GSM上下行不平衡概念分析及案例

合集下载

GSM无线网络优化过程中天馈混接引起上下行 不平衡 的判断方法浅析

GSM无线网络优化过程中天馈混接引起上下行 不平衡 的判断方法浅析

GSM无线网络优化过程中天馈混接引起上下行不平衡的判断方法浅析一、摘要上下行平衡性能统计是GSM网络优化工作中的衡量上下行通路质量的一项重要指标,影响该性能统计的因素很多,诸如载频硬件、天馈驻波、数据配置等等,而J省N局精品网项目优化过程中,经过反复排查和论证,天馈混接也是引起上下行不平衡现象的原因,且数量较多,本文针对天馈混接引起的上下行不平衡的判断方法做以简单阐述。

二、现象描述我们以曾经处理过的一个典型基站(G-水关桥)为例,从话务统计的现象入手,来讲述一下如何进行分析和处理;该站有3个小区,小区号分别为127,128和129,0、2、4分别为3个小区的BCCH载频,1、3、5分别为3个小区的TCH载频。

从M2000取得一段时间的上下行平衡性能统计,按照载频进行汇总,并计算各等级的百分比,可得到如下曲线图:从以上曲线图可以看出,小区127、128TCH载频下行弱,而129小区上下行平衡性能正常。

三、处理过程1、借鉴已有的处理此类故障的经验,分别对127、128两个小区进行更换硬件、测试对应的驻波比及核查相关的数据配置等操作,故障现象依旧;转换思维,在排除了硬件等因素后,对天馈线连接方式进行了测试验证。

2、在G-水关桥的测试中,由于场地限制,我们采取了固定地点的CQT测试方式,即选取了2个点,分别为1小区主覆盖方向和2小区主覆盖方向。

测试点图例如下所示:测试点2测试点1在测试点测试得到的结果如下:测试点1的测试数据:正常情况下,MS在小区的主覆盖方向上呼叫时,占用TCH载波时与BCCH载波的电平相差不会很多,一般不会有电平陡升或陡降的情况。

综合以上的测试结果,可以看出:该站Cell1的TCH与CELL2的TCH 接反。

在避雷器处调换Cell1分集跳线和Cell2的分集跳线后,观察上下行平衡性能分析结果如下:从调整后的上下行平衡等级统计曲线图可以看出,经过天线对调后平衡性能基本一致,故障现象得到了解决。

GSM理论案例分析

GSM理论案例分析

频点问题造成的未接通现象描述:用户反映在盐城饭店占用小区4561拔打电话,时常碰到未接通。

我们到现场测试,小区4561在SD信道占用频点No.7进行呼叫处理时,容易发生未接通。

此时,电平为-69dBm至75dBm,质量在6至7级。

分析:小区电平较好,但是质量较差,从信令中可观察到,在发送CM Service Request 后,没有后继信令,只有Measurement Report 消息,且参数无线链路超时(RLT)迅速由64变化为0,最终拆链,造成未接通,怀疑存在干扰。

建议:RNP改频。

问题复测:我们将小区No.7号频点改为43,并对投诉点进行复测,总共进行15次测试,每次均顺利接通,且电平和质量良好。

鸳鸯线导致切换成功率低案例简述:小区扩容后伴随大量TCH分配失败,同时切换成功率大大降低可借鉴经验:鸳鸯线导致切换成功率低故障现象:小区扩容后伴随大量TCH分配失败,同时切换成功率大大降低故障原因分析:通过话务报告,我们发现guankou1/2/3小区自从11月1日开始切换成功率下降得非常严重,从99%左右下降到60%左右(见下文中切换成功率指标变化趋势图),观察小区详细报告发现小区的下行质量切换非常多,而且TCH分配失败的次数也非常多,因为前一天有扩容,因此我们初步怀疑可能是新扩载频存在问题,因此建议更换了该载频,但是更换载频后并小区指标并没有好转,因此我们排出了是载频存在问题的可能性,而是怀疑小区可以存在鸳鸯线。

