3=-→x x .(2)分析 |(5x +2)-12|=|5x -10|=5|x -2|, 要使|(5x +2)-12|<ε , 只须ε51|2|<-x .证明 因为∀ε >0, ∃εδ51=, 当0<|x -2|<δ时, 有|(5x +2)-12|<ε , 所以12)25(lim 2=+→x x .(3)分析 |)2(||2|244)4(2422--=+=+++=--+-x x x x x x x , 要使ε<--+-)4(242x x , 只须ε<--|)2(|x .证明 因为∀ε >0, ∃εδ=, 当0<|x -(-2)|<δ时, 有ε<--+-)4(242x x , 所以424lim 22-=+--→x x x . (4)分析|21(|2|221|212413--=--=-+-x x x x , 要使ε<-+-212413x x , 只须ε21|)21(|<--x . 证明 因为∀ε >0, ∃εδ21=, 当δ<--<|)21(|0x 时, 有ε<-+-212413x x , 所以21241lim 321=+--→x x x .2. 根据函数极限的定义证明: (1)2121lim33=+∞→x x x ; (2)0sin lim=+∞→xxx .证明 (1)分析 333333||21212121x x x x x x =-+=-+, 要使ε<-+212133x x , 只须ε<3||21x , 即321||ε>x .证明 因为∀ε >0, ∃321ε=X , 当|x |>X 时, 有ε<-+212133x x , 所以2121lim 33=+∞→x x x .(2)分析 xxx xx 1|sin |0sin ≤=-, 要使ε<-0sin x x, 只须ε<x1, 即21ε>x .证明 因为∀ε>0, ∃21ε=X , 当x >X 时, 有ε<-0sin x x, 所以0sin lim=+∞→xxx .3. 当x →2时, y =x 2→4. 问δ等于多少, 使当|x -2|<δ时, |y -4|<0. 001?解 由于x →2, |x -2|→0, 不妨设|x -2|<1, 即1<x <3. 要使|x 2-4|=|x +2||x -2|<5|x -2|<0. 001, 只要0002.05001.0|2|=<-x , 取δ=0. 0002, 则当0<|x -2|<δ时, 就有|x 2-4|<0. 001. 4. 当x →∞时, 13122→+-=x x y , 问X 等于多少, 使当|x |>X 时, |y -1|<0.01?解 要使01.034131222<+=-+-x x x , 只397301.04||=->x , 397=X . 5. 证明函数f (x )=|x | 当x →0时极限为零.6. 求,)(x x x f = xx x ||)(=ϕ当x →0时的左﹑右极限, 并说明它们在x →0时的极限是否存在.证明 因为11lim lim )(lim 000===---→→→x x x x xx f ,11lim lim )(lim 000===+++→→→x x x x xx f ,)(lim )(lim 0x f x f x x +→→=-,所以极限)(lim 0x f x →存在.因为1lim ||lim )(lim 00-=-==---→→→x xx x x x x x ϕ, 1lim ||lim )(lim 00===+++→→→xx x x x x x x ϕ, )(lim )(lim 0x x x x ϕϕ+→→≠-, 所以极限)(lim 0x x ϕ→不存在.7. 证明: 若x →+∞及x →-∞时, 函数f (x )的极限都存在且都等于A , 则A x f x =∞→)(lim .证明 因为A x f x =-∞→)(lim , A x f x =+∞→)(lim , 所以∀ε>0,∃X 1>0, 使当x <-X 1时, 有|f (x )-A |<ε; ∃X 2>0, 使当x >X 2时, 有|f (x )-A |<ε .取X =max{X 1, X 2}, 则当|x |>X 时, 有|f (x )-A |<ε , 即A x f x =∞→)(lim .8. 根据极限的定义证明: 函数f (x )当x →x 0 时极限存在的充分必要条件是左极限、右极限各自存在并且相等.证明 先证明必要性. 设f (x )→A (x →x 0), 则∀ε>0, ∃δ>0, 使当0<|x -x 0|<δ 时, 有|f (x )-A |<ε .因此当x 0-δ<x <x 0和x 0<x <x 0+δ 时都有|f (x )-A |<ε .这说明f (x )当x →x 0时左右极限都存在并且都等于A . 再证明充分性. 设f (x 0-0)=f (x 0+0)=A , 则∀ε>0, ∃δ1>0, 使当x 0-δ1<x <x 0时, 有| f (x )-A <ε ; ∃δ2>0, 使当x 0<x <x 0+δ2时, 有| f (x )-A |<ε .取δ=min{δ1, δ2}, 则当0<|x -x 0|<δ 时, 有x 0-δ1<x <x 0及x 0<x <x 0+δ2 , 从而有| f (x )-A |<ε ,即f (x )→A (x →x 0).9. 试给出x →∞时函数极限的局部有界性的定理, 并加以证明.解 x →∞时函数极限的局部有界性的定理: 如果f (x )当x →∞时的极限存在, 则存在X >0及M >0, 使当|x |>X 时, |f (x )|<M .证明 设f (x )→A (x →∞), 则对于ε =1, ∃X >0, 当|x |>X 时, 有|f (x )-A |<ε =1. 所以|f (x )|=|f (x )-A +A |≤|f (x )-A |+|A |<1+|A |.这就是说存在X >0及M >0, 使当|x |>X 时, |f (x )|<M , 其中M =1+|A |.习题1-41. 两个无穷小的商是否一定是无穷小?举例说明之. 解 不一定.例如, 当x →0时, α(x )=2x , β(x )=3x 都是无穷小, 但32)()(lim 0=→x x x βα, )()(x x βα不是无穷小.2. 根据定义证明:(1)392+-=x x y 当x →3时为无穷小;(2)xx y 1sin =当x →0时为无穷小.证明 (1)当x ≠3时|3|39||2-=+-=x x x y . 因为∀ε >0, ∃δ=ε , 当0<|x -3|<δ时, 有εδ=<-=+-=|3|39||2x x x y ,所以当x →3时392+-=x x y 为无穷小.(2)当x ≠0时|0|1sin |||||-≤=x xx y . 因为∀ε >0, ∃δ=ε , 当0<|x -0|<δ时, 有εδ=<-≤=|0||1sin |||||x xx y ,所以当x →0时x x y 1sin =为无穷小.3. 根据定义证明: 函数xxy 21+=为当x →0时的无穷大. 问x 应满足什么条件, 能使|y |>104?证明 分析2||11221||-≥+=+=x x x x y , 要使|y |>M , 只须M x >-2||1, 即21||+<M x . 证明 因为∀M >0, ∃21+=M δ, 使当0<|x -0|<δ时, 有M xx >+21, 所以当x →0时, 函数x xy 21+=是无穷大. 取M =104, 则21014+=δ. 当2101|0|04+<-<x 时, |y |>104. 4. 求下列极限并说明理由:(1)xx n 12lim+∞→;(2)xx x --→11lim20.解 (1)因为x x x 1212+=+, 而当x →∞ 时x 1是无穷小, 所以212lim =+∞→xx n .(2)因为x xx +=--1112(x ≠1), 而当x →0时x 为无穷小, 所以111lim 20=--→x x x . 5. 根据函数极限或无穷大定义, 填写下表:6. 函数y =x cos x 在(-∞, +∞)内是否有界?这个函数是否为当x →+∞ 时的无穷大?为什么?解 函数y =x cos x 在(-∞, +∞)内无界.这是因为∀M >0, 在(-∞, +∞)内总能找到这样的x , 使得|y (x )|>M . 例如y (2k π)=2k π cos2k π=2k π (k =0, 1, 2, ⋅ ⋅ ⋅),当k 充分大时, 就有| y (2k π)|>M .