《解直角三角形》1PPT课件
合集下载
《解直角三角形》数学教学PPT课件(3篇)

b
获取新知
B
对边 a C
c 斜边
b 邻边 A
定义:一般地,直角三角形中,除直角外 还有五个元素,即三条边和两个锐角.由直角三 角形中的已知元素,求出其余未知元素的过程 叫做解直角三角形.
直角三角形中,未知的5个元素之间的关系
B
①三边之间的关系
a
c
a2 b2 c2
C
A
b
已知任意两边可求出第
直角三角形中,未知的5个元素之间的关系
解:过点 A作 AD⊥BC于D.
在△ACD中,∠C=45°,AC=2,
∴CD=AD=sinC·AC=2sin45°= 2 .
在△ABD中,∠B=30°, ∴BD= AD 2 6
tan B 3
∴BC=CD+BD=3 2 + 6
A
D B
归纳总结
C
┐
AD
BB
A D
CE
┐
提 求解非直角三角形的边角问题,常通过添加适 示
解:∵△ABD是等边三角形,∴∠B=60°.
在Rt△ABC中,AB=2,∠B=60°,
BC
AB cosB
2 1
4,AC
AB
tanB
2
3.
2
△ABC的周长为2+ 2 3 +4=6+ 2 3 .
3.在Rt△ABC中,∠C=90°,tanA= 12 ,△ABC 5
的周长为45cm,CD是斜边AB上的高,求CD的长.(精 确到0.1 cm)
例5 在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边分
别为a,b,c,且c=100,∠A=26°44′.求这个三角形
的其他元素.(长度精确到0.01)
获取新知
B
对边 a C
c 斜边
b 邻边 A
定义:一般地,直角三角形中,除直角外 还有五个元素,即三条边和两个锐角.由直角三 角形中的已知元素,求出其余未知元素的过程 叫做解直角三角形.
直角三角形中,未知的5个元素之间的关系
B
①三边之间的关系
a
c
a2 b2 c2
C
A
b
已知任意两边可求出第
直角三角形中,未知的5个元素之间的关系
解:过点 A作 AD⊥BC于D.
在△ACD中,∠C=45°,AC=2,
∴CD=AD=sinC·AC=2sin45°= 2 .
在△ABD中,∠B=30°, ∴BD= AD 2 6
tan B 3
∴BC=CD+BD=3 2 + 6
A
D B
归纳总结
C
┐
AD
BB
A D
CE
┐
提 求解非直角三角形的边角问题,常通过添加适 示
解:∵△ABD是等边三角形,∴∠B=60°.
在Rt△ABC中,AB=2,∠B=60°,
BC
AB cosB
2 1
4,AC
AB
tanB
2
3.
2
△ABC的周长为2+ 2 3 +4=6+ 2 3 .
3.在Rt△ABC中,∠C=90°,tanA= 12 ,△ABC 5
的周长为45cm,CD是斜边AB上的高,求CD的长.(精 确到0.1 cm)
例5 在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边分
别为a,b,c,且c=100,∠A=26°44′.求这个三角形
的其他元素.(长度精确到0.01)
解直角三角形及其应用(1)PPT课件

• (3)边角关系:(满足锐角三角函数关系)
•
sin A a c
;cos A b
c
;tan
A
a b
.
• 2、在直角三角形中,除直角外的5个元素(3 条边和2个锐角),只要知道其中的2个元素 (至少有一个是边),利用边角之间的关系, 就可以求出其余的3个未知元素,这叫作解直 角三角形。
• 3、△ABC中,∠C=90°,根据表中的数据求 其它元素的值:
动脑筋
如果知道的2个元素都是角,那么能求出直角三 角形的边吗?
不能. 因为此时的直角三角形 有无数多个.
• 1、在RtΔABC中,∠C=90º,∠A、∠B、 ∠C所对的边之长分别为a,b,c.
• (1)边边关系:(勾股定理):
•
a2+b2=c2
• (2)角角关系:(两锐角互余):
•
∠A+∠B=90º
做一做
根据下列每一组条件,能画出多少个直角三角形 (全等的直角三角形算一个)?
(1)一个锐角为 40°;
无数个
(2)一个锐角40°,它的邻边长为3cm;
1个
(3)一个锐角40°,它的对边长为3cm;
1个
(4)一个锐角40°,斜边长为3cm;
1个
(5)斜边长为4cm,一条直角边长为3cm.