图1:gangkou1/2/3切换成功率变化趋势下图为小区切换原因分析,可以看到该小区下行质量切换比例不正常。

图2:gangkou1切换原因分析从下图中,我们可以看到该小区TRX3的载频SDCCH和TCH占用时长都不正常,因此我们lock该载频。

图3:gangkou1小区TRX分析(1)图4:gangkou1小区TRX分析(2)我们看到lock载频后,TRX2和TRX3载频对切了一下,即原先TRX2的载频硬件为现在的TRX3硬件,而原先TRX3的载频硬件为现在的TRX2硬件,我们可以看到占用时长不正常的载频还是原来的载频硬件(图4),接着我们又将该小区BCCH载频lock,结果TRX2载频切换成了BCCH载频,即TRX2载频和BCCH载频对切了一下,结果我们发现原先的TRX2现在的BCCH载频占用时长恢复了正常,而原先的BCCH和TRX3载频上的占用时长反而不正常了(图5),因此更加验证了我们对于该小区存在鸳鸯线的怀疑,建议检查该小区是否存在鸳鸯线的现象。

GSM网络高质差小区排查方法及典型优化案例

GSM网络高质差小区排查方法及典型优化案例

GSM网络高质差小区排查方法及典型优化案例湖南移动网优中心2012年8月目录一、高质差小区定义 (3)二、质差排查分析大致流程 (3)1、质差小区一般整治流程图 (4)2、基于MR的辅助质差小区排查流程 (4)三、典型质差优化方法 (5)1、弱覆盖质差优化方法 (5)2、过覆盖质差优化方法 (6)3、高干扰质差优化方法 (6)4、同站900质差,1800质量好小区优化方法 (6)5、其他优化方法 (7)四、网优平台质差分析模块介绍 (7)1、模块界面 (7)2、进入路径 (7)相关报表说明 (7)五、典型质差优化案例 (8)1、同频干扰质差小区处理案例 (8)2、过覆盖质差小区处理案例 (9)3、弱电平质差小区处理案例 (10)4、利用CO-BCCH解决质差案例 (10)一、高质差小区定义目前质量数据最准确的是基于MR文件统计,质差小区定义如下:上行质差小区:(上行话音质量6级采样点+上行话音质量7级采样点)/(上行话音质量0—7级采样点之和)*100% 大于5%的为上行质差小区。

下行质差小区:(下行话音质量6级采样点+下行话音质量7级采样点)/(下行话音质量0-7级采样点之和)*100%大于5%的为下行质差小区二、质差排查分析大致流程质差一般可分为高电平质差和弱电平质差两大类,质差产生的原因主要集中在干扰(包括频率干扰、直放站干扰、外部干扰等)、弱覆盖、过覆盖、设备故障四个方面。

大致排查思路如下:1、质差小区一般排查流程图2、基于MR 的辅助质差小区排查流程电平与质量关联分析强电平质差全电平区间质差 弱电平质差 大TA 质差 质量与TA 分布关联分析小TA 质差 低电平大TA 质差质量、电平与TA 关联分析高电平小TA 质差低电平小TA 质差 高电平大TA 质差➢通过分析RQ 0-7采样点占比,梳理存在连续高质差的小区;➢检查小区告警,通过对单板、小区、基站硬件告警排查,如驻波告警、误码告警等,优先处理告警及故障;➢通过忙闲时干扰带指标对比,结合质差话务与4、5级干扰带的相关性,判断质差是否干扰引起,如小区4、5级干扰带指标较差,需按干扰优化流程优先处理干扰。

上下行不平衡的影响及问题处理

上下行不平衡的影响及问题处理

上下行不平衡的影响及问题处理上下行不平衡,指目标覆盖区域内,上下行对称业务出现下行覆盖良好而上行覆盖受限(如UE的发射功率达到最大仍不能满足上行BLER要求),或上行覆盖良好而下行覆盖受限(表现为下行专用信道码发射功率达到最大仍不能满足下行BLER要求)的情况。

上下行不平衡的覆盖问题比较容易导致掉话。

这类问题通常包括以下原因:上行干扰(比如直放站和干放等设备上下行增益设置存在问题),天馈系统问题,NodeB硬件原因等。

主要的解决方法是对设备硬件与设备设置进行检查上下行功率不平衡造成单通、掉话[现象描述]路测过程中发现以下现象:手机占上某小区,但不能呼出;单向通话;在距离小区一定距离处总是掉话;频繁的切换后掉话现象。