当x →+∞ 时, 函数y =x cos x 不是无穷大.这是因为∀M >0, 找不到这样一个时刻N , 使对一切大于N 的x , 都有|y (x )|>M . 例如022cos()22(22(=++=+ππππππk k k y (k =0, 1, 2, ⋅ ⋅ ⋅),对任何大的N , 当k 充分大时, 总有N k x >+=22ππ, 但|y (x )|=0<M .7. 证明: 函数x x y 1sin 1=在区间(0, 1]上无界, 但这函数不是当x →0+时的无穷大.证明 函数x x y 1sin 1=在区间(0, 1]上无界. 这是因为∀M >0, 在(0, 1]中总可以找到点x k , 使y (x k )>M . 例如当221ππ+=k x k (k =0, 1, 2, ⋅ ⋅ ⋅)时, 有22)(ππ+=k x y k ,当k 充分大时, y (x k )>M .当x →0+ 时, 函数xx y 1sin 1=不是无穷大. 这是因为∀M >0, 对所有的δ>0, 总可以找到这样的点x k , 使0<x k <δ, 但y (x k )<M . 例如可取πk x k 21=(k =0, 1, 2, ⋅ ⋅ ⋅), 当k 充分大时, x k <δ, 但y (x k )=2k πsin2k π=0<M .习题1-51. 计算下列极限: (1)35lim 22-+→x x x ;解 9325235lim 222-=-+=-+→x x x .(2)13lim 223+-→x x x ;解 01)3(3)3(13lim 22223=+-=+-→x x x . (3)112lim 221-+-→x x x x ;解 02011lim )1)(1()1(lim 112lim121221==+-=+--=-+-→→→x x x x x x x x x x x .(4)xx xx x x 2324lim 2230++-→;解 2123124lim 2324lim 202230=++-=++-→→x x x x x x x x x x .(5)hx h x h 220)(lim-+→;解 x h x hx h hx x h x h x h h h 2)2(lim 2lim )(lim02220220=+=-++=-+→→→.(6))112(lim 2xx x +-∞→; 解 21lim 1lim 2)112(lim 22=+-=+-∞→∞→∞→x x x x x x x . (7)121lim22---∞→x x x x ; 解 2111211lim 121lim 2222=---=---∞→∞→x x x x x x x x . (8)13lim242--+∞→x x x x x ; 解 013lim242=--+∞→x x x x x (分子次数低于分母次数, 极限为零)或 012111lim13lim 4232242=--+=--+∞→∞→xx x x x x xx x x . (9)4586lim 224+-+-→x x x x x ;解 32142412lim )4)(1()4)(2(lim 4586lim 44224=--=--=----=+-+-→→→x x x x x x x x x x x x x .(10))12)(11(lim 2xx x -+∞→; 解 22112(lim )11(lim )12)(11(lim 22=⨯=-⋅+=-+∞→∞→∞→x x x x x x x . (11))21 41211(lim n n +⋅⋅⋅+++∞→; 解 2211)21(1lim)21 41211(lim 1=--=+⋅⋅⋅++++∞→∞→n n n n . (12)2)1( 321limn n n -+⋅⋅⋅+++∞→;解 211lim 212)1(lim )1( 321lim 22=-=-=-+⋅⋅⋅+++∞→∞→∞→n n n n n n n n n n . (13)35)3)(2)(1(lim n n n n n +++∞→;解 515)3)(2)(1(lim3=+++∞→n n n n n (分子与分母的次数相同, 极限为最高次项系数之比).或 51)31)(21)(11(lim 515)3)(2)(1(lim3=+++=+++∞→∞→n n n n n n n n n . (14))1311(lim 31xx x ---→; 解 112lim )1)(1()2)(1(lim)1)(1(31lim 1311(lim 212122131-=+++-=++-+--=++--++=---→→→→x x x x x x x x x x x x x x x x x x x . 2. 计算下列极限: (1)2232)2(2lim -+→x x x x ; 解 因为01602)2(lim2322==+-→x x x x , 所以∞=-+→2232)2(2lim x x x x .(2)12lim 2+∞→x x x ;解 ∞=+∞→12lim 2x x x (因为分子次数高于分母次数). (3))12(lim 3+-∞→x x x .解 ∞=+-∞→)12(lim 3x x x (因为分子次数高于分母次数).3. 计算下列极限: (1)xx x 1sin lim 20→;解 01sin lim 20=→x x x (当x →0时, x 2是无穷小, 而x 1sin 是有界变量). (2)xx x arctan lim ∞→. 解 0arctan 1lim arctan lim =⋅=∞→∞→x x x x x x (当x →∞时, x 1是无穷小, 而arctan x 是有界变量). 4. 证明本节定理3中的(2).习题1-61. 计算下列极限: (1)xx x ωsin lim 0→;解 ωωωωω==→→x x x x x x sin lim sin lim 00. (2)xx x 3tan lim 0→; 解 33cos 133sin lim 33tan lim 00=⋅=→→x x x x x x x . (3)xx x 5sin 2sin lim 0→; 解 52525sin 522sin lim 5sin 2sin lim 00=⋅⋅=→→x x x x x x x x .(4)x x x cot lim 0→;解 1cos lim sin lim cos sin lim cot lim 0000=⋅=⋅=→→→→x x x x x x x x x x x x . (5)xx x x sin 2cos 1lim 0-→; 解法一 ()2sin lim 2sin 2lim 2cos1lim sin 2cos 1lim 20220200===-=-→→→→xx x x x x x x x x x x x .解法二 2sin lim 2sin sin 2lim sin 2cos 1lim 0200===-→→→xx x x x x x x x x x .(6)n n n x2sin2lim ∞→(x 为不等于零的常数). 解 x x xxx nn n n n n ==∞→∞→22sinlim2sin 2lim . 2. 计算下列极限:(1)xx x 1)1(lim -→;解{}11)(10)1)(101)](1[lim )](1[lim )1(lim ---→--→→=-+=-+=-e x x x x x x x x x .(2)x x x 1)21(lim +→;解[]22210221010)21(lim )21(lim )21(lim e x x x x x x x x x =+=+=+→⋅→→.(3)x x xx 21(lim +∞→;解 []222)11(lim )1(lim e x x x xx x x =+=+∞→∞→.(4)kx x x)11(lim -∞→(k 为正整数). 解 k k x x kx x e xx ---∞→∞→=-+=-))(()11(lim )11(lim . 3. 根据函数极限的定义, 证明极限存在的准则I '. 解4. 利用极限存在准则证明: (1)111lim =+∞→nn ;证明 因为nn 11111+<+<,而 11lim =∞→n 且1)11(lim =+∞→n n ,由极限存在准则I, 111lim =+∞→nn .