1个
做一做
• 3. 如图,在△ABC中,∠A=45° , ∠B=30°,BC=8 ,求∠ACB及AC、AB的长。
C
A 45° D
30°
B
写在最后
成功的基础在于好的学习习惯
The foundation of success lies in good habits
19
解直角三角形-ppt课件

,∴
∴CH = ,
∴AH=
∴AB=2AH=
−
.
=
,∵∠B=30°,
=
,
26.3 解直角三角形
重 ■题型 解双直角三角形
难
例 如图,在 Rt△ABC 中,∠C=90°,D 是 AC 上一
题
型
点,BD=10
,∠BDC=45°,sinA=
,求 AD 的长.
突
∴S
AB·AE= ×4×4 =8 ,
CD·DE= ×5 ×15=
四边形 ABDC=S△CDE-S△ABE=
,
.
(方法二)如图 2,过点 A 作 AF⊥CD 于点 F,过点
B 作 BG⊥AF 于点 G,则∠ABG=30°,
∴AG=
AB=2,BG= − =2 ,
况讨论,求出不同情况下的答案.
26.3 解直角三角形
■方法:运用割补法求不规则图形的面积
方
法
割补法是求不规则图形面积问题的最常用方法,割补法
技
巧 包含三个方面的内容:一是分割原有图形成规则图形;二
点
拨 是通过作辅助线将原有图形补为规则图形;三是分割和补
形兼而有之.
26.3 解直角三角形
例 如图,在四边形 ABDC 中,∠ABD=120°,AB⊥AC,
=
2
=25
26.3 解直角三角形
变式衍生 如图,在Rt△ABC中,∠ACB=90°,D 是 AB
解直角三角形完整版PPT课件

余弦或正切函数计算得出。
已知一边和一角求另一边
02
在直角三角形中,已知一边长和一个锐角大小可以求出另一边
长,通过正弦、余弦或正切函数计算得出。
解直角三角形的实际应用
03
例如测量建筑物高度、计算航海距离等。
三角函数在实际问题中应用
测量问题
在测量问题中,可以利用三角函数计算高度、距离等未知量。例如,利用正切函数可以计算 山的高度或者河的宽度。
直角三角形重要定理
勾股定理
如上所述,勾股定理描述了直角三角 形三边之间的数量关系。
射影定理
相似三角形判定定理
若两个直角三角形的对应角相等,则 这两个直角三角形相似。根据此定理, 可以推导出一些重要的直角三角形性 质和定理。
射影定理涉及直角三角形中斜边上的 高与斜边及两直角边之间的数量关系。
02
三角函数在解直角三角形中应用
• 性质:正弦、余弦函数值域为[-1,1],正切函数值域为R;正弦、余弦函 数在第一象限为正,第二象限正弦为正、余弦为负,第三象限正弦、余 弦都为负,第四象限余弦为正、正弦为负;正切函数在第一、三象限为 正,第二、四象限为负。
利用三角函数求边长和角度
已知两边求角度
01
在直角三角形中,已知两边长可以求出锐角的大小,通过正弦、
注意单位换算和精确度
在求解过程中,要注意单位换算和精确度的控制,避免因单位或精 度问题导致答案错误。
拓展延伸:非直角三角形解法简介
锐角三角形和钝角三角形的解法
对于非直角三角形,可以通过作高线或利用三角函数等方法将其转化为直角三角形进行 求解。
三角形的边角关系和面积公式
了解三角形的边角关系和面积公式,有助于更好地理解和解决非直角三角形问题。
《解直角三角形》-完整版PPT课件

整理,得4t2-26t+39=0
解之,得
t1
13413,t2
13 13 4
∴台风抵达D港的时间为 1 3 1 3 小时.
B
∵轮船从A处用 1 3
≈25.5.
4
13
4
小时到达D港的速度为60÷
1
3413∴为台风抵达D港之前轮船到D港,轮船至少应提速6里/时.
例7 如图,公路MN和公路N上沿PN方向行驶时,学校是否会受 到噪声影响?请说明理由(2)如果受影响,已知拖拉机的速 度为18千米/时,那么学校受影响的时间为多少秒?
(1)切割法:把图形分成一个或几个直角三角形与 其 他特殊图形的组合;
(2)粘补法:此方法大都通过延长线段来实现
例1 要求tan30°的值,可构造如图所示的直角三角形进行
计算:作Rt△ABC,使∠C=90°,斜边AB=2,直角边AC=1,
那么BC= ,
3
∴tan30°= AC 1 3 BC 3 3
A
D
C
B
祝同学们学习进步! 再见!
