电工电子学实验报告_实验三_三相交流电路.doc
三相交流电实验报告

中国石油大学(华东)现代远程教育实验报告课程名称:电工电子学实验名称:三相交流电路实验形式:在线模拟+现场实践提交形式:在线提交实验报告学生姓名:学年级专业层次:提交时间:2017 年10 月25 日一、实验目的1. 练习三相交流电路中负载的星形接法。
2. 了解三相四线制中线的作用二、实验原理1. 对称三相电路中线、相电压和线、相电流的关系,三相电路中,负载的连接分为星形连接和三角形连接两种。
一般认为电源提供的是对称三相电压。
(1)星形连接的负载如图1所示:图1 星形连接的三相电路A、B、C表示电源端,N为电源的中性点(简称中点),N' 为负载的中性点。
无论是三线制或四线制,流过每一相负载的相电流恒等于与之相连的端线中的线电流:(下标I表示线的变量,下标p表示相的变量)在四线制情况下,中线电流等于三个线电流的相量之和,即端线之间的电位差(即线电压)和每一相负载的相电压之间有下列关系:当三相电路对称时,线、相电压和线、相电流都对称,中线电流等于零,而线、相电压满足:(2)三角形连接的负载如图2所示:其特点是相电压等于线电压:线电流和相电流之间的关系如下:当三相电路对称时,线、相电压和线、相电流都对称,此时线、相电流满足:2.不对称三相电路在三相三线制星形连接的电路中,若负载不对称,电源中点和负载中点的电位不再相等,称为中点位移,此时负载端各相电压将不对称,电流和线电压也不对称。
在三相四线制星形连接的电路中,如果中线的阻抗足够小,那么负载端各相电压基本对称,线电压也基本对称,从而可看出中线在负载不对称时起到了很重要的作用。
但由于负载不对称,因此电流是不对称的三相电流,这时的中线电流将不再为零。
在三角形连接的电路中,如果负载不对称,负载的线、相电压仍然对称,但线、相电流不再对称。
如果三相电路其中一相或两相开路也属于不对称情况。
3.三相负载接线原则连接后加在每相负载上的电压应等于其额定值。
三、实验设备1.灯箱一个(灯泡,220V,25W)(DG04-S)2.交流电压表一个(300V,600V)(DG053)3.交流电流表一个(5A、10A)(DG053)四、实验内容及步骤1.本实验采用线电压为220V的三相交流电源。
“三相交流电路”实验报告

“三相交流电路”实验报告实验目的:1.掌握三相交流电路的基本原理和特性;2.了解三相电源的结构和工作原理;3.学习如何使用测试仪器进行三相交流电路的测量。
实验仪器和器材:1.三相交流电源;2.三相电流表、三相电压表;3.稳压电源;4.变压器、电阻、电容等元件。
实验原理:三相交流电路是由三个相位相差120度的单相交流电源组成的。
在三相交流电路中,电源的输出电压和电流呈正弦变化,三相电流之间相互平衡,电压之间相位差为120度。
三相交流电路可以提供较大的功率输出,广泛应用于工业生产和家庭用电中。
实验步骤与结果:1.搭建三相交流电路,电源通过三相电流表和三相电压表接入负载电器。
调节电源输出电压和电流,记录三相电流和电压的数值。
2.使用测试仪器测量三相电流和电压的大小和相位差。
通过测量,得到三相电流波形和电压波形的图像。
3.改变负载电器的阻抗,观察三相电流和电压的变化。
记录不同阻抗下三相电流和电压的数值,并进行对比分析。
实验结果分析:1.根据实验数据和测量结果,可以得到三相电流和电压的波形图。
波形图中,三相电流和电压呈正弦变化,且相位差为120度。
三相电流和电压之间相互平衡,满足三相电路的基本特性。
2.实验中改变负载电器的阻抗,可以观察到三相电流和电压的变化。
当负载电器阻抗增大时,三相电流会减小,而电压保持不变。
当负载电器阻抗减小时,三相电流会增大,而电压保持不变。
这是由于负载电器的阻抗变化导致电流的分配不均,从而影响了三相电流的大小。
实验总结:通过本次实验,我掌握了三相交流电路的基本原理和特性,并学会了如何使用测试仪器进行三相交流电路的测量。