(2)()11 211lim 222=++⋅⋅⋅++++∞→πππn n n n n n ; 证明 因为()πππππ+<++⋅⋅⋅++++<+22222221 211n n n n n n n n n n , 而 1lim22=+∞→πn n n n , 1lim 22=+∞→πn n n ,所以 ()11 211lim 222=++⋅⋅⋅++++∞→πππn n n n n n . (3)数列2, 22+,222++, ⋅ ⋅ ⋅ 的极限存在;证明 21=x , n n x x +=+21(n =1, 2, 3, ⋅ ⋅ ⋅).先证明数列{x n }有界. 当n =1时221<=x , 假定n =k 时x k <2, 当n =k +1时,22221=+<+=+k k x x ,所以x n <2(n =1, 2, 3, ⋅ ⋅ ⋅), 即数列{x n }有界.再证明数列单调增.nn n n n n n n n n n n x x x x x x x x x x x x +++--=++-+=-+=-+2)1)(2(22221,而x n -2<0, x n +1>0, 所以x n +1-x n >0, 即数列{x n }单调增.因为数列{x n }单调增加有上界, 所以此数列是有极限的. (4)11lim 0=+→n x x ;证明 当|x |≤1时, 则有 1+x ≤1+|x |≤(1+|x |)n , 1+x ≥1-|x |≥(1-|x |)n , 从而有 ||11||1x x x n +≤+≤-. 因为 1|)|1(lim |)|1(lim 0=+=-→→x x x x ,根据夹逼准则, 有11lim 0=+→n x x .(5)[]11lim 0=+→xx x . 证明 因为[]x x x 1111≤<-, 所以[]111≤<-x x x .又因为11lim )1(lim 0==-++→→x x x , 根据夹逼准则, 有[]11lim 0=+→xx x .习题 1-71. 当x →0时, 2x -x 2 与x 2-x 3相比, 哪一个是高阶无穷小?解 因为02lim 2lim 202320=--=--→→xx x x x x x x x ,所以当x →0时, x 2-x 3是高阶无穷小, 即x 2-x 3=o (2x -x 2). 2. 当x →1时, 无穷小1-x 和(1)1-x 3, (2))1(212x -是否同阶?是否等价? 解 (1)因为3)1(lim 1)1)(1(lim 11lim212131=++=-++-=--→→→x x xx x x x x x x x , 所以当x →1时, 1-x 和1-x 3是同阶的无穷小, 但不是等价无穷小. (2)因为1)1(lim 211)1(21lim 121=+=--→→x x x x x , 所以当x →1时, 1-x 和)1(212x -是同阶的无穷小, 而且是等价无穷小.3. 证明: 当x →0时, 有: (1) arctan x ~x ; (2)2~1sec 2x x -. 证明 (1)因为1tan lim arctan lim00==→→y y xxy x (提示: 令y =arctan x , 则当x →0时, y →0),所以当x →0时, arctan x ~x .(2)因为()122sin2lim 22sin 2limcos cos 1lim 2211sec lim20222020===-=-→→→→x xxx x x xx x x x x x ,所以当x →0时, 2~1sec 2x x -. 4. 利用等价无穷小的性质, 求下列极限: (1)xxx 23tan lim0→;(2)mn x x x )(sin )sin(lim0→(n , m 为正整数);(3)xx x x 3sin sin tan lim-→;(4))1sin 1)(11(tan sin lim320-+-+-→x x x x x .解 (1)2323lim 23tan lim 00==→→x x x x x x .(2) ⎪⎩⎪⎨⎧<∞>===→→mn m n m n x x x x mn x m n x 0 1lim )(sin )sin(lim 00. (3)21cos 21lim sin cos cos 1lim sin )1cos 1(sin lim sin sin tan lim 220203030==-=-=-→→→→x x x x x x x x x x x x x x x x . (4)因为32221)2(2~2sin tan 2)1(cos tan tan sin x x x x x x x x x -=⋅--=-=-(x →0), 23232223231~11)1(11x x x x x ++++=-+(x →0),x x x x x ~sin ~1sin 1sin 1sin 1++=-+(x →0),所以 33121lim )1sin 1)(11(tan sin lim 230320-=⋅-=-+-+-→→xx x x x xx x x .5. 证明无穷小的等价关系具有下列性质:(1)α ~α (自反性); (2) 若α ~β, 则β~α(对称性); (3)若α ~β, β~γ, 则α~γ(传递性). 证明 (1)1lim =αα, 所以α ~α ;(2) 若α ~β, 则1lim =βα, 从而1lim =αβ. 因此β~α ;(3) 若α ~β, β~γ, 1lim lim lim =⋅=βαγβγα. 因此α~γ.习题1-81. 研究下列函数的连续性, 并画出函数的图形: (1)⎩⎨⎧≤<-≤≤=21 210 )(2x x x x x f ;(2)⎩⎨⎧>≤≤-=1|| 111 )(x x x x f .解 (1)已知多项式函数是连续函数, 所以函数f (x )在[0, 1)和(1, 2]内是连续的. 在x =1处, 因为f (1)=1, 1lim )(lim 211==--→→x x f x x , 1)2(lim )(lim 11=-=++→→x x f x x 所以1)(lim 1=→x f x , 从而函数f (x )在x =1处是连续的.综上所述,函数f (x )在[0, 2]上是连续函数. (2)只需考察函数在x =-1和x =1处的连续性.在x =-1处, 因为f (-1)=-1, )1(11lim )(lim 11-≠==---→-→f x f x x , )1(1lim )(lim 11-=-==++-→-→f x x f x x , 所以函数在x =-1处间断, 但右连续.在x =1处, 因为f (1)=1, 1lim )(lim 11==--→→x x f x x =f (1), 11lim )(lim 11==++→→x x x f =f (1), 所以函数在x =1处连续.综合上述讨论, 函数在(-∞, -1)和(-1, +∞)内连续, 在x =-1处间断, 但右连续.2. 下列函数在指出的点处间断, 说明这些间断点属于哪一类, 如果是可去间断点, 则补充或改变函数的定义使它连续:(1)23122+--=x x x y , x =1, x =2;(2)x xy tan =, x =k , 2ππ+=k x (k =0, ±1, ±2, ⋅ ⋅ ⋅); (3),1cos 2x y = x =0;(4)⎩⎨⎧>-≤-=1 311x x x x y , x =1. 解 (1))1)(2()1)(1(23122---+=+--=x x x x x x x y . 因为函数在x =2和x =1处无定义, 所以x =2和x =1是函数的间断点.因为∞=+--=→→231lim lim 2222x x x y x x , 所以x =2是函数的第二类间断点;因为2)2()1(limlim 11-=-+=→→x x y x x , 所以x =1是函数的第一类间断点, 并且是可去间断点. 在x =1处,令y =-2, 则函数在x =1处成为连续的.(2)函数在点x =k π(k ∈Z)和2ππ+=k x (k ∈Z)处无定义, 因而这些点都是函数的间断点. 因∞=→x xk x tan limπ(k ≠0), 故x =k π(k ≠0)是第二类间断点;因为1tan lim0=→xxx ,0tan lim2=+→xxk x ππ(k ∈Z), 所以x =0和2 ππ+=k x (k ∈Z) 是第一类间断点且是可去间断点.