[处理过程]无线链路分上行和下行两个方向,实际的覆盖范围应由信号较弱的方向决定。

如果上行信号覆盖大于下行信号覆盖,那么小区边缘下行信号较弱,容易被其它小区的强信号“淹没”;如果下行信号覆盖大于上行信号覆盖,那么移动台被迫驻留在该强信号下,但上行信号太弱,手机不能呼出,或造成通话后话音质量差、单向通话,甚至掉话。

当然,平衡并不是绝对的相等,由于基站灵敏度好于移动台的灵敏度,所以下行信号将大于上行信号。

上面提到的路测现象多是缘于上行信号低于下行信号太多而造成的功率不平衡,特别是打开上行功控时。

测试时让手机往小区边缘方向移动,同时用MA10信令分析仪在基站侧跟踪抓取数据,比较BTS和MS各自的接收电平,观察当上行信号达到最低接收门限电平时,下行信号是否还好得足以让手机驻留该小区。

检查上下行功率是否平衡,但从下图可以看出,其差异已近30dB;若出现多个这样的测量结果,肯定是上行接收存在问题,需要检查TRX板、分路器、塔放电流和天馈的驻波比。

当上行功控打开时,功控参数设置不当也会造成明显的功率不平衡。

首先应保证手机静态功率等级设置正确(900为等级5,1800为等级0),曾发现1800手机因上下行功率不平衡造成单通。

GSM网无线网络优化中上下行问题分析

GSM网无线网络优化中上下行问题分析

GSM网无线网络优化中上下行问题分析提要GSM网无线网络优化工作中,设备上下行平衡问题往往容易被忽略,但实际工作中,上行明显弱于下行的问题存在较多,如何处理该类问题,一直是网络优化工程师比较关心的。

本文针对这一问题进行详细分析和介绍,以供大家参考。

关键词:上下行平衡;平衡等级;接收灵敏度中图分类号:F49文献标识码:A一、引言从网管上局取出话务统计数据见表1、表2、表3,依据数据分析得出上下行平衡性能,具体为一级至五级占比例合平均为25%左右,而七级至十一级占用比例合为59%左右,并且BTS312、BTS30、BTS3012、BTS3001C和BTS3002C基站均如此,如果以6为标准则为上行偏弱,需要分析该问题原因,下两表分别为各等级统计次数和比例。

(表1、表2、表3)二、问题原因分析按照协议规定,手机的接收灵敏度为-102dBm,而基站接收灵敏度为-110dBm,考虑到一般手机的灵敏度可能会比协议好2dB左右。

所以,一般取手机灵敏度为-104dBm。

这样上下行灵敏度的差别就是6dB。

所以,在上下行平衡的统计项中,当下行接收电平(手机上报)大于上行接收电平(基站上报)6dB时候,我们认为是最理想的平衡状态。

所以,在上下行平衡统计中,等级6就是下行接收电平恰好大于上行接收电平6dB的情况。

表4就是具体的各个统计区间说明。

(表4)上下行平衡话统在BSC侧的计算公式为:下行功率电平-上行功率电平-6dB(灵敏度补偿)=平衡等级上下行不平衡的原因有:(一)基站各个载频中间上报电平有一定的波动。

GSM协议0508规定,测量基站接收机的接收信号电平RMS(均方根值),在正常条件下,从-110dBm~-70dBm,其绝对精度为±4dB,在正常条件和极端温度下,从-110dBm~-48dBm之间,绝对精度为±6dB。

GSM协议这样的规定是从三方面考虑:(1)射频器件的幅频特性(也就是随着频率的变化,射频器件的增益会有些变化,这是射频器件的特性);(2)整个接收通道器件的增益离散性;(3)这种上报精度是不会影响网络指标的。

如何解决上下行不平衡问题

如何解决上下行不平衡问题

如何解决上下行不平衡问题解释一下链路不平衡的问题“GSM中有一个参数为Path_balance值,这个值定义的即是链路平衡情况:上行损耗-下行损耗+110。

当上下链路平衡时,Path_balance值为110。

当下行损耗过大多半为驻波偏大引起,典型表现为系统通话质量变差,覆盖范围减小,系统容量变低,切换困难等,通话质量低了引起掉话也会有的,因为GSM参数中有一个移动台最小接入电平设置。

