新人教高考数学总复习专题训练数列极限和数学归纳法

合集下载

高中数学第2轮总复习 专题5 第3课时 数列的应用、数学归纳法与极限 理 新人教B版

高中数学第2轮总复习 专题5 第3课时 数列的应用、数学归纳法与极限 理 新人教B版

1 ( x 2 , y 0 ), 解 得 x x2 4
1 4. y2
所 以 f 1 x
1 x2
4(x
0).
由题意,1 a n1
1
a
2 n
4,

an
0,
整 理 , 得 1 1 4,
a2 n 1
a
2 n



{
1
a
2 n
}是



4






所以
1
a
2 n
1
a
2 1
4n
1
• (4)数列在实际生活中的应用:①审题(明确数列 模型);②引入参数,将文字语言译成数学语言,变 成数学问题;③解此类问题要检验合理性.
• 2.数学归纳法
• (1)数学归纳法需要完成两个步骤的证明,缺一不 可.第一步有时要验证从n0开始的多个正整数命题 成立.这主要取决于从k到k+1的奠基是什么数.如 果假设当n=k时命题成立,并要求当k≥m时才能得 出n=k+1时命题也成立,则第一步必须验证从n0到 m的各个正整数命题都成立.另外,第二步的证明 必须运用“归纳假设”.
所 以 bn1 bn, 即 数 列 bn 是 递 减 数 列 , 其 最
大 项 为 b1 .
若存在正整数m,使得任意n
N *, 有 bn
m, 25
则须满足
m 25
b1, 即
m 25
a22
a32
1 5
1 9
14 , 45
所以取m 8.
故存在最小正整数m 8,
使 得 bn
m 25

【新人教】高考数学总复习专题训练数列、极限和数学归纳法

【新人教】高考数学总复习专题训练数列、极限和数学归纳法

数列、极限和数学归纳法安徽理(11)如图所示,程序框图(算法流程图)的输出结果是____________ (11)15【命题意图】本题考查算法框图的识别,考查等差数列前n 项和. 【解析】由算法框图可知(1)1232k k T k +=++++=,若T =105,则K =14,继续执行循环体,这时k =15,T >105,所以输出的k 值为15. (18)(本小题满分12分)在数1和100之间插入n 个实数,使得这2n +个数构成递增的等比数列,将这2n +个数的乘积记作n T ,再令,lg n n a T =1n ≥.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设1tan tan ,n n n b a a += 求数列{}n b 的前n 项和n S .(本小题满分13分)本题考查等比和等差数列,指数和对数的运算,两角差的正切公式等基本知识,考查灵活运用知识解决问题的能力,综合运算能力和创新思维能力. 解:(I )设221,,,+n l l l 构成等比数列,其中,100,121==+n t t 则,2121++⋅⋅⋅⋅=n n n t t t t T ①, ,1221t t t t T n n n ⋅⋅⋅⋅=++ ②①×②并利用得),21(1022131+≤≤==+-+n i t t t t n i n.1,2lg ,10)()()()()2(2122112212≥+==∴=⋅⋅⋅⋅=+++++n n T a t t t t t t t t T n n n n n n n n(II )由题意和(I )中计算结果,知.1),3tan()2tan(≥+⋅+=n n n b n另一方面,利用,tan )1tan(1tan )1tan())1tan((1tan kk kk k k ⋅++-+=-+=得.11tan tan )1tan(tan )1tan(--+=⋅+kk k k 所以∑∑+==⋅+==231tan )1tan(n k n k k n k k b S23tan(1)tan tan(3)tan3(1)tan1tan1n k k k n n +=+-+-=-=-∑安徽文(7)若数列}{n a 的通项公式是()()n a n =-13-2g ,则a a a 1210++=L (A ) 15 (B) 12 (C ) -12 (D) -15(7)A 【命题意图】本题考查数列求和.属中等偏易题. 【解析】法一:分别求出前10项相加即可得出结论;法二:12349103a a a a a a +=+==+= ,故a a a 1210++=3⨯5=15L .故选A. 北京理11.在等比数列{}n a 中,若112a =,44a =-,则公比q =________;12||||||n a a a +++= ________.【解析】112a =,442a q =-⇒=-,{||}n a 是以12为首项,以2为公比的等比数列,1121||||||22n n a a a -+++=- 。