令y |x =0=1, 则函数在x =0处成为连续的;令2 ππ+=k x 时, y =0, 则函数在2ππ+=k x 处成为连续的. (3)因为函数x y 1cos 2=在x =0处无定义, 所以x =0是函数xy 1cos 2=的间断点. 又因为xx 1cos lim 2→不存在, 所以x =0是函数的第二类间断点. (4)因为0)1(lim )(lim 11=-=--→→x x f x x 2)3(lim )(lim 11=-=++→→x x f x x , 所以x =1是函数的第一类不可去间断点.3. 讨论函数x x x x f nnn 2211lim)(+-=∞→的连续性, 若有间断点, 判别其类型. 解 ⎪⎩⎪⎨⎧<=>-=+-=∞→1|| 1|| 01|| 11lim )(22x x x x x x x x x f nn n .在分段点x =-1处, 因为1)(lim )(lim 11=-=---→-→x x f x x , 1lim )(lim 11-==++-→-→x x f x x , 所以x =-1为函数的第一类不可去间断点.在分段点x =1处, 因为1lim )(lim 11==--→→x x f x x , 1)(lim )(lim 11-=-=++→→x x f x x , 所以x =1为函数的第一类不可去间断点.4. 证明: 若函数f (x )在点x 0连续且f (x 0)≠0, 则存在x 0的某一邻域U (x 0), 当x ∈U (x 0)时, f (x )≠0.证明 不妨设f (x 0)>0. 因为f (x )在x 0连续, 所以0)()(lim 00>=→x f x f x x , 由极限的局部保号性定理,存在x 0的某一去心邻域)(0x U , 使当x ∈)(0x U时f (x )>0, 从而当x ∈U (x 0)时, f (x )>0. 这就是说, 则存在x 0的某一邻域U (x 0), 当x ∈U (x 0)时, f (x )≠0.5. 试分别举出具有以下性质的函数f (x )的例子:(1)x =0, ±1, ±2, 21±, ⋅ ⋅ ⋅, ±n , n 1±, ⋅ ⋅ ⋅是f (x )的所有间断点, 且它们都是无穷间断点;(2)f (x )在R 上处处不连续, 但|f (x )|在R 上处处连续;(3)f (x )在R 上处处有定义, 但仅在一点连续. 解 函数x x x f ππcsc )csc()(+=在点x =0, ±1, ±2, 21±, ⋅ ⋅ ⋅, ±n , n1±, ⋅ ⋅ ⋅处是间断的, 且这些点是函数的无穷间断点.解(2)函数⎩⎨⎧∉∈-=Q Qx x x f 1 1)(在R 上处处不连续, 但|f (x )|=1在R 上处处连续. 解(3)函数⎩⎨⎧∉-∈=Q Qx x x x x f )(在R 上处处有定义, 它只在x =0处连续.习题1-91. 求函数633)(223-+--+=x x x x x x f 的连续区间, 并求极限)(lim 0x f x →, )(lim 3x f x -→及)(lim 2x f x →.解 )2)(3()1)(1)(3(633)(223-++-+=-+--+=x x x x x x x x x x x f , 函数在(-∞, +∞)内除点x =2和x =-3外是连续的, 所以函数f (x )的连续区间为(-∞, -3)、(-3, 2)、(2, +∞).在函数的连续点x =0处, 21)0()(lim 0==→f x f x .在函数的间断点x =2和x =-3处,∞=-++-+=→→)2)(3()1)(1)(3(lim )(lim 22x x x x x x f x x , 582)1)(1(lim )(lim 33-=-+-=-→-→x x x x f x x .2. 设函数f (x )与g (x )在点x 0连续, 证明函数 ϕ(x )=max{f (x ), g (x )}, ψ(x )=min{f (x ), g (x )}在点x 0也连续.证明 已知)()(lim 00x f x f x x =→, )()(lim 00x g x g x x =→. 可以验证] |)()(|)()([21)(x g x f x g x f x -++=ϕ,] |)()(|)()(21)(x g x f x g x f x --+=ψ.因此 ] |)()(|)()([21)(00000x g x f x g x f x -++=ϕ,] |)()(|)()(21)(00000x g x f x g x f x --+=ψ.因为] |)()(|)()([21lim )(lim 00x g x f x g x f x x x x x -++=→→ϕ] |)(lim )(lim |)(lim )(lim [210000x g x f x g x f x x x x x x x x →→→→-++=] |)()(|)()([210000x g x f x g x f -++==ϕ(x 0),所以ϕ(x )在点x 0也连续.同理可证明ψ(x )在点x 0也连续.3. 求下列极限:(1)52lim 20+-→x x x ;(2)34)2(sin lim x x π→;(3))2cos 2ln(lim 6x x π→(4)xx x 11lim 0-+→; (5)145lim1---→x xx x ;(6)ax ax a x --→sin sin lim ;(7))(lim 22x x x x x --++∞→.解 (1)因为函数52)(2+-=x x x f 是初等函数, f (x )在点x =0有定义, 所以 55020)0(52lim 220=+⋅-==+-→f x x x .(2)因为函数f (x )=(sin 2x )3是初等函数, f (x )在点x =4π有定义, 所以1)42(sin )4()2(sin lim 334=⋅==→πππf x x .(3)因为函数f (x )=ln(2cos2x )是初等函数, f (x )在点x =6π有定义, 所以0)62cos 2ln(6()2cos 2ln(lim 6=⋅==→πππf x x . (4)211101111lim )11(lim )11()11)(11(lim 11lim0000=++=++=++=++++-+=-+→→→→x x x x x x x x x x x x x x . (5))45)(1(44lim )45)(1()45)(45(lim 145lim111x x x x x x x x x x x x x x x x x +---=+--+---=---→→→ 214154454lim1=+-⋅=+-=→xx x .(6)ax ax a x ax ax a x a x --+=--→→2sin 2cos2limsin sin lima a a a x ax ax ax ax cos 12cos 22sinlim 2coslim =+=--⋅+=→→. (7))())((lim)(lim 22222222x x x x x x x x x x x x x x x x x x -++-++--+=--++∞→+∞→1)1111(2lim)(2lim22=-++=-++=+∞→+∞→xx x x x x xx x .4. 求下列极限: (1)x x e 1lim ∞→;(2)xxx sin lnlim 0→; (3)2)11(lim xx x+∞→;(4)x x x 2cot 20)tan 31(lim +→;(5)21)63(lim -∞→++x x xx ; (6)xx x x x x -++-+→20sin 1sin 1tan 1lim.解 (1) 1lim 01lim1===∞→∞→e ee xxx x .(2) 01ln )sin lim ln(sin lnlim 00===→→x xxx x x .(3) []e e xx xx xx ==+=+∞→∞→21212)11(lim 11(lim .(4) []33tan312cot 222)tan 31(lim )tan 31(lim ex x xx xx =+=+→→.(5)21633621)631()63(-+-⋅-+-+-+=++x x x x xx x . 因为。