通常取-110dB,低于这个值便会引起掉话。

基站接收和移动台接收都有一定的灵敏度,只有当上行信号和下行信号分别达到基站和移动台所能接受的小的电平值时,才能正常收发。

当上行不能满足或者下行不能满足时,必然会有问题出现。

当在小区边缘时,上行满足下行不满足,可能会出现的情况是手机显示没有信号或者信号很弱。

当下行满足上行不满足时,可能出现的情况是手机信号很好(MS显示信号满格),但是手机拨电话很难拨,即使拨出去,也很容易掉话。

除掉话问题以外上下行不平衡也是产生单通的现象(这也就是你可以在手机里听到人家说话,但是你说的话别人听不见或者别人能够听见你讲话,但是你听不见别人讲话)的原因之一。

对于完全相同的路径,由于频段的不同,衰耗肯定不同,所以上下行不平衡是肯定的。

我认为一般上行加塔放,下行加大功率再加上调整天线就可以了,再不只能调整参数,不过如果基站没问题的话说实话没太大作用塔放确实是解决上行问题的好办法。

其实这个问题根治还真不大容易,只能尽量了。

P-b值是反映RTF性能的一个参数,它的计算公式为pathbalance=uplink pathloss-downlink path loss+110,故它的最佳值应为110。

P-b值不正常是在基站维护过程中经常遇到的问题,它会影响到拥塞、掉话等一些敏感的指标,也会造成通话质量的下降。

第一部分:造成P-b值不正常的原因造成P-b值不正常的原因有很多,既有软件方面的,也有硬件方面的。

总结起来主要有以下几个方面:1.基站数据定义错误2.话务量太低也会造成P-b值不正常3.相邻小区或本小区同频或邻频干扰也会造成P-b值不正常4.射频通路、接收通路硬件故障及连接错误5.载频本身故障6.带外干扰第二部分:解决P-b问题的步骤我们知道了造成P-b值不正常的原因,因此先不要急于下站,我们可以先进行一下前期的分析。