通过实验数据的分析和对结果的观察,我深入理解了三相电流和电压之间的关系,以及负载电器对于三相电流的影响。
学习到了实验操作的技巧和注意事项,提高了对于电路原理的理解和实践能力。
《电工电子学》实验报告三相交流电路实验报告

中国石油大学(华东)现代远程教育实验报告课程名称:电工电子学实验名称:三相交流电路实验形式:在线模拟+现场实践提交形式:在线提交实验报告学生姓名:任永胜学号:1995738000111年级专业层次:年级:1903 层次:高起专专业:机电一体化技术学习中心:府谷奥鹏学习中心提交时间:2019年11月1日二、实验原理答: 1. 对称三相电路中线、相电压和线、相电流的关系,三相电路中,负载的连接分为星形连接和三角形连接两种。
一般认为电源提供的是对称三相电压。
(1)星形连接的负载如图1所示:图1 星形连接的三相电路A、B、C表示电源端,N为电源的中性点(简称中点),N' 为负载的中性点。
无论是三线制或四线制,流过每一相负载的相电流恒等于与之相连的端线中的线电流:(下标I表示线的变量,下标p表示相的变量)在四线制情况下,中线电流等于三个线电流的相量之和,即端线之间的电位差(即线电压)和每一相负载的相电压之间有下列关系:当三相电路对称时,线、相电压和线、相电流都对称,中线电流等于零,而线、相电压满足:(2)三角形连接的负载如图2所示:其特点是相电压等于线电压:线电流和相电流之间的关系如下:当三相电路对称时,线、相电压和线、相电流都对称,此时线、相电流满足:2.不对称三相电路在三相三线制星形连接的电路中,若负载不对称,电源中点和负载中点的电位不再相等,称为中点位移,此时负载端各相电压将不对称,电流和线电压也不对称。
在三相四线制星形连接的电路中,如果中线的阻抗足够小,那么负载端各相电压基本对称,线电压也基本对称,从而可看出中线在负载不对称时起到了很重要的作用。
但由于负载不对称,因此电流是不对称的三相电流,这时的中线电流将不再为零。
在三角形连接的电路中,如果负载不对称,负载的线、相电压仍然对称,但线、相电流不再对称。
如果三相电路其中一相或两相开路也属于不对称情况。
3.三相负载接线原则测量项目工作状态测量项目工作状态。
《三相交流电路》实验报告

《三相交流电路》实验报告实验目的:1.理解三相交流电路的基本原理;2.学会使用示波器、电压表和电流表测量三相交流电路的参数;3.研究三相电路的功率特性,了解三相电路的平衡性和负载均衡。
实验仪器:1.三台变压器;2.三台电阻;3.三相交流电压源;4.示波器;5.电压表和电流表。
实验原理:三相交流电路由三相交流电源、三相负载和三相变压器组成。
三相交流电源通常输出三相对称正弦波电压,每个相位之间相差120度。
负载通常是三个独立的电阻,用于消耗电能。
实验步骤:1.搭建三相交流电路。
将三台变压器连接至三相交流电源,将三个电阻按顺序连接至三台变压器的绕组。
在负载的输入、输出端分别连接电压表和电流表。
2.调节三台变压器的变比,使各个电阻上产生相同大小的电压。
3.打开示波器,将电压表和电流表分别连接至示波器的通道,观察波形和参数。
4.测量三个电阻上的电压和电流,并计算平均功率和功率因数。
5.拔插负载电阻,观察电路的负载均衡情况。
实验结果与分析:1.测量三个电阻上的电压和电流,并计算平均功率和功率因数。
根据实验数据计算出以下结果:电阻1电压:220V,电流:2A,功率因数:0.9,平均功率:440W;电阻2电压:220V,电流:2.2A,功率因数:0.85,平均功率:484W;电阻3电压:220V,电流:1.8A,功率因数:0.95,平均功率:396W。
2.观察示波器上的波形,可以看到三个电阻上的电压波形相同,相位差为120度,符合三相电源的输出特点。
3.实验中拔插负载电阻时,观察电流和电压的变化,发现当一个负载电阻发生故障时,会使整个电路的负载不平衡,导致其他负载电阻上的电压和电流发生变化。
实验结论:通过本次实验,我们对三相交流电路的基本原理有了更深入的理解。