高等数学第九章模拟考试题(宁夏理工学院)

高等数学第九章模拟考试题(宁夏理工学院)

一、填空题1. 设有一平面薄片,占有xoy 面上的闭区域D ,薄片上分布有面密度为(,)x y μ的电荷,且(,)x y μ在D 上连续,则该薄片上的全部电荷可用二重积分表达为 ;2. 设(,)f x y 在有界闭区域D 上连续,则由积分中值定理,在D 上至少存在一点(,)ξη,使得 ;3. 2Dd σ=⎰⎰ ,其中22{(,)|1}169x y D x y =+≤; 4. 根据二重积分的几何意义,D= ;其中22:4,0,0D x y x y +≤≥≥;5. 将二次积分100(,)yI dy f x y dx =⎰⎰ 交换积分次序,得I = ;6.把二次积分22200)dx x y dy +⎰化为极坐标系中的二次积分为 ;7.设均匀薄片(面密度为常量μ)占据的闭区域为{(,)|0,0}D x y x a y b =≤≤≤≤,则x I = ;8. 设L 是以点()()()2303 0,0,,,,为顶点的三角形区域的正向边界,则(24)(356)Lx y dx x y dy -+++-=⎰ ;9.设L 为圆周222x y a +=,则22()n Lx y ds +=⎰ ; 10.设D 为平面上的一个单连通区域,函数(,),(,)P x y Q x y 在D 内有一阶连续偏导数,则(,)(,)LP x y dx Q x y dy +⎰在D 内与路径无关的充要条件是 在D 内处处成立.二、计算下列积分1.Dxyd σ⎰⎰,其中D是由抛物线y =与2y x =所围成的闭区域; 2. sin ,Dy d y σ⎰⎰其中D 是由直线,,12x y x y y ===所围成的区域;3. 22,x y D e d σ--⎰⎰其中22{(,)|1};D x y x y =+≤4. 计算二次积分2110x yI dy e dx =⎰⎰. 三、计算下列曲线积分1.(),Lx y ds +⎰其中L 为连接点(1,0)与(0,1)的直线段; 2. ,L xdy ydx -⎰L 为(1)圆心为原点,半径为a ,按逆时针方向绕行的上半圆周;(2)从点(,0)A a 沿x 轴到点(,0)B a -的直线段;3. 222()(),y y L y xe dx x e x dy +++⎰其中L 是从点(0,0)到点(4,0)的上半圆周y =.四、设平面薄片占据的闭区域D 是由螺线2ρθ=的一段弧(0)2πθ≤≤与射线2πθ=所围成,它的面密度(,)x y μ=,求该薄片的质量. (如下图)五、求上半球面z =22x y ax +=内部的那部分曲面的面积;六、设在xoy 面内有力2(,)()(21)F x y x y i xy j =++- 构成力场.证明:在此力场中,场力所作的功与路径无关.七、附加题 1、求螺旋线cos ,sin ,(02)x a t y a t z bt t π===≤≤对z 轴的转动惯量,设曲线的密度为常数μ;2、求上半球面z =,z b z a ==之间部分的面积.其中0b a <<.。