上下行不平衡处理方法及案例

上下行不平衡处理方法及案例

一、链路不平衡简介链路不平衡基站主要分为室分基站和宏站的链路不平衡。

而一般情况下室分基站都是上行电平明显强于下行电平。

而引起室分基站上行电平强于下行电平的原因是这些室分基站都挂有直放站和干放,由于直放站和干放对上行信号有放大作用,导致上行电平明显强于下行电平。

处理方法是调整直放站和干放的上行增益,减小上行信号放大的倍数,达到链路平衡的目的。

宏站链路不平衡的问题比较复杂,原因也比较多。

宏站的链路不平衡的可能是由于载频故障引起。

载频故障可能引起链路不平衡,需要更换载频。

天馈系统问题是引起宏站链路不平衡的主要原因。

载频的小钢跳质量不好,或者链接不牢固可能引起接收信号偏弱,导致下行信号过强,处理方法是更换小跳线。

馈线存在驻波告警或者接头部分做工不好都会导致驻波告警。

馈线接成鸳鸯线会造成链路不平衡。

馈线接成鸳鸯线的基站一般情况会有两个小区的载频同时出现链路不平衡现象。

鸳鸯线可以通过信令跟踪发现,通常情况下存在鸳鸯线的小区,主集接收电平和分集接收电平值会相差6个dB以上。

基站数据配置与实际链接不一致也会导致链路不平衡。

一般情况下,如果数据配置错误,跟踪信令会发现上行电平值时时为-110dBM,如果出现这种情况,基本可以判断实际连接与数据配置不一致。

二、典型案例分析:1、海盐泾塘-2上下链路不平衡处理。

海盐泾塘-2基站TCH载频上下行电平强于上行电平。

代维到达现场检查显现馈线连接,基站为2、2、2配置。

2扇区实际连接接收为分集接收模式。

跟踪信令发现,海盐泾塘-2分集载频上行电平值时时为-110dBM。

由此可以判断海盐泾塘-2数据配置可能跟实际连接不一致,检查海盐泾塘-2基站数据配置,发现海盐泾塘-2接收模式为独立接收,与实际连接模式不同。

将海盐泾塘的接收模式由独立接收改为分集接收。

修改之后,海盐泾塘-2上下链路平衡。

起始时间对象名称上下行平衡因子S462A:上下行平衡等级1的次数S462K:上下行平衡等级11的次数1和11比例10/03/2010 00:00:00 海盐泾塘-2 10.78 0 39 78.00% 10/03/2010 01:00:00 海盐泾塘-2 11 0 190 100.00% 10/03/2010 02:00:00 海盐泾塘-2 11 0 399 100.00% 10/03/2010 04:00:00 海盐泾塘-2 11 0 3 100.00% 10/03/2010 05:00:00 海盐泾塘-2 10.984 0 309 98.41% 10/03/2010 06:00:00 海盐泾塘-2 10.931 0 2531 93.43% 10/03/2010 07:00:00 海盐泾塘-2 10.956 0 3501 96.26% 10/03/2010 08:00:00 海盐泾塘-2 10.931 0 2642 94.97% 10/03/2010 09:00:00 海盐泾塘-2 10.941 0 7410 95.01% 10/03/2010 10:00:00 海盐泾塘-2 10.885 0 5990 90.35% 10/03/2010 11:00:00 海盐泾塘-2 10.89 0 3187 91.11% 10/03/2010 12:00:00 海盐泾塘-2 10.956 0 4890 96.05%10/03/2010 13:00:00 海盐泾塘-2 10.984 0 62 98.41%10/03/2010 14:00:00 海盐泾塘-2 11 0 389 100.00% 10/03/2010 15:00:00 海盐泾塘-2 11 0 1531 100.00% 10/03/2010 16:00:00 海盐泾塘-2 7.275 13 273 5.73%10/03/2010 17:00:00 海盐泾塘-2 6.585 31 36 1.36%10/03/2010 18:00:00 海盐泾塘-2 6.537 43 398 4.88%10/03/2010 19:00:00 海盐泾塘-2 6.676 19 242 2.69%10/03/2010 20:00:00 海盐泾塘-2 7.521 1 268 2.75%10/03/2010 21:00:00 海盐泾塘-2 6.905 39 179 2.48%10/03/2010 22:00:00 海盐泾塘-2 4.723 185 1 7.23%10/03/2010 23:00:00 海盐泾塘-2 7.605 1 40 3.13%11/03/2010 00:00:00 海盐泾塘-2 7.214 0 0 0.00%11/03/2010 01:00:00 海盐泾塘-2 7.763 0 0 0.00%11/03/2010 03:00:00 海盐泾塘-2 6.646 0 0 0.00%11/03/2010 04:00:00 海盐泾塘-2 7.28 0 0 0.00%11/03/2010 05:00:00 海盐泾塘-2 8.547 4 39 6.83%11/03/2010 06:00:00 海盐泾塘-2 7.329 0 5 0.80%11/03/2010 07:00:00 海盐泾塘-2 6.821 11 58 1.99%11/03/2010 08:00:00 海盐泾塘-2 6.657 6 27 1.15%11/03/2010 09:00:00 海盐泾塘-2 6.91 11 25 0.95%11/03/2010 10:00:00 海盐泾塘-2 6.004 22 183 1.91%11/03/2010 11:00:00 海盐泾塘-2 7.197 11 66 0.84%11/03/2010 12:00:00 海盐泾塘-2 5.697 15 17 0.95%11/03/2010 13:00:00 海盐泾塘-2 5.095 10 1 0.42%11/03/2010 14:00:00 海盐泾塘-2 4.794 48 5 1.77%11/03/2010 15:00:00 海盐泾塘-2 5.359 89 8 1.17%11/03/2010 16:00:00 海盐泾塘-2 4.994 132 15 4.72%2、海盐香溢大酒店上下链路处理。

BTS3012上下行不平衡上行偏强问题处理

BTS3012上下行不平衡上行偏强问题处理
在 3 0 ~ 6 0 %( 见图2 ) 、
频 点. 射 频 连 线如 图 l 所示 ; 而在旅 游淡季 , 系统 规 划 人 员软 减容配置为 S 1 / 2 , 射 频 连 线依 然保 持 原 有连 接 . 重 新 规 划 未要 求 维护 人 员按 新 规 划 上 站 更改 射 频 连 线 . 以及 重 新 配 置 小 区 的 发 送 模 式 和接 收模 式 . 只在 后 台去 激 活频 点 , 现 场 连 线 和 后
_ -