高考数学一轮复习必备:第9293课时:第十二章极限数列的极限数学归纳法

高考数学一轮复习必备:第9293课时:第十二章极限数列的极限数学归纳法

高考数学一轮复习必备:第9293课时:第十二章极限数列的极限数学归纳法第92-93课时:第十二章 极限——数列的极限、数学归纳法课题:数列的极限、数学归纳法一知识要点(一)数列的极限1.定义:关于无穷数列{a n },假设存在一个常数A ,不管预选指定多么小的正数ε,都能在数列中找到一项a N ,使得当n>N 时,|an-A|<ε恒成立,那么称常数A 为数列{a n }的极限,记作A a n n =∞→lim .2.运算法那么:假设lim n n a →∞、lim n n b →∞存在,那么有lim()lim lim n n n n n n n a b a b →∞→∞→∞±=±;lim()lim lim n n n n n n n a b a b →∞→∞→∞⋅=⋅)0lim (lim lim lim ≠=∞→∞→∞→∞→n n n n nn nn n b b a b a 3.两种差不多类型的极限:<1> S=⎪⎩⎪⎨⎧-=>=<=∞→)11()1(1)1(0lim a a a a a n n 或不存在 <2>设()f n 、()g n 分不是关于n 的一元多项式,次数分不是p 、q ,最高次项系数分不为p a 、p b 且)(0)(N n n g ∈≠,那么⎪⎪⎩⎪⎪⎨⎧>=<=∞→)()()(0)()(lim q p q p b a q p n g n f qpn 不存在4.无穷递缩等比数列的所有项和公式:11a S q=- 〔|q|<1〕 无穷数列{a n }的所有项和:lim n n S S →∞= 〔当lim n n S →∞存在时〕〔二〕数学归纳法数学归纳法是证明与自然数n 有关命题的一种常用方法,其证题步骤为:①验证命题关于第一个自然数0n n = 成立。