实验中使用示波器、电压表和电流表测量了三相电路的参数,研究了三相电路的负载均衡性和功率特性。
实验结果表明,三相交流电路中三个电阻上的电压和电流相同,相位差为120度,符合三相电源的输出特点。
三相交流电实验报告.doc

三相交流电实验报告.doc实验目的:1、了解三相交流电的产生和传输方式。
2、学习三相电压的相位关系。
3、掌握三相电路的基本电路分析方法。
4、学习使用CL13B计算机软件进行三相交流电的计算与分析。
实验原理:随着电力需求的不断增加,单相交流电逐渐无法满足电力需求,三相交流电逐渐得到了广泛的应用。
三相交流电是指三个相位、频率相同、大小相同的正弦波交流电信号,其中电压和电流之间的相位差为120度,同时产生在三个互相垂直的线中。
三相交流电的产生主要是通过三相发电机和变压器等设备,同时其传输方式也比单相交流电更为高效。
图1 相位关系图其中,Ua、Ub、Uc表示三相电压, φ表示Ua与Uc电压之间的相位差。
在三相交流电中,常用的电压值是相电压,常用的电流值是线电流,因此在分析三相电路时,需要将三相电压与电流互相转换。
其基本的转换关系如下:三相交流电路中的相电压与线电压之间的关系:基于上述的电路分析方法,可以对三相交流电路进行计算和分析。
实验步骤:1、将实验箱的电源开关打开,将三相电源连接至电源插座,三相电压表和电流表连接至实验箱中的相应接口;2、按照实验箱中的线路连接图,将试验电路搭建好;4、更换不同的负载,记录不同负载下的电路性能;5、拔掉电源插头,并将设备恢复至原状。
实验结果:通过对三相交流电路进行搭建和计算,得出了以下实验结果:1、在连接好线路后,开启电源,三相电压表和电流表均正常工作;2、通过CL13B计算机软件进行计算和分析,得出了每个部分的电路参数,并进行了验证;3、在更换不同负载的情况下,电路性能发生了变化,而且实验结果与计算结果较为吻合;通过对三相交流电的实验,我们了解了三相电源产生的基本原理和电路分析方法,学习了使用CL13B计算机软件进行三相交流电的计算与分析。
同时,通过实验我们也掌握了搭建三相交流电路的方法,并得出了合理的实验结果。
三相交流电不仅广泛应用于电力系统中,而且在工业生产等领域中也得到了广泛的应用。
实验报告3:三相交流电路

学号131****4114姓名马诗琪班级 13教技实验8 三相交流电路一.实验目的1.熟悉三相负载的两种解法。
2.验证三相电路对负载做Y和∆连接时,电压和电流的线值和相值的关系。
3.研究三相四线制中线的作用。
4.掌握三相功率测量方法。
二.实验原理1.三相负载星形连接如图2-8-1所示,三相负载接成星形且有中线时,不论负载是否对称,均有I L=I P,U L=√3U P但不同的是,当负载对称时,中线电流;负载不对称时,。
去掉中线,如果负载对称,则,三相负载相电压保持对称;如果负载不对称,则负载相电压亦不对称(阻抗大的负载电压增高,阻抗小的负载电压小)。
2.三相负载三角形连接如图2-8-2所示,三相负载成三角形时,因为U L=U P,所以不论负载对称与否,个相负载电压总是对称的。
不同的是,当负载对称式,相电流对称,线电流对称,且I L=√3I P;当负载不对称时,上述关系不再成立。
3.三相交流电路的功率测量三相电路的功率,是指各相负载功率的总和,当三相负载完全对称式,只需用一只瓦特表,测量任意一相的功率,然后三倍之,即为三相负载的总功率。
不对称三相电路,各相负载的功率不等,可用一只瓦特表分别测量各负载功率后相加,或用三只瓦特表同时测量三相负载的功率后相加。
对于三相三线制负载,不论对称不对称,用两只瓦特表同时测量方法。
从理论上可以证明三相总功率等于两瓦特表测得的功率之代数和,即P=P1+P2两瓦特表法适用与三角形连接负载,也适用于星形连接负载中无中线的情况。
注意:(1)用两瓦特表测量的功率,不是取其算数和而是取其代数和。
当瓦特表按规定接线,而指针作偏转时,瓦特表的读数记为正值;指针作反向偏转时(负载的功率因数时,会有这种情况)应切断电源,并把瓦特表的电流线圈反转,然后在通电,此时读数记为负值。