i I _ 蔫
! 啼 盘 l I 撸柱 甘 蒜



I 豫舒 瞢
: _ 二 f

一 { ~



缔 a ■ ■ 啦分 ■ 榭 ●接 舒 墓
2 故障处理
从 该 类故 障 中挑 选 上 行 偏 强 、软 减 容 操 作 过 的 两 个 基 站 进 行 现 场 技 术 支 撑
馈 系 统 中上 下 行 不 平 衡 硬 件 故 障 , 有效地提高网络维护中处理这类故障的效率 , 提 升 通信 网 络优 化 的指 标 和 用 户 感 知 。
【 关键词 】 上下行不平 衡 : B T S 3 0 1 2 ; G S M故 障 【 中图分类号 】 F 4 2 6 【 文献标识码 】 A
故 障描 述 : 该 基 站 有 2个 小 区 , 由于是旅 游 区, 忙 时 扩 客 为¥ 4 / 8 , 闲时 减 容 为 S 1 / 2 。 其 中, l K Y 一梯子 岩度 假 村 一 l 配置 2
块 DT RU: 1 KY 梯 子 岩 度 假 村一 2配 置 4块 D TRU、 1块 D DP U 和 2块 D C O M 2个 小 区均 是 发 送 模 式 为宽 带 合 路 . 接 收 模 式
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

GSM上下行不平衡概念分析及案例目录1 上下行链路平衡定义说明 (2)1.1上下行平衡定义 (2)1.2上下行平衡公式 (2)1.3上下行不平衡定义标准 (2)1.4上下行不平衡影响因素 (2)2 上下行链路不平衡处理流程 (3)3 上下行链路不平衡问题处理思路 (4)3.1参数及数据配置不当 (4)3.2硬件故障 (4)3.3直放站及室分系统 (5)3.4天馈线及跳线问题 (5)3.5塔放安装 (5)3.6天线匹配方面 (5)3.7扩减容后连线问题 (6)3.8手机用户行为 (6)4 上下行链路不平衡小区典型案例(具体分为11种类型): (6)4.1案例一:数据与物理连线不一致 (6)4.2案例二:TRX硬件隐行故障 (7)4.3案例三:跳线故障 (9)4.4案例四:室分系统或直放站 (10)4.5案例五:TRX硬件故障 (12)4.6案例六:驻波过高 (13)4.7案例七:DDPU硬件问题 (15)4.8案例八:减容后出现问题 (16)4.9案例九:功率设置 (17)4.10案例十:天馈接反 (19)4.11案例十一:载频异常吊死导致上下行链路不平衡 (21)1 上下行链路平衡定义说明1.1上下行平衡定义GSM系统是一个双向通信系统,上行链路和下行链路都有自己的发射功率和路径衰落,为了使系统工作在最佳状态,就要保证每个小区的链路达到基本平衡(上下行链路平衡),可以促使切换和呼叫建立期间,移动通话性能更好。

当上下行平衡时,上行、下行允许的最大传输路径损耗应该是相同的,可以促使切换和呼叫建立期间,移动通话性能更好:下行链路(DownLink)是指基站发,移动台接收的链路。

上行链路(UpLink)是指移动台发,基站接收的链路。

上下行平衡,简言之,在下行信号达到边界时,上行信号也同时达到边界。

1.2上下行平衡公式根据测量报告上下行平衡测量<载频>提取出1-11级指标来计算各个等级的比例:上下行链路等级1的比例=上下行链路等级1的测量值/上下行链路等级1-11级的测量值上下行链路等级11的比例=上下行链路等级11的测量值/上下行链路等级1-11级的测量值1.3上下行不平衡定义标准华为总部定义上下行不平衡标准为:上下行平衡等级1的比例大于等于30% 则认为不平衡(下行偏弱或上行偏强)上下行平衡等级11的比例大于等于30% 则认为不平衡(下行偏强或上行偏弱)1.4上下行不平衡影响因素主要的因素有:天馈线及跳线问题塔放安装参数及数据配置不当硬件故障直放站天线匹配方面扩减容后连线问题手机用户行为3.1参数及数据配置不当这里涉及的上下电平的参数,主要是有:1)塔放衰减因子,2)MS最大发射功率,3)功率等级塔放衰减因子:基站安装塔放后,一般上行都会带来上行增益,因此要设置“塔放衰减因子”。