②假设命题对n=k(k ≥0n )时成立,证明n=k+1时命题也成立.那么由①②,关于一切n ≥ 0n 的自然数,命题都成立。

数列、数列的极限与数学归纳法

数列、数列的极限与数学归纳法

一、复习策略本章内容是中学数学的重点之一,它既具有相对的独立性,又具有一定的综合性和灵活性,也是初等数学与高等数学的一个重要的衔接点,因而历来是高考的重点.高考对本章考查比较全面,等差、等比数列,数列的极限的考查几乎每年都不会遗漏.就近五年高考试卷平均计算,本章内容在文史类中分数占13%,理工类卷中分数占11%,由此可以看出数列这一章的重要性.本章在高考中常见的试题类型及命题趋势:(1)数列中与的关系一直是高考的热点,求数列的通项公式是最为常见的题目,要切实注意与的关系.关于递推公式,在《考试说明》中的考试要求是:“了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项”,近几年命题严格按照《考试说明》,不要求较复杂由递推公式求通项问题.(2)探索性问题在数列中考查较多,试题没有给出结论,需要考生猜出或自己找出结论,然后给以证明.探索性问题对分析问题解决问题的能力有较高的要求.(3)等差、等比数列的基本知识必考.这类考题既有选择题,填空题,又有解答题;有容易题、中等题,也有难题.(4)求和问题也是常见的试题,等差数列、等比数列及可以转化为等差、等比数列求和问题应掌握,还应该掌握一些特殊数列的求和.(5)将数列应用题转化为等差、等比数列问题也是高考中的重点和热点,从本章在高考中所占的分值来看,一年比一年多,而且多注重能力的考查.通过上述分析,在学习中应着眼于教材的基本知识和方法,不要盲目扩大,应着重做好以下几方面:理解概念,熟练运算巧用性质,灵活自如二、典例剖析考点一:数列的通项与它的前n项和例1、只能被1和它本身整除的自然数(不包括1)叫做质数.41,43,47,53,61,71,83,97是一个由8个质数组成的数列,小王正确地写出了它的一个通项公式,并根据通项公式得出数列的后几项,发现它们也是质数.试写出一个数P满足小王得出的通项公式,但它不是质数,则P=__________.解析:,.显然当时有因数41,此时.答案:1681点评:本题主要考查了根据数列的前n项写数列的通项的能力.体现了根据数列的前n项写通项只能是满足前n项但不一定满足其所有的性质的特点.例2、已知等差数列中,,前10项之和是15,又记.(1)求的通项公式;(2)求;(3)求的最大值.(参考数据:ln2=0.6931)解析:(1)由,得,.(2).(3)法一:,,由ln2=0.6931,计算>0,<0,所以极大值点满足,但,所以只需比较与的大小:,.法二:数列的通项,令,.点评:求时,也可先求出,这要正确理解“”,其中应处在的表达式中的位置.例3、已知数列的首项,前项和为,且.(1)证明数列是等比数列;(2)令,求函数在点处的导数,并比较与的大小.解析:(1)由已知时,.两式相减,得,即,从而.当时,.又.从而.故总有.又.从而.即是以为首项,2为公比的等比数列.(2)由(1)知,.当n=1时,(*)式=0,;当n=2时,(*)式=-12<0,;当n≥3时,n-1>0.又,,即(*)式>0,从而.考点二:等差数列与等比数列例4、有n2(n≥4)个正数,排成n×n矩阵(n行n列的数表,如下图).其中每一行的数成等差数列,每一列的数成等比数列,并且所有的公比都相等,且满足:a24=1,a42=,a43=,(1)求公比q;(2)用k表示a4k;(3)求a11+a22+a33+…+a nn的值.分析:解答本题的关键首先是阅读理解,熟悉矩阵的排列规律,其次是灵活应用等差、等比数列的相关知识求解.解:(1)∵每一行的数列成等差数列,∴a42,a43,a44成等差数列,∴2a43= a42+a44,a44=;又每一列的数成等比数列,a44=a24·q2,a24=1,∴q2=,且a n>0,∴q=.(2)a4k= a42+(k-2)d=+(k-2)( a43-a42)=.(3)∵第k列的数成等比数列,∴a kk= a4k·q k-4=·()k-4= k·()k (k=1,2,…,n).