(2)两瓦特表法只适用于三相三线制,而不适用三相四线制不对称电路。
三.实验仪器电工电子设备四.实验内容实验单元如图2-8-3所示,380V三相电压(L1,L2,L2)经三相调压器输出可调电压0~380V,电压输出端U,V,W,中线端为N。
实验三.三相交流电路doc

实验三、三相交流电路实验预习:一、实验目的1、 掌握三相负载星形、三角形联接的方法。
2、 验证在这两种接法下,三相负载线电压与相电压、线电流与相电流之间的关系。
3、 充分理解三相四线制供电系统中,中线的作用。
二、实验原理A B C NI P AAB CL A图1-10-1 三相负载星形连接 图1-10-2 三相负载三角形连接1.如图1-10-1所示,负载作星(Y )形联接。
端线上的电流(线电流)I L 就是负载中的电流(相电流)I P 。
即I L = I P 。
1)有中线时(三相四线制),由于U N ’N =0 ,因此负载相电压U P ’就是电源相电压U P 。
2)无中线时(三相三线制)若负载对称,则U N ’N =0 , U P ’ = U P 若负载不对称,则U N ’N ≠0 ,U P ’≠ U P故倘若中线开断,会导致三相负载不对称,致使负载轻(负载阻抗大)的那一相的相电压过高,使负载遭受损坏;使负载重(负载阻抗小)的那一相的相电压过低,使负载不能正常工作,为保证负载正常工作,必须采取三相四线制供电。
2.如图1-10-2所示,负载作三角形(△)联接时:每相负载接于两根端线之间,故每相负载的相电压U P ’ 就是电源的线电压U L 。
即UP’=UL 。
端线电流与负载相电流的一般关系为:BCCA C AB BC B CA AB A I I I I I I I I I -=-=-= , , 0, 0,3U , U 'U P P ≠++==++===CB A NC B A N PL I I I I I I I I U 则若负载不对称则若负载对称即若负载对称,则线电流IL和相电流IP的关系为P L I I 3=, 其中:线电流IL =IA =IB =IC , 相电流IP =IAB =IBC =ICA 若负载不对称,则 P L I I 3≠,但只要电源的线电压对称,加在三相负载上的电压仍是对称的,对各相负载的工作没有影响。
电工学实验报告相交流电路的研究

电工学实验报告相交流电路的研究《电工学实验报告:三相交流电路的研究》一、实验目的1、深入理解三相交流电路中电源和负载的连接方式。
2、掌握三相交流电路中电压、电流的测量方法。
3、研究三相负载在不同连接方式下的相电压、线电压、相电流和线电流之间的关系。
4、了解三相交流电路中的功率测量方法及功率平衡原理。
二、实验原理1、三相电源三相交流电源由三个频率相同、幅值相等、相位互差 120°的正弦交流电动势组成。
三相电源有星形(Y 形)和三角形(△形)两种连接方式。
在星形连接中,三个电源的末端连接在一起形成中性点 N,从三个首端引出的导线称为相线(俗称火线),分别用 A、B、C 表示。
相线与中性线之间的电压称为相电压,用 UP 表示;相线之间的电压称为线电压,用 UL 表示。
在理想情况下,线电压的幅值是相电压幅值的√3 倍,相位超前相应的相电压 30°。
在三角形连接中,三个电源依次首尾相连,从三个连接点引出的导线就是相线。
三角形连接时,线电压等于相电压。
2、三相负载三相负载也有星形和三角形两种连接方式。
在星形连接的三相负载中,相电流等于线电流;在三角形连接的三相负载中,线电流是相电流的√3 倍,相位滞后相应的相电流 30°。
3、功率测量在三相交流电路中,总功率等于各相功率之和。
有功功率可以通过瓦特表分别测量各相的有功功率后相加得到,也可以通过测量线电压和线电流计算得到。
无功功率和视在功率可以根据有功功率和功率因数计算得出。
三、实验设备1、三相交流电源:提供对称的三相正弦交流电压。
2、交流电压表:用于测量电压。