若没有安装塔放,却设置了“塔放衰减因子”,会使上行电平变小。

从而(下行电平-上行电平)会变大。

这种情况下,整个基站的上行通道增益会减小,影响基站的上行接收能力。

M S最大发射功率:对于900M网络和1800M网络,网络标识手机发射功率的方法是不一样的。

在900M网络里,MS功率等级5表示满功率(33dbm)。

但在1800M网络里,MS功率等级5表示20dbm(满功率用等级0表示,30dbm)。

一般情况下,MS最大发射功率若设置偏大,会使上行发射功率变大,从而(下行电平-上行电平)会变小,这种情况下,整个基站的上行通道增益会增大,影响基站的下行接收能力。

功率等级:若基站功率等级设置过低,则下行发射功率会降低,致使下行电平变小。

从而(下行电平-上行电平)会变小。

这种情况下,整个基站的下行通道增益会减小,影响基站的下行接收能力。

需要增加基站的发射功率,才能保证上下行链路的平衡;涉及案例为:案例一:数据与物理连线不一致案例九:功率设置3.2硬件故障载频接收模块故障、载频发射模块故障等原因都会造成载频的上下行链路异常,也会造成上下行失衡。

射频前端的接收和发射模块故障,同样也会影响上下行接收,表现为上下行不平衡。

一般,上下行测量报告都可以细化到载频级别,因此,可以根据载频级的“上下行平衡话统”来分析载频的上下行平衡状态。

这里故障主要存在:DDPU(射频前端)、DTRU(载频模块),一般有以下几种:DDPU(射频前端)上行增益比理论设计值大上行增益比理论设计值小下行发射功率异常DTRU(载频模块)下行发射功率异常上行增益比理论设计值小上行增益比理论设计值大案例为:案例二:TRX硬件隐行故障案例五:TRX硬件故障案例七:DDPU硬件问题案例六:驻波过高案例十一:载频异常吊死导致的上下行不平衡3.3直放站及室分系统直放站实现一般很多种,都会给上行链路和下行链路带来一定增益,一般情况下,上下行增益可以分别调整,从而影响基站的“上下行平衡”情况,比如某基站下挂有某类型的直放站,该直放站的上行通道增益为6dB,下行通道增益为10dB,此种情况下,表现在基站的Abis口上,上下行电平差就会比理论计算大4dB,表现出在上行弱4dB的现象。

但此种情况不影响KPI的情况下,可以不进行调整。

同样,直放站的上下行增益异常,同样可以影响基站的上下行平衡情况。

出现因直放站造成上下行不平衡的情况,通过调整直放站的上下行增益来解决基站的上下行不平衡,还可以配合调整基站的发射功率来解决上下行不平衡问题。

涉及案例为:案例四:室分系统或直放站3.4天馈线及跳线问题机顶口到天线,这一段通常由小跳线、避雷器、转接头、接地焊点、天线构成,有时还会有使用功分器等器件,这些设备的安装工程质量会影响基站的发射和接收。

比如,跳线连接头松动,对上下行平衡的影响是不同的,由于发射的信号强度一般很大(在馈线里一般为30dbm),而接收信号一般很小(一般为-80dbm),因此,连接松动会使上行接收电平变小,而下行电平影响不大。

涉及案例为:案例十:天馈接反案例三:跳线故障3.5塔放安装塔放都是有源器件,一般只放大上下信号。

当然,也有双向放大的。

若网络安装了塔放,在华为BSC6000中,射频前端会设置“塔放衰减因子”,一般参数都会这样设置;若塔放实际增益G,塔放衰减因子=G-4。

这里的4dB,是补偿馈线的损害,是预估值。

因此,若网络安装了上行塔放时,计算上下行平衡测量报告,(下行电平-上行电平)会变小4dB。

表现出上行电平变大4dB。

总之,若基站系统安装了塔放,《测量报告上下行平衡测量<载频>》总会发生变化,不是变大,就是变小。

3.6天线匹配方面某些天线对上下行存在不一样的增益,即天线的上下行方向图不一样,简单说,就是在某些天线安装在基站上,可能就存在上行增益大或则下行增益大,这样,可能表现在话统上,就出现上下行不平衡。