∴C1D0=201208(02米)
学校受噪声影响的时间t=120米÷18千米/时= 时=1 24秒
150
小结:
1、将实际问题经提炼数学知识,建立数学模 型转化为数学问题 2、设法寻找或构造可解的直角三角形,尤其 是对于一些非直角三角形图形,必须添加 适当的辅助线,才能转化为直角三角形的 问题来解决
C FG
∵ sinB= ,AG AB
D E
AG=AB•sinB=415•sin37°=415 06=
A
37 °B
249 25cm,
即EF 25cm
答:球的直径约为25cm
《解直角三角形(第一课时)》教学PPT课件【初中数学】公开课

活动五
2..直角三角形中一共有六个元素,即三条边和三个角,除直 角外,另外的五个元素中,只要已知一条边和一个角或两条 边,就可以求出其余的所有未知元素.
3.求未知元素时,有时可选择的关系式不止一 种,应考虑计算的方便,先求角后求边。
4.计算时要尽量利用原始数据,以防误差扩大。
教学活动6、课堂练习:
斜边,一锐角(如c,∠A) 一直角边,一锐角(如a,∠A)
1)∠B=90°-∠A; (2)由sin A=,得a=c·sin A; (3)由cos A=,得b=c·cos A
(1)∠B=90°-∠A;
(2) 由tan A= a ,得b a
b
tan A
(3) 由sinA= a ,得c a
c
sin A
或者AB=2AC=4
BC 42 22 2 3
活动四
2.在RtΔABC中,∠C=90°,若AC=2,AB=4,求∠A,∠B的度数和 BC的长.
解:∵ AC 2BC2 AB2
BC 42 22 2 3
sin B AC 1 AB 2
∴∠B=30° ∴∠A=90°-30°=60°
复习回顾
2. 特殊角的三角函数
1
2
3
sin30°= 2 ,sin45°= 2 ,sin60°= 2 ;
3
2
1
cos30°= 2 ,cos45°= 2 ,cos60°= 2 ;
3 tan30°= 3 ,tan45°= 1 ,tan60°= 3 .
活动一
如图所示,轮船在A处时,灯塔B位于它的北偏东35°的方 向上,轮船向东航行5 km,到达C处时,轮船位于灯塔的 正南方,此时轮船距灯塔多少千米? (tan55°≈1.4281,结果保留两位小数)
《解直角三角形》PPT课件

C
5B
例3 如图,在△ABC中,∠B=30°,∠C=45°,AC=2,求BC.
解:过点 A作 AD⊥BC于D.
在△ACD中,∠C=45°,AC=2,
∴CD=AD=sinC·AC=2sin45°= 2 .
在△ABD中,∠B=30°,
∴BD= AD 2 6
tan B 3
∴BC=CD+BD=3 2 + 6
不好,会增大结果的误差,应尽可能用原题中的数据.
注意事项:
1、数形结合有利于分析问题;
2、选择关系式时,尽量使用原始数据,以防“累积
误差”和“一错再错”;
3、解直角三角形时,应求出所有未知元素。
A
解直角三角形的原则:
(1)有角先求角,无角先求边 (2)有斜用弦, 无斜用切;
50
﹖
宁乘毋除, 取原避中。
(2)如何求∠A?
已知的BC和AC的比构成tanA,用 tanA=BC:AC来求.
例2 如图,在Rt△ABC中,∠C=90°,AC=15,BC=8.解这个直角 三角形.(角度精确到1”)
(3)如何求∠B?
B
利用∠A+∠B=90°.
8
(4)如何求AB?
A
C
15
利用勾股定理.