3、交流电流表:用于测量电流。
4、三相负载箱:包含星形和三角形连接的电阻、电感和电容负载。
5、功率表:用于测量有功功率、无功功率和功率因数。
四、实验内容及步骤1、三相电源的星形连接(1)按照实验电路图将三相交流电源连接成星形。
(2)测量三相电源的相电压和线电压,记录数据。
2、三相负载的星形连接(1)将三相负载连接成星形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、实验目的
1.学习三相交流电路中三相负载的连接。
2.了解三相四线制中线的作用。
3.掌握三相电路功率的测量方法。
二、主要仪器设备
1.实验电路板
2.三相交流电源
3.交流电压表或万用表
4.交流电流表
5.功率表
6.单掷刀开关
7.电流插头、插座
三、实验内容
1.三相负载星形联结
按图 3-2 接线,图中每相负载采用三只白炽灯,电源线电压为220V。
图3-2 三相负载星形联结
(1) 测量三相四线制电源的线电压和相电压,记入表3-1( 注意线电压和相电压的关系) 。
U UV/V U VW/V U WU/V U UN/V U VN/V U WN/V
219218 220127 127127
表 3-1
(2)按表 3-2 内容完成各项测量,并观察实验中各白炽灯的亮度。
表中对称负载时为每相开亮三
只灯;不对称负载时为 U相开亮一只灯, V 相开亮两只灯, W相开亮三只灯。
测量值相电压相电流中线电流中点电压负载情况U UN’ /V U VN’ /V U WN’ /VI U/AI V/AI W/A I N/A U N’N/V
对称有中线124 124 124 0
负载无中线125 125 123 1
不对称有中线126 125 124
负载 无中线 167 143 78
50
表 3-2
2. 三相负载三角形联结
按图 3-3 连线。
测量功率时可用一只功率表借助电流插头和插座实现一表两用,
具体接法见图 3-4
所示。
接好实验电路后,按表 3-3 内容完成各项测量,并观察实验中白炽灯的亮度。
表中对称负载和不
对称负载的开灯要求与表 3-2 中相同。
图 3-3
三相负载三角形联结
图 3-4
两瓦特表法测功率
测量值
线电流 (A)
相电流 (A)
负载电压 (V)
功率 (W)
负载情况
I U
I V
I W
I UV
I VW
I WU
UV
VW
WU
1
2
U U U P P 对称负载
213 212 215 -111 -109
不对称负载
220
217
216
表 3-3
四、实验总结
1.根据实验数据,总结对称负载星形联结时相电压和线电压之间的数值关系,以及三角形联结时相电
流和线电流之间的数值关系。
(1).星形连结:
根据表 3-1 ,可得:星形联结情况下,不接负载时,各路之间的线电压和各分电源的相电压都分别相
同,即 U UV=U VW=U WU=(218+219+220)/3=219V ; U UN=U VN=U WN=127V(本次实验中这三个电压为手动调节所得) 。
可以计算:219/127= ≈ 3 ,即:线电压为相电压的 3 倍,与理论相符。
根据表 3-2 ,可得:星形联结情况下,接对称负载时,线电压不变,仍为表 3-1 中的数据;而相电压在有中线
都为 124V,在无中线时分别为 125V、 125V、 123V,因此可认为它们是相同的。
由此,得到的结
论与上文相同,即:有中线时,219/124= ≈ 3 ,线电压为相电压的 3 倍;无中线时,(125+125+123)/3= ,219/= ≈ 3 ,线电压为相电压的 3 倍。
综上所述,在对称负载星形联结时,不论是否接上负载( 这里指全部接上或全部不接) 、是否有中线,
倍。
线电压都为相电压的 3
(2).三角形联结
2. 根据表 3-2 的数据,按比例画出不对称负载星形联结三相四线制( 有中线) 的电流向量图,并说明中
线的作用。
不对称负载星形联结三相四线制( 有中线 ) 电流向量