记a11+a22+a33+…+a nn=S n,则S n=+2·()2+3·()2+…+n·()n,S n=()2+2·()3+…+(n-1) ()n+n()n+1,两式相减,得S n=+()2+…+()n-n()n+1=1-,∴S n=2-,即a11+a22+a33+…+a nn=2-.例5、已知分别是轴,轴方向上的单位向量,且(n=2,3,4,…),在射线上从下到上依次有点,且=(n=2,3,4,…).(1)求;(2)求;(3)求四边形面积的最大值.解析:(1)由已知,得,(2)由(1)知,.且均在射线上,..(3)四边形的面积为.又的底边上的高为.又到直线的距离为.,而,.点评:本题将向量、解析几何与等差、等比数列有机的结合,体现了在知识交汇点设题的命题原则.其中割补法是解决四边形面积的常用方法.考点三:数列的极限例6、给定抛物线,过原点作斜率为1的直线交抛物线于点,其次过作斜率为的直线与抛物线交于.过作斜率为的直线与抛物线交于,由此方法确定:一般地说,过作斜率为的直线与抛物线交于点.设的坐标为,试求,再试问:点,…向哪一点无限接近?解析:∵、都位于抛物线上,从而它们的坐标分别为,∴直线的斜率为,于是,即,.因此,数列是首项为,公比的等比数列.又,,因此点列向点无限接近.点评:本例考查极限的计算在几何图形变化中的应用,求解问题的关键是要利用图形的变化发现点运动的规律,从而便于求出极限值来.例7、已知点满足:对任意的,.又已知.(1)求过点的直线的方程;(2)证明点在直线上;(3)求点的极限位置.解析:(1),,则.化简得,即直线的方程为.(2)已知在直线上,假设在直线上,则有,此时,也在直线上.∴点在直线上.(3),即构成等差数列,公差,首项,,故...故的极限位置为(0,1).考点四:数学归纳法例8、设是满足不等式的自然数的个数.(1)求的解析式;(2)设,求的解析式;(3),试比较与的大小.解析:先由条件解关于的不等式,从而求出.(1)即得.(2).(3).n=1时,21-12>0;=2时,22-22=0;n=3时,23-32<0;n=4时,24-42=0;n=5时,25-52>0;n=6时,26-62>0.猜想:n≥5时,,下面对n≥5时2n>n2用数学归纳法证明:(i)当n=5时,已证25>52.(ii)假设时,,那么..,即当时不等式也成立.根据(i)和(ii)时,对,n≥5,2n>n2,即.综上,n=1或n≥5时,n=2或n=4时时.点评:这是一道较好的难度不太大的题,它考查了对数、不等式的解法,数列求和及数学归纳法等知识.对培养学生综合分析问题的能力有一定作用.例9、已知数列中,,.(1)求的通项公式;(2)若数列中,,,证明:,.解:(1)由题设:,.所以,数列是首项为,公比为的等比数列,,即的通项公式为,.(2)用数学归纳法证明.(ⅰ)当时,因,,所以,结论成立.(ⅱ)假设当时,结论成立,即,也即.当时,,又,所以.也就是说,当时,结论成立.根据(ⅰ)和(ⅱ)知,.考点五:数列的应用例10、李先生因病到医院求医,医生给他开了处方药(片剂),要求每12小时服一片,已知该药片每片220毫克,他的肾脏每12小时排出这种药的60%,并且如果这种药在体内残留量超过386毫克,将会产生副作用,请问:李先生第一天上午8时第一次服药,则第二天早上8时服完药时,药在他体内的残留量是多少毫克?如果李先生坚持长期服用此药,会不会产生副作用?为什么?解:(1)设第次服药后,药在他体内残留量为毫克,依题意,故第二天早上8时第三次服完药时,药在他体内的残留量是343.2毫克.(2)由,,.故长期服用此药不会产生副作用.例11、(07安徽高考)某国采用养老储备金制度.公民在就业的第一年就交纳养老储备金,数目为a1,以后每年交纳的数目均比上一年增加d(d>0),因此,历年所交纳的储务金数目a1,a2,…是一个公差为d的等差数列.与此同时,国家给予优惠的计息政策,不仅采用固定利率,而且计算复利.这就是说,如果固定年利率为r(r>0),那么,在第n 年末,第一年所交纳的储备金就变为a1(1+r)n-1,第二年所交纳的储备金就变为a2(1+r)n-2,……,以T n表示到第n年末所累计的储备金总额。