根据测试经验及对天线性能的研究,天线匹配造成的上下行电平差的变化,一般在3dB范围内,会被正常波动门限(3dB)掩盖掉。

不会对“上下行平衡”统计分析带来太大的影响。

这种情况下,一般可以通过稍微改变天线的方向角或下倾角的方法,来改变天线的上下行方向图的空间分布,解决上下行不平衡。

还可以采用更换天线解决问题。

3.7扩减容后连线问题在对某些基站进行扩减容后,华为移动设备要求连线重新配置,由于华为设备连线的复杂性,在进行扩减容时要着重注意设备连线的准确性,其中设备类型为3012时,连线较为复杂,需重点注意,1)TXA、TXB连接是否和数据配置相一致;2)各个连线接口处要确保拧紧;案例为:案例八:减容后出现问题3.8手机用户行为移动通信的特点造成手机用户分布的不确定性,某些点上,上行电平会大于下行电平,某些点下行电平会大于上行电平。

这种情况,都是因为用户所处地点的无线传播特性有关,可以通过调整周围主服务基站的天线方向角或下倾角,来改变用户所处地点的无线传播特性,来改善用户的上下行不平衡情况。

4 上下行链路不平衡小区典型案例(具体分为11种类型):4.1案例一:数据与物理连线不一致日常案例出现现象和影响描述在分析TRX级上下行不平衡时,发现ZZDH03CF_1(CI:4986)存在严重的下行过强,其所有的TRX LinkClass(10-11)达80%左右。

日常案例分析和解决方法检查BSC6000数据配置,发现ZZDH03CF_1 DTRU数据配置存在问题,载频接收模式错误配置为“接收独立”,正常应该为“接收分路”造成该小区分集接收存在问题。

改为正确的数据后,其所有的TRX LinkClass(10-11)由80%恢复至正常的20%左右。

解决前后对比4.2案例二:TRX硬件隐行故障日常案例出现现象和影响描述在分析TRX级上下行不平衡时,发现ZZDH0323_2,雄风大厦D_2(CI:4285)共有3块TRX,但其中有2块存在下行过强,如下图:第8块和第9块TRX的LinkClass(10-11)达72%左右。

日常案例分析和解决方法首先检查数据配置,发现配置无误。

第二,由于第8块和第9块TRX共用一块物理载频板DTRU (双密度载频),而第10块为另外的物理载频板,怀疑为第8块和第9块所在的DTRU存在硬件或连线问题,前往现场检查,发现连线不存在问题,于是对两块物理载频板进行对调之后,所有的载波链路恢复正常,再将两块物理载频板对调回原来位置,所有的载波链路还是恢复正常,因此,怀疑这是由于载频存在隐性故障,在其进行插拔重启后,就恢复了正常。

解决前后对比4.3案例三:跳线故障日常案例出现现象和影响描述在分析TRX级上下行不平衡时,发现ZZDH073C_2,智达宾馆D_2(CI:9619)共有2块载波,属于同一块DTRU(双密度载频),但其中有一块存在下行过强(如下图),同时掉话高、质量差。

日常案例分析和解决方法首先检查数据配置,发现配置无误。

第二,由于第10块和第11块TRX共用一块物理载频板DTRU (双密度载频),而第10块TRX是正常的,因此怀疑第11块TRX至DDPU(合路器)之间的通道出现问题,更换第11块载频至DDPU之间的跳线后,第11块TRX的链路恢复正常,其Linkclass(10-11)由原来的99.91%恢复至正常的25.71%,同时解决前后对比调整前:(下图)调整后:(下图)4.4案例四:室分系统或直放站日常案例出现现象和影响描述ZZH036D_0,家乐福超市(北环与文化路)_0(CI:6463)为一微蜂窝,带有室内分布系统,共有2块载波,属于同一块DTRU(双密度载频),2块TRX都存在着上行过强,导致Linkclass(1-2)达70%左右,但不存在上行干扰。

如下:日常案例分析和解决方法一、首先检查数据配置,发现配置无误。

二、虽然该小区不存在干扰,但由于该小区为微蜂窝,带有室分系统,因此,直接怀疑为室分系统干放出现问题,底噪过高,导致上行过强,通知厂家前往处理,由于上行过强,所以减小干放的增益,再观察指标,其Linkclass(1-2)由原来的70%恢复至正常的25.71%,同时上行质量也明显好转。

相关文档
最新文档