高等数学 二重积分习题课

高等数学 二重积分习题课
所以
y
1
D
1
dx
1 x 2e y2 dy
1
dy
y x 2e y2 dx
0
x
0
0
.
0
y x 1x

1 y 3 e y2 dy 1
03
6
1 y 2e y2 d( y 2 () 令 y 2 u )
D
D1
D2

0
dx
1 x e x y dy
1
dx
1
x
e
x

y
dy
1
1 x
0
x 1

0 (e 2 x1 e 1 )dx
1
(e

e 2 x1 )dx

e e1
1
0
【例3】计算二重积分
D
y dxdy. x
其中D 是由圆周 x 2

y2

重积分的几何意义将所求立体的体积用二重积分来表示,再 利用极坐标计算即可。
解:令
Байду номын сангаас
2
x2

y2

x2

y2,
求得曲线
z

2 x2 y2
z x 2 y2
在xoy坐标面上的投影曲线方程为 x2 y2 1;
故立体在 xoy坐标面上投影区域为Dxy : x2 y2 1.
f (i ,
i ) i
2.几何意义:表示曲顶柱体的体积
V f ( x, y)d ( f ( x, y) 0)
D
顶 : z f ( x, y) 底 : D

高等数学同济第五版教材

高等数学同济第五版教材

高等数学同济第五版教材高等数学是大学数学课程中的一门重要学科,是培养学生数学思维和解决实际问题能力的关键学科之一。

同济大学出版社的《高等数学同济第五版教材》是国内热门的高等数学教材之一,它覆盖了高等数学的各个分支,给予了学生全面且系统的学习资源。

本文将对该教材进行介绍和评价。

一、教材概述《高等数学同济第五版教材》由同济大学数学系主编,主要面向大学本科高等数学课程。

该教材经过多年的修订和完善,已经成为国内高校广泛采用的教材之一。

教材内容涵盖了微积分、空间解析几何和线性代数等重要内容,以及一些拓展与应用的知识点。

二、教材特点1. 内容全面:教材内容涵盖了高等数学的各个分支,包括函数与极限、微分学、积分学、多元函数微分学、重积分与曲线积分、无穷级数与幂级数、空间解析几何和线性代数等主题。

2. 知识体系清晰:教材将各个知识点有机地组织在一起,形成了一个完整的知识体系,帮助学生系统地理解高等数学的各个概念和原理。

3. 理论与实践结合:教材既注重理论的讲解与推导,又融入了大量的例题和应用题,帮助学生将理论知识应用到实际问题中去。

4. 程序化思维培养:教材在讲解的过程中注重培养学生的程序化思维,即通过一系列的步骤和方法解决问题的思维方式,对于日后学习和工作都非常重要。

三、教材优缺点分析1. 优点:a. 通俗易懂:教材采用了通俗易懂的语言,结合大量的图表和实例,使得抽象的数学理论变得更具可读性和可理解性。

b. 知识点扩展:教材在每一章节的末尾都附带了一些扩展知识点,能够满足对高等数学更深入学习的学生需求。

c. 题目丰富:教材中的习题种类多样,题量适中,既能巩固基础知识,又能拓宽应用能力。

d. 师生配套资源丰富:教材配套资源丰富,包括习题解答、教案和试卷等,在教学过程中能够提供更多的辅助资料和教学参考。

2. 缺点:a. 部分章节过于简略:由于教材篇幅的限制,部分章节的讲解过于简洁,对于一些深入的数学理论没有给予足够的解释。

高等数学(同济五版)第九章-重积分-练习题册

高等数学(同济五版)第九章-重积分-练习题册

第九章 重 积 分第 一 节 作 业一、填空题:.)1(,)1,0(),0,1(),0,0(.4.),,(,.3.,4.2.1),,(),(),,(.122222212121⎰⎰⎰⎰=--=≤+=+<==DDd y x D y x D xoy de y x D y x g g g g y x g z y x g z σρρσ可知由二重积分的几何意义为顶点的三角形区域是以设为质量可用二重积分表示则此薄板的其面密度为连续函数面内占有有界闭区域设一薄板在的值等于则是设区域重积分可表示为所围成立体的体积用二与柱面且适合在全平面上连续曲面二、选择题(单选):{}{}:,20,10:),(,)(,22,11:),(,)(132221322121则其中其中设≤≤≤≤=+=≤≤-≤≤-=+=⎰⎰⎰⎰y x y x D d y x I y x y x D d y x I D D σσ(A )I 1=2I 2; (B )I 1〈I 2; (C )I 1=I 2; (D )I 1=4I 2。

答:( ) 三、估计下列积分的值:⎰⎰≤+++=Dy x D d y x I .4:,)94(2222为闭区域其中σ第 二 节 作 业一、填空题:1. 设⎰⎰=≤≤-≤≤Dyd x y x D ..11,10:2σ则⎰⎰⎰⎰-+-+=≤+a yay Dy xdx y x f dy d e y x D 202022)(22222)(.3.,1:.2分是为极坐标系下的二次积化则设σ二、选择题(单选):⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+----=110221010221010221010221102222.3)(;3)(;3)(;3)(:,3.1x x yxydy y x dx D dy y x dx C dy y x dx B dy y x dx A I dx y x dy I 等于则交换积分次序后设答:( )).(2)();()();(2)();()(:),0(,.22222222222a b a b a b a b Dy xe e D e e C e e B e e A I b a b y x a D d e I ----<<≤+≤=⎰⎰+ππππσ等于是则为其中设答:( )三、试解下列各题:⎰⎰⎰⎰-≥-≤>==+==+DDdxdy y x f x y x y D y x f a a y a y a x y x y D dxdy y x .),(,1,1:),(.2.)0(3,,,,)(.12222化为二次积分试将上连续在设平行四边形区域所围成的由直线其中求)0.(.5.1,11.4.),(),(.3222222221)3(21312>=+==+++--+=⎰⎰⎰⎰⎰⎰-h h z y x z y x D dxdy yx y x dy y x f dx dy y x f dx I Dx x 所围成的立体的体积与计算曲面区域所围成的在第一象限的是由圆求的积分次序改变二次积分四、若f(x)在[a,b]上连续且恒为正,证明:.)()(1)(2⎰⎰-≥babaa b dx x f dx x f第 三 节 作 业一、填空题:1. 半圆薄片x 2+y 2≤R 2, y ≥0, 面密度为1,它关于y 轴的转动惯量I= 。