19[1].数列、数列的极限、数学归纳法

19[1].数列、数列的极限、数学归纳法

数列及其极限、数学归纳法综合练习【例题精选】 例1、写出下列数列的通项公式a n 。

①1, 3, 3, 5, 5, 7, 7, 9, 9, ……;②a a a n n 11332==-+,.分析: ①将已知数列变形成 1 + 0, 2 + 1, 3 + 0, 4 + 1, 5 + 0, 6 + 1, 7-0, ……等,则 ()()a n n N n n=++-∈112。

②用递推形式给出的数列, 可以用写出前n 项后进行归纳, 也可直接推出。

方法一: a a a a a 1213233273219==-==-=,,, a a a a 4354325532163=-==-=,,则由a a a a 1232433123123123==+⨯=+⨯=+⨯,,,, a 54123=+⨯,…归纳 ()a n N n n =+⨯∈-1231。

方法二: 由()a a a a n n n n ++=--=-1132131,得 ∴{}a n -1是公比为3的等比数列, 首项为a 112-= ∴a a n n n n -=⨯=+⨯--12312311,即 例2、求下列数列的前n 项和S n 。

①()()12345621222222222-----,,,…,,…n n ; ②111211231123,,,…,…,…+++++++n. 分析: (1)∵ ()()a n n n n =--=-+2124122 ∴()S n n n =-+++++4123…()()=-++=-+41221·n n n n n②∵()a n n n n n n =++++=+=-+⎛⎝ ⎫⎭⎪1123212111… ∴S n n n =-+-+-++-+⎛⎝⎫⎭⎪211212131314111…=-+⎛⎝ ⎫⎭⎪=+211121n n n 例3、①等差数列的前m 项和为30, 前2m 项和为100, 则它的前3m 项和为。

②设{}a n 是由正数组成的等比数列, 公比q = 2, 且a a a a 12330302···…·=,那么a a a a 36930···…·的值为 。

最新专题复习数列、数列的极限、数学归纳法 人教版

最新专题复习数列、数列的极限、数学归纳法 人教版

专题复习数列、数列的极限、数学归纳法人教版专题复习数列、数列的极限、数学归纳法一. 本周教学内容:1. 复习内容:专题复习“数列”、“数列的极限”、“数学归纳法”。

重点是:①数列的通项公式、前n项和公式的关系;用递推关系式表示数列;②两种基本数列——等差数列与等比数列的定义,通项公式、前n 项和公式、性质;③极限的运算法则,公比q的绝对值小于1的无穷等比数列的所有项的和的定义以及计算公式;④数学归纳法的涵义及其运用。

2. 要点综述:①数列与极限是初等数学与高等数学衔接和联系最紧密的内容之一,有关极限的概念及方法是微积分的重要工具。

因此,数列的极限就成为进一步学习高等数学的基础。

②两种基本数列——等差数列、等比数列,是高考中的必考内容,要熟练掌握这两种数列的定义,通项公式、前n项和公式以及其性质。

③数列的极限的思想方法要认真体会,为进一步学好高等数学作好充分的准备。

高考试题中对极限的考查逐渐由单一地求数列的极限,向结合等差、等比数列的计算求极限转化逐渐向结合数列求和方法求极限转化。

④数学归纳法作为一种证明方法,在证明某些与自然数n有关的命题时,有其他证明方法所不具有的独特性和优越性,是一种非常重要的证明方法,应认真体会其要义并能正确使用它,在高考试题中,经常作为解答中的一个环节来考查,比如,给出一个数列的递推关系式,先求出其前三项,进而推测通项公式,最后再用数学归纳予以证明。

这其中,体现了数学中“归纳——猜想——证明”的由特殊到一般的思维方法。

3. 复习建议:①认真复习以下概念——等差、等比数列的定义,数列极限的定义,认真体会其内涵。

②掌握几个重要公式——数列的前n项和Sn 与通项an的关系式;等差数列、等比数列的通项公式,前n项和公式;无穷等比递缩数列的所有和S的计算公式。

③掌握一个重要性质——设m、n、p、q∈N,且m+n=p+q,«Skip Record If...»«Skip Record If...»④掌握数列求和的几个方法——裂项求和法,错位相减求和法,以及公式法。

数列极限和数学归纳法练习(有-答案)

数列极限和数学归纳法练习(有-答案)

数列极限和数学归纳法练习(有-答案)数列极限和数学归纳法一、 知识点整理:数列极限:数列极限的概念、数列极限的四则运算法则、常见数列的极限公式以及无穷等比数列各项的和要求:理解数列的概念,掌握数列极限的四则运算法则和常见数列的极限,掌握公比q 当01q <<时无穷等比数列前n 项和的极限公式及无穷等比数列各项和公式,并用于解决简单的问题。