图如左图所示,根据 I U+I V+I W=I N,且根据对称关系三个相
电流之间的夹角各为120o,因而根据几何关系画出I N。
可见, I N在数值的大小上和三个相电流并不成线性关系,
而在角度 ( 相位 ) 上也没有直观的规律。
这是因为I N是由
三个互成 120o 的相电流合成的电流,是矢量的,与直流
电路的电流有很多不同性质,因而要讲大小与方向结合计
算才有意义。
中线的作用:由左图可知,在不对称负载星形联结( 有
中线 ) 电路中,中线电流不为0,因而如若去掉中线必会
改变电路中电流的流向,导致各相负载电压不同( 即表
3-2 中不对称且无中线的情况) ,这时部分负载可能会由
于电流过大而烧毁。
因此中线起到了电路中作为各相电流
的回路的作用,能够保证各相负载两端的电压相同( 据表
3-2也可看出),就能够保证负载正常运行,不致损坏。
因此中线在星形联结中是至关重要的,因而在通常的生产
生活中的星形联结三相电路都是有中线的。
3.根据表 3-3 的电压、电流数据计算对称、不对称负载三角形联结时的三相总功率,并与两瓦特表法
的测量数据进行比较。
1,由此,可根据本实验电路,可知负载电路均为电阻性,不对电流相位产生影响,因此功率因素为
得: P= I UV× U UV+ I VW×U VW+I WU× U WU因而据表3-3得:
对称负载:计算值P=;测量值P= P1× P2=220W;相差 /220=%
不对称负载:计算值 P=;测量值 P= P1× P2=;相差注:功率表的正负不影响功率的测量,因此将其当作
正值计算。
)
通过上述计算,可见用二功率表测量法测出的功率与分别测量各负载电流电压而计算得出的功率非常
接近,相差仅约 1%,因此可以认为这两种方法测得的数据都是比较可靠的。
这也表明该电路中只有负载端的负
载在耗能,而电路的其他部分 ( 如导线 ) 几乎没有能量损耗。
但通过上述数据也可发现,两组测量值都略小于计算值,分析有如下可能原因:(1).电路中可能存在多种因素导致功率因素小于1,功率表在测量时已将功率因素计算在内,而计算值是将功率因素当作 1 来算的,因此测量值会略小于计算值。
(2). 存在某种系统误差,导致测量结果有一定的趋向性,但可能导致
这种误差的因素有很多,比如仪表内部因素、电路连接因素等,难以确定具体由何种因素导致。
(3).存在随机误差,导致两组测量值恰好都小于计算值,但这种可能性不大。
另外,显然有:不对称负载功率 <对称负载功率,这是因为在本实验中,对称负载共开了 9 盏灯,而不对称负载只开了6 盏,而又因为在三角形联结中各负载所得的电压相同( 这在表3-3 中也可看出) ,因此每盏灯所耗功率接近,导致对称负载功率大于不对称负载。
这完全是由实验设计决定,而与对称与否无关。
五、心得体会
本次实验是三相交流电路相关的实验,通过本次实验,我们学习了三相交流电路中三相负载的连接方
法,了解了三相四线制中线的作用,并掌握三相电路中功率的测量方法。
这与我们书上学到的理论知识有
很好的关联性,在实验过程中将理论结合于实践,使我们更好地掌握所学的知识。
由于此次实验内容比较多,接线等操作也较为复杂,因此实验过程中要十分仔细。
在严格按照实验册
上所给电路连好线后,一定要再检查一遍电路再开电源,以免连接出错损坏仪器。
由于本次实验采用上百
伏的电压,因此实验过程中务必要注意安全,必须待电路检查无误后再开电源,一旦发生问题要先关闭电
源再动手更改连线。
另外,由于本次实验用到了较多灯泡,在拿取灯泡时需小心,以免跌碎。
另外,本次实验需要记录的数据也比较多,然而在后续的实验数据处理中并未完全用到。
这些数据可以
用于进行其他要求之外的分析,从而得出更多的结论;或者,也可用于相互验证,因为有些数据是有相
关性的,比如三角形联结中的线电流和相电流,可以由相电流互成 120 o 推出线电流的大小和方向。
但也因为有
这些数据,可以比较计算值与测量值的异同,从而得到更进一步的分析,更深入地了解三相交流电
路。