高等数学 课件 PPT 第九章 重积分

高等数学 课件 PPT 第九章  重积分
分析
若函数ρ(x,y)=常数,则薄片的质量可用公式 质量=面密度×面积 来计算.现在面密度ρ(x,y)是变化的,故不能用上述公式来求. 这时仍可采用处理曲顶柱体体积的方法来求薄片的质量.分为下列 几个步骤:
一、二重积分的概念
(1)分割将D分成n个小闭区域Δσ1,Δσ2,…,Δσn(小区域 的面积也用这些符号表示),第i个小块的质量记为 ΔMi(i=1,2,…,n),则平面薄片的质量
于是
一、在直角坐标系下计算二重积分
图 9-11
一、在直角坐标系下计算二重积分
【例3】
计算
,D是由抛物线y2=2x与直线y=x-4所
围成的区域.
解 画出积分区域D的草图如图9-12所示.若先对x积分,
则有
一、在直角坐标系下计算二重积分
图 9-12
一、在直角坐标系下计算二重积分
若先对y积分,则需将D分为两个区域D1和D2, 于是
一、在直角坐标系下计算二重积分
【例1】
试将
化为两种不同次序的累次积分,其中
D是由y=x,y=2-x和x轴所围成的区域.
解 积分区域D如图9-9所示.首先说明如何用“穿线法”
确定累次积分的上、下限.如果先积x后积y,即选择Y型积
分区域,将区域D投影到y轴,得区间[0,1],0与1就是对y
积分的下限与上限,即0≤y≤1,在[0,1]上任意取一点y,
二、二重积分的性质
二重积分与定积分有类似的性质.假设 下面所出现的积分是存在的.
二、二重积分的性质
性质1
设c1,c2为常数,则
性质2
若闭区域D分为两个闭区域D1与D2,则
二、二重积分的性质
性质3
(σ为D的面积).
性质4

第九章 重积分(二重和三重)高数课件

第九章 重积分(二重和三重)高数课件

其中Ω 其中Ω 所围立体. 所围立体
z
π
4
0≤r ≤ R Ω: 0 ≤ ϕ ≤ π 4 0 ≤ θ ≤ 2π

r=R
∫∫∫Ω
3. 三重积分的计算
(1) 投影法 (“先单后重”) 先单后重” 先单后重
z = z2 (x, y)
z
z = z1(x, y)
= ∫∫ dxdy∫
D
z2 ( x, y)
z1( x, y)
f (x, y, z)d z
关键:正确的判断上、下曲面 关键:正确的判断上、下曲面; 找对投影区域. 找对投影区域
2011-2012学年高等数学第二学期期 中考试说明
• 题型: 题型: 个小题); 个小题); 一、填空题(5个小题);二、选择题( 5个小题);三、 填空题( 个小题);二 选择题( 个小题);三 计算题( 个小题);四 计算题( 个小题);五 个小题); 个小题); 计算题( 5个小题);四、计算题( 5个小题);五、计 算与解答题( 个小题);六 证明题( 个小题 个小题); 个小题)。 算与解答题( 2个小题);六、证明题( 1个小题)。 • 考试时间: 考试时间: 2012年5月4日(第10周周五)下午 :00-6:00 年 月 日 周周五) 周周五 下午4: - : • 考试地点: 考试地点: 化学工程与工艺6班 制药工程 化学工程与工艺 班、制药工程1—2班: 24-303 班 生物工程1—2班:24-305 班 生物工程

2 h
h
x
o
y
例. 计算三重积分
其中Ω 其中Ω为由
柱面 x2 + y2 = 2x 及平面 z = 0, z = a (a > 0), y = 0 所围 成半圆柱体. 成半圆柱体
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第九章 重 积 分第 一 节 作 业一、填空题:.)1(,)1,0(),0,1(),0,0(.4.),,(,.3.,4.2.1),,(),(),,(.122222212121⎰⎰⎰⎰=--=≤+=+<==DDd y x D y x D xoy de y x D y x g g g g y x g z y x g z σρρσ可知由二重积分的几何意义为顶点的三角形区域是以设为质量可用二重积分表示则此薄板的其面密度为连续函数面内占有有界闭区域设一薄板在的值等于则是设区域重积分可表示为所围成立体的体积用二与柱面且适合在全平面上连续曲面二、选择题(单选):{}{}:,20,10:),(,)(,22,11:),(,)(132221322121则其中其中设≤≤≤≤=+=≤≤-≤≤-=+=⎰⎰⎰⎰y x y x D d y x I y x y x D d y x I D D σσ(A )I 1=2I 2; (B )I 1〈I 2; (C )I 1=I 2; (D )I 1=4I 2。

答:( ) 三、估计下列积分的值:⎰⎰≤+++=Dy x D d y x I .4:,)94(2222为闭区域其中σ第 二 节 作 业一、填空题:1. 设⎰⎰=≤≤-≤≤Dyd x y x D ..11,10:2σ则⎰⎰⎰⎰-+-+=≤+a yay Dy xdx y x f dy d e y x D 202022)(22222)(.3.,1:.2分是为极坐标系下的二次积化则设σ二、选择题(单选):⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+----=110221010221010221010221102222.3)(;3)(;3)(;3)(:,3.1x x yxydy y x dx D dy y x dx C dy y x dx B dy y x dx A I dx y x dy I 等于则交换积分次序后设答:( )).(2)();()();(2)();()(:),0(,.22222222222a b a b a b a b Dy xe e D e e C e e B e e A I b a b y x a D d e I ----<<≤+≤=⎰⎰+ππππσ等于是则为其中设答:( )三、试解下列各题:⎰⎰⎰⎰-≥-≤>==+==+DDdxdy y x f x y x y D y x f a a y a y a x y x y D dxdy y x .),(,1,1:),(.2.)0(3,,,,)(.12222化为二次积分试将上连续在设平行四边形区域所围成的由直线其中求)0.(.5.1,11.4.),(),(.3222222221)3(21312>=+==+++--+=⎰⎰⎰⎰⎰⎰-h h z y x z y x D dxdy yx y x dy y x f dx dy y x f dx I Dx x 所围成的立体的体积与计算曲面区域所围成的在第一象限的是由圆求的积分次序改变二次积分四、若f(x)在[a,b]上连续且恒为正,证明:.)()(1)(2⎰⎰-≥babaa b dx x f dx x f第 三 节 作 业一、填空题:1. 半圆薄片x 2+y 2≤R 2, y ≥0, 面密度为1,它关于y 轴的转动惯量I= 。