1、理解数列极限的概念:21,(1),nn n-等数列的极限 2、极限的四则运算法则:使用的条件以及推广 3、常见数列的极限:1lim 0,lim 0(1),lim →+∞→+∞→+∞==<=nn n n q q C C n4、无穷等比数列的各项和:1lim (01)1→+∞==<<-nn a S Sq q数学归纳法:数学归纳法原理,会用数学归纳法证明恒等式和整除性问题,会利用“归纳、猜想和证明”处理数列问题 (1)、证明恒等式和整除问题(充分运用归纳、假设,拆项的技巧,如证明22389n n +--能被64整除,2438(1)9k k +-+-)229(389)64(1)k k k +=--++),证明的目标非常明确; (2)、“归纳-猜想-证明”,即归纳要准确、猜想要合理、证明要规范,这类题目也是高考考察数列的重点内容。

二、 填空题1、 计算:112323lim -+∞→+-n n nn n =_____3_____。

2、 有一列正方体,棱长组成以1为首项、21为公比的等比数列,体积分别记为 ,,,,nV V V 21=+++∞→)(lim 21nn V V V 87. 3、20lim______313n n n →∞+=+134、 数列的通项公式,前项和为,则=______32_______. 5、 设{}n a 是公比为21的等比数列,且4)(lim 12531=+⋅⋅⋅+++-∞→n n a a a a ,则=1a 3 .6、 在等比数列{}na 中,已知123432,2a a a a ==,则()12lim nn a a a →∞+++=_16±______.7、数列{}na 的通项公式是13(2)--+=+-n n na,则)(lim 21nn a a a +++∞→ =___76____ . 8、已知数列{}na 是无穷等比数列,其前n 项和是nS ,若232aa +=,341a a +=,则lim nn S →∞的值为 163.9、设数列{}n a 满足当2na n >(*N n ∈)成立时,总可以推出21(1)n a n +>+成立.下列四个命题: (1)若93≤a ,则164≤a .(2)若310a =,则525a >.(3)若255≤a ,则164≤a . (4)若2(1)n a n ≥+,则21n a n +>.其中正确的命题是 (2)(3){}na *1 , 1()1 , 2(1)n n a n N n n n =⎧⎪=∈⎨≥⎪+⎩n nS lim nn S →∞(4) .(填写你认为正确的所有命题序号)10、将直线1l :01=-+y x ,2l :0=-+n y nx ,3l :0=-+n ny x (*N ∈n ,2≥n )围成的三角形面积记为nS ,则=∞→nn S lim ___12________. 11、 在无穷等比数列{}na 中,所有项和等于2,1则的取值范围是a ()()0,22,412、设无穷等比数列{}na 的公比为q ,若245lim()→∞=+++nn a a a a ,则15-+13、 已知点⎪⎭⎫ ⎝⎛+0,11n A ,⎪⎭⎫ ⎝⎛+n B 22,0,⎪⎭⎫ ⎝⎛++nn C 23,12,其中n 为正整数,设nS 表示△ABC 的面积,则=∞→nn S lim ___2.5________.14、下列关于极限的计算,错误..的序号___(2)___.(1)==(2)(++…+)=++…+=0+0+…+0=0 (3)(-n )===;(4)已知=(15)已知()f x 是定义在实数集R 上的不恒为零的函数,且对于任意,a b ∈R ,满足()22f =,()()()f ab af b bf a =+,记()()22,22nnnnnf f a b n==,其中*N n ∈.考察下列结论:①()()01f f =;②()f x 是R 上的偶函数;③数列{}na 为等比数列;④数列{}nb 为等差数列.其中正确结论的序号有 ① ③ ④ .二、选择题:16、已知,,若,则的值不可能...是… ………( (D ) )(A ) . (B ). (C ). (D ).17、若21lim 12n n r r+→∞⎛⎫⎪+⎝⎭存在,则r 的取值范围是 ( (A ) )(A )1r ≤-或13r ≥- ;(B )1r <-或13r >-;(C )1r ≤-或13r >- ;(D )113r -≤≤- 观察下列式子:,可以猜想结论为((C) ) .(A);(B)(C);(D)19、已知12120121()20122n n n n a n -- , <⎧⎪=⎨- , ≥⎪⎩,nS 是数列{}na 的前n 项和( (A ) )0>a 0>b 11lim 5n n nnn a ba b++→∞-=-b a +78910 ,474131211,3531211,23211222222<+++<++<+2221112n 1123n n++++⋅⋅⋅+<(n N*)∈2221112n 1123(n 1)n-+++⋅⋅⋅+<+(n N*)∈2221112n 1123(n 1)n 1++++⋅⋅⋅+<++(n N*)∈2221112n 1123n n 1++++⋅⋅⋅+<+(n N*)∈(A )lim nn a →∞和lim nn S →∞都存在 ; (B) lim nn a →∞和lim nn S →∞都不存在 。