B
解:在Rt△ABC中
8
tan A BC 8 0.53, AC 15
由边长可
A
15 C
∴∠A=28°
导出角度
sin28°≈0.47, cos28°≈0.88,
∴∠B=90°-∠A=90°-28°=62°. 在Rt△ABC中,由勾股定理得
tan28°≈0.53
AB AC2 BC2 82 152 17
《解直角三角形》课件

《解直角三角形》PPT课 件
欢迎观看《解直角三角形》PPT课件!本课件将帮助您理解直角三角形的定义、 性质以及三角函数的计算方法,并探讨了特殊角的三角函数值和应用场景。
一、 直角三角形概述
定义
直角三角形是一种具有一个直角(90度)的三角形。
基本性质
直角三角形满足勾股定理,即两个直角边的平方和等于斜边的平方。
2. 45°角的三角函数值
在45°角中,正弦值、余弦值和正切值均相等。
四、 应用
1
1. 求边长
根据已知角度及所对边长求斜边长度,可以使用三角函数来计算。
2
2. 求角度
根据已知边长及所对角度求角度的值,可以使用三角函数来计算。
五、 总结
直角三角形及其三角函数的基本概念和计 算方法
重性及应用场景简述
直角三角形和三角函数在工程、物理和地理等领域 中有广泛的应用。
二、 直角三角形中的三角函数
1. 正弦函数
正弦函数是一个三角函数,定义 为对边与斜边的比值。
2. 余弦函数
余弦函数是一个三角函数,定义 为邻边与斜边的比值。
3. 正切函数
正切函数是一个三角函数,定义 为对边与邻边的比值。
三、 特殊角的三角函数值
1. 30°角和60°角的三角函数值
在30°和60°角中,正弦值、余弦值和正切值具有特殊 的数值。
欢迎观看《解直角三角形》PPT课件!本课件将帮助您理解直角三角形的定义、 性质以及三角函数的计算方法,并探讨了特殊角的三角函数值和应用场景。
一、 直角三角形概述
定义
直角三角形是一种具有一个直角(90度)的三角形。
基本性质
直角三角形满足勾股定理,即两个直角边的平方和等于斜边的平方。
2. 45°角的三角函数值
在45°角中,正弦值、余弦值和正切值均相等。
四、 应用
1
1. 求边长
根据已知角度及所对边长求斜边长度,可以使用三角函数来计算。
2
2. 求角度
根据已知边长及所对角度求角度的值,可以使用三角函数来计算。
五、 总结
直角三角形及其三角函数的基本概念和计 算方法
重性及应用场景简述
直角三角形和三角函数在工程、物理和地理等领域 中有广泛的应用。
二、 直角三角形中的三角函数
1. 正弦函数
正弦函数是一个三角函数,定义 为对边与斜边的比值。
2. 余弦函数
余弦函数是一个三角函数,定义 为邻边与斜边的比值。
3. 正切函数
正切函数是一个三角函数,定义 为对边与邻边的比值。
三、 特殊角的三角函数值
1. 30°角和60°角的三角函数值
在30°和60°角中,正弦值、余弦值和正切值具有特殊 的数值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.30°,45°,60°的三角函数值 如下表:
正弦
30 °
__12__
45
2
°
__ 2 __
60
3
°
__ 2 __
余弦 3
__ 2 __ 2
__ 2 __ 1
__2__
正切 3
__ 3 __ __1__
__ 3__
3.同角三角函数之间的关系: sin2α+cos2α=____1; tanα=___cs_oi_ns_αα______. 互余两角三角函数之间的关系:若α+β=90°(0<α<90°,0°<β<90°) ,则sinα=cosβ,cosα=sinβ,tanα·tanβ=1. 函数的增减性:(0°<α<90°) (1)sinα,tanα的值都随α_______增__大__而__增__大___; (2)cosα随α________增__大__而__减__小_____.
5.直角三角形的边角关系在现实生活中有着广泛的应用,它经常涉 及测量、工程、航海、航空等,其中包括了一些概念,一定要根据题 意明白其中的含义才能正确解题. (1)铅垂线:重力线方向的直线; (2)水平线:与铅垂线垂直的直线,一般情况下,地平面上的两点确定 的直线我们认为是水平线; (3)仰角:向上看时,视线与水平线的夹角; (4)俯角:向下看时,视线与水平线的夹角;
(5)坡角:坡面与水平面的夹角; (6)坡度:坡面的铅直高度与水平宽度的比叫做坡度(或坡比),一般情况 下,我们用 h 表示坡的铅直高度,用 l 表示坡的水平宽度,用 i 表示坡 度,即 i=hl =tanα,显然,坡度越大,坡角就越大,坡面也就越陡;
(7)方向角:指北或指南的方向线与目标方向线所成的小于90°的锐角 叫做方向角. 注意:东北方向指北偏东45°方向,东南方向指南偏东45°方向,西北 方向指北偏西45°方向,西南方向指南偏西45°方向.我们一般画图的 方位为“上北下南,左西右东”.