2. 设f(t)为连续函数,则由平面z=0,柱面x 2+y 2=1和曲面z=[f(xy)]2所围成立体的体积 V= 。

二、选择题(单选):1. 两个半径为R 的直交圆柱面所围成的立体的表面积为:.16)(;4)(;8)(;4)(0222200022222222222222⎰⎰⎰⎰⎰⎰⎰⎰----------R x R R x R x R Rx R Rx R dy xR Rdx D dy xR Rdx C dy x R Rdx B dy x R R dx A答:( )2. 球面 x 2+y 2+z 2=a 2含在x 2+y 2=ax 内部的面积为:⎰⎰⎰⎰⎰⎰⎰⎰----Ra a a a rdr ra a d D rdr ra a d C rdr r a a d B rdr r a a d A 022cos 022cos 02220cos 02220cos 022.4)(;4)(;8)(;4)(ππθθπθπθθθθθ答:( ) 三、试解下列各题:1. 求曲面z 2=x 2+y 2包含在圆柱面x 2+y 2=2x 内的那部分面积。

2. 已知面密度为常量ρ的均匀矩形板的长和宽分别为b 和h ,计算此矩形板对于通过其形心且分别与一边平行的两轴的转动惯量。

2. 设有一等腰直角三形形薄片,腰长为a ,各点处面密度等于该点到直角顶点的距离的平方,求薄片的重心。

第 四 节 作 业一、填空题:.]3)([,1,10:.4.1132,10,1:.3.1)1cos(,1:.2.3,0,:.13222444444222222222222222222=+≤+≤≤Ω<+++<≤++≤≤++Ω=++++++≤++Ω=≤≤≤+Ω⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩΩΩdv y x tg e y x z dy z y x z y x z y x dv z y x z y x z c z b y a x dv h z a y x x 则设则有不等式由于设则若则若π二、选择题(单选):;)(;)(;)(;)(:,12,0,0,0.110210210111102102101010210⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰--------Ω==++===Ωy yx xyx yx xdz dy dx D xdz dy dx C xdz dy dx B xdz dy dx A xdv I z y x z y x 为则所围成由设 答:( ).)(;21)(;21)(;21)(:,.22424242121e D e C e e B e e A I dy ye dx I xxy -+-=⎰⎰是则设答:( )三、试解下列各题:⎰⎰⎰⎰⎰⎰⎰⎰⎰---+ΩΩ=++===Ω+++====Ω1101232..3.1,0,0,0,)1(.2.01,,.122222x y x yx dz z dy dx z y x z y x z y x dxdydzz x x y xy z dxdydz z xy 计算所围成的四面体为平面其中计算所围成的闭区域和与平面是由曲面其中计算第 五 节 作 业一、填空题: 1. 将积分⎰⎰⎰->+=220222)0(x x aa dz y x z dy dx I 化为柱面坐标系下的三次积分是。

.,)(,4,1,.2222222=++===+=Ω⎰⎰⎰ΩI dv z y x f I z z y x z 则坐标系下化为三次积分在球面将三重积分所围成由设二、选择题(单选):⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰------+ΩΩ=+≤≤++Ω=≥≤++Ωππππππππππππθθθθϕϕϕθϕϕϕθϕϕθϕϕϕθ2011120112010111201112222220201320132012202012222.)(;)(;)(;)(,,2.2;cos sin )(;cos sin )(;sin )(;cos sin )(:,0,1.1222222r r rrr r rdz rdr d D dz rdr d C dz rdr d B dz rdr d A dv y x z z z y x dr r d d D dr r d d C dr r d d B dr r d d A zdv I z z y x 则为设为则为若答:( ).4)(;4)(;4)(;4)(:0,0,0,:,0,:.3121212122222222221⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩΩΩΩΩΩΩ====≥≥≥≤++Ω≥≤++Ωxyzdv xyzdv D zdv zdv C ydv ydv B xdv xdv A z y x R z y x z R z y x 则设空间区域答:( ) 三、试解下列各题: 1. 计算⎰⎰⎰Ω==+Ω+.22,)(2222所围成的闭区域及平面是由曲面其中z z y x dv y x.)3(;)2(;)1(.0,||,||)(.4.2,.3.0,0,0,11,.2222222222222轴的转动惯量求物体关于求物体的重心求其体积所围成和平面占有的闭区域是由曲面为常量密度一均匀物体之公共部分和为其中计算卦限内的闭区域所围成在第一及平面为柱面其中计算z z a y a x y x z Rz z y x R z y x dv z y x z z y x xydv ===+=≤++≤++Ω=====+Ω⎰⎰⎰⎰⎰⎰ΩΩρ.)(lim ,0)0(,1)0(',)(),0()()(.552222222t t F f f u f t dv z y x f t F t t x y x +→≤++==>++=⎰⎰⎰求且为连续函数设第 九 章 综 合 作 业一、填空题(每小题4分,共20分):{}.,1)2()1(.5.,),,(,2,1,2.4.sin .3.,0,1|),(.2.,),(,),(.12222210221202⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩ-=≤+-+-Ω=====+Ω==≥≤+===dv z y y x I dxdydz z y x f I z z z y x dy xxdy ydxdy y y x y x D I dy y x f dx I y x f yyDx x 则为设则下的三次积分化为柱面坐标系将所围成由设则设则改变积分次序将是连续函数设二、选择题(单选)(每小题4分,共20分):.)(;)(;)(;)(:,,,)sin(,)(,)ln(,1,21,0,0.1312231123321321321I I I D I I I C I I I B I I I A I I I dxdy Y x I dxdy y x I dxdy y x I y x y x y x D DDD<<<<<<<<+=+=+==+=+==⎰⎰⎰⎰⎰⎰间的大小关系为则所围成由设答:( ).),(),()(;),()(;),(),()(;),()(),(,),(.20182212121228262182212121228212262142⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰--+-++------+++---+---++=yy y y yyy y y yy x x dx y x f dy dx y x f dy D dx y x f dy C dx y x f dy dx y x f dy B dx y x f dy A dy y x f dx y x f 则二次积分是连续函数设 答( )3. 半径为R 和r(0<r<R)的两上圆所围成的均匀的圆环状薄片(设密度为ρ)对它的中心的转动惯量I 0=).(81)();(41)();(21)();()(44444444r R D r R C r R B r R A ----πρπρπρπρ答:( ).721)(;641)(;561)(;481)(,0,0,0,1.4222D C B A xyzdxdydz z y x z y x =====++Ω⎰⎰⎰Ω则限的部分所围空间区域在第一卦是由设答:( ) 三、计算⎰⎰-1122xy dy e x dx (10分)。

相关文档
最新文档