数列专题复习及答案

数列专题复习及答案

数列、数列极限、数学归纳法综合复习一、填空题l、已知a n=n E N*)'则数列忆}的最大项是旷+1562、在等差数列{a J中,若a4+a6十Gio+ a12 = 90'则知0-—a l4=3、酰廿等比数列包},若Gi= l a5 = 4, 则a3的值为4、数列{a J中,a3= 2, a5 = l, 则数列{}是等差数列,则a ll=a n +l5、在数列{a J和{九}中,b n是a n与a n+I的等差中项,a1=2且对任意nEN*都有3a n+I -a n = Q , 则数列{九}的通项公式为6、设等差数列{a n}的公差d不为O,a1 = 9d, a k是a,与a2k的等比中项,则k=7、等差数列{a J的前n项和为S n,若S4�10,S5sl5,则a4的最大值为8、正数数列{a J中,已知a1= 2, 且对任意的s,t EN*, 都有a s+a t= a s+t成立,则1 1+ + +a l a2 a2a3 a n a n+I s9、等差数列{a J的前n项和为S n,且a4-a2 = 8,a3 + a5 = 26 , 记兀=号-,如果存在正整数M,使得对一切正整数n,T n sM都成立.则M的最小值是10、已知无穷等比数列{a n}中,各项的和为s,且lim[3(a1+a尸+a n)—S]=4,则实n今OO数a l的范围11、设正数数列{a J的前n项和为S n,且存在正数t'使得对千所有自然数n,有寂=n a +t 成立,若lim 瓦< t'则实数t的取值范围为2 n➔ 00a n12、数列{a,)的通项公式为a,={�::3(1:::; n:::; 2),则lirn s = n之3,n EN*) nn➔oo13、已知数列[a,}的通项三式为a,�2•-1+I, 则a立+a立+a立+a,, 立=12a n 0:::;;a n<—)14、数列{a }满足a= 2 6n+l � l '若a l=—,则a2001的值为2a n -I —:::;;a n< I)7215、在数列{a J中,如果对任意nEN*都有a n+2—a n+l= k (k为常数),则称{a J为等a n+l -a n差比数列,k称为公差比.现给出下列命题:(1)等差比数列的公差比一定不为0;(2)等差数列一定是等差比数列;(3)若a n=-3勹2,则数列{aJ是等差比数列;(4)若等比数列是等差比数列,则其公比等千公差比.其中正确的命题的序号为二、选择题16、等差数列{a n}的公差为d,前n项的和为S n,当首项a l和d变化时a2+as+a11是一个定值,则下列各数中也为定值的是( )A. s7B. SsC. s l3D. s l517、在等差数列{aJ中,Cli> 0, 5a5 = 17 a10 , 则数列{aJ前n项和凡取最大值时,n的值为()A.12B.llC.10D.918、设{a n}为等差数列,若生)_<—1,且它的前n项和S n有最小值,那么当凡取得最小正值时,n=a l O()A 11 B.17 C.19 D. 2019、等差数列{a n}的前n项和为S n,且Ss< S6, S6 = S1 > Ss,则下列结论中错误的是()A d<O C. S9 > SB. a7 = 0D. S6和S7均为S n的最大值20、已知数列{a J、{九}都是公差为1的等差数列,其首项分别为a l、b l'且a1+ b1 = 5, a1 ,b1 EN*. 设e n= a b,, (n E N勹,则数列{e n}的前10项和等千()A. 55B. 70C.85D.10021、已知等差数列{a J的前n项和为S n,若OB=CliOA十生OO OC,且A,B,C三点共线(该直线不过原点0),则s200= c )A. 100B. 101C. 200D. 201A 7n+4522、已知两个等差数列{aJ和{仇}的前n项和分别为A n和B n,且_____!!.