7
7.(2014·抚顺)如图,河流两岸a,b互相平行,点A,B是河岸a上的两 座建筑物,点C,D是河岸b上的两点,A,B的距离约为200米,某人在 河岸b上的点P处测得∠APC=75°,∠BPD=30°,则河流的宽度约为 ___1_0_0__米.
8.(2014·阜新)如图,将矩形ABCD沿AE折叠,点D恰好落在BC边 上的点F处,如果AB∶AD=2∶3,那么tan∠EFC值是__2_5_.
4.解直角三角形的概念、方法: 解直角三角形:由直角三角形中除直角外的已知元素,求出所有未知 元素的过程叫做解直角三角形. 直角三角形中的边角关系:在Rt△ABC中,∠C=90°,∠A,∠B, ∠C所对的边分别为a,b,c,则: (1)边与边的关系:____a_2_+__b_2=__c_2_____; (2)角与角的关系:___∠__A__+__∠__B_=__9_0_°______; (3)边与角的关系: _____s_i_n_A_=__c_o_s_B_=__ac_,__c_o_sA__=__s_in_B_= __b_c,__t_a_n_A_=__ba_,__t_a_n_B_=__ba_________.
1.当有些图形不是直角三角形时,应大胆尝试添加辅助线,把它们分 割成一些直角三角形或矩形,把实际问题转化为直角三角形进行解决.
2.解直角三角形的类型和解法
已知条件 一直角边和一锐
角(a,∠A)
已知斜边和一个 锐角(c,∠A)
已知两直角边 (a,b)
已知斜边和一条 直角边(c,a)
图形
解法
∠B=90°-∠A,c=sinaA,b=tanaA
9.(2015·盘锦)如图,小明家小区空地上有两棵笔直的树 CD,EF,一天, 他在 A 处测得树顶 D 的仰角∠DAC=30°,在 B 处测得树顶 F 的仰角 ∠FBE=45°,线段 BF 恰好经过树顶 D,已知 A,B 两处的距离为 2 米, 两棵树之间的距离 CE=3 米,A,B,C,E 四点在一条直线上,求树 EF 的高度.( 3≈1.7, 2≈1.4,结果保留一位小数)
5.(2015·大连)如图,从一个建筑物的A处测得 对面楼BC的顶部B的仰角为32°,底部C的俯角 为45°,观测点与楼的水平距离AD为31 m,则
50 楼BC的高度约为______m.(结果取整数,参考 数据:sin32°≈0.5,cos32°≈0.8,tan32°≈0.6) 6.(2015·抚顺)如图,在A处看建筑物CD的顶 端D的仰角为α,且tanα=0.7,向前行进3米到达 B处,从B处看D的仰角为45°(图中各点均在同一 平面内,A,B,C三点在同一条直线上, CD⊥AC),则建筑物CD的高度为____米.
1.(2014·锦州)计算:tan45°-31( 3-1)0=_23___. 2.(2014·本溪)在△ABC 中,∠B=45°,cosA=12,则∠C 的度数是_7_5__°_. 3.(2013·鞍山)△ABC 中,∠C=90°,AB=8,cosA=43,则 BC 的长_2__7__. 4.(2015·阜新)如图,为了测量楼的高度,自楼的顶部 A 看地面上的一点 B,俯角为 30°,已知地面上的这点与楼的水平距离 BC 为 30 m,那么楼 的高度 AC 为__1_0__3______m.(结果保留根号)
∠B=90°-∠A,a=c·sinA, b= c·cosA
c= a2+b2,由 tanA=ba求∠A,∠B =90°-∠A
b= c2-a2,由 sinA=ac求∠A,∠B =90°-∠A
3.解直角三角形小口诀: 有斜用弦,无斜用切,宁乘毋除,取原避中. 有斜用弦:已知斜边时用正弦或余弦; 无斜用切:与直角边有关,没斜边时用正切; 宁乘毋除:能用乘法时尽量回避除法运算,减小计算量和误差; 取原避中:计算时尽量使用原始数据,少用计算过程中得到的近似数 以减小误差.
锐,设∠C=90°,∠α为Rt△ABC的一个锐角,则: ∠α的对边
∠α的正弦sinα=_______斜_边____; ∠α的余弦cosα=___∠__α_斜的__边邻__边__; ∠α的正切tanα=___∠∠__αα_的的__对邻__边边__.