='则使B n+3a得二为整数的正整数n的个数是(b nA. 2三、解答题B. 3C. 4D. 523、设数列忆}的前n项和为S n,已知a l=a'a n+I =凡+3n,n E N*.(1)设九=凡_3n,求忱}的通项公式;(2)若a*n+I� 化,nEN,求a的取值范围.24、数列曰}满足a 1=a , a 2 = -a (a > 0) , 且{a n }从第二项起是公差为6的等差数列,凡是{a n }的前n项和.(1)当n �2时,用a与n表示a n 与S n (2)若在s 6与趴两项中至少有一项是凡的最小值,试求a的取值范围;125、数列{aJ中,a l=—,点(n,2a n+l -aJ在直线y =x 上,其中nEN *2(1)设九=a n +l -a n -1, 求证数列{九}是等比数列;(2)求数列{a n }的通项;(3)设S n 、Tn 分别为数列{a小{九}的前n项和,是否存在实数入,使得数列{凡:入T"}为等差数列?若存在,试求出入;若不存在,则说明理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新人教高考数学总复习专题训练数列极限和数学归纳法Last revision date: 13 December 2020.数列、极限和数学归纳法安徽理(11)如图所示,程序框图(算法流程图)的输出结果是____________(11)15【命题意图】本题考查算法框图的识别,考查等差数列前n 项和.【解析】由算法框图可知(1)1232k k T k +=++++=,若T =105,则K =14,继续执行循环体,这时k =15,T >105,所以输出的k 值为15.(18)(本小题满分12分)在数1和100之间插入n 个实数,使得这2n +个数构成递增的等比数列,将这2n +个数的乘积记作n T ,再令,lg n n a T =1n ≥.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设1tan tan ,n n n b a a +=求数列{}n b 的前n 项和n S .(本小题满分13分)本题考查等比和等差数列,指数和对数的运算,两角差的正切公式等基本知识,考查灵活运用知识解决问题的能力,综合运算能力和创新思维能力. 解:(I )设221,,,+n l l l 构成等比数列,其中,100,121==+n t t 则,2121++⋅⋅⋅⋅=n n n t t t t T ①, ,1221t t t t T n n n ⋅⋅⋅⋅=++ ②①×②并利用得),21(1022131+≤≤==+-+n i t t t t n i n.1,2lg ,10)()()()()2(2122112212≥+==∴=⋅⋅⋅⋅=+++++n n T a t t t t t t t t T n n n n n n n n(II )由题意和(I )中计算结果,知.1),3tan()2tan(≥+⋅+=n n n b n另一方面,利用,tan )1tan(1tan )1tan())1tan((1tan kk kk k k ⋅++-+=-+=得.11tan tan )1tan(tan )1tan(--+=⋅+kk k k 所以∑∑+==⋅+==231tan )1tan(n k n k k n k k b S23tan(1)tan tan(3)tan 3(1)tan1tan1n k k k n n +=+-+-=-=-∑安徽文(7)若数列}{n a 的通项公式是()()n a n =-13-2,则a a a 1210++=(A ) 15 (B) 12 (C ) -12 (D) -15(7)A 【命题意图】本题考查数列求和.属中等偏易题. 【解析】法一:分别求出前10项相加即可得出结论; 法二:12349103a a a a a a +=+==+=,故a a a 1210++=3⨯5=15.故选A.北京理11.在等比数列{}n a 中,若112a =,44a =-,则公比q =________;12||||||n a a a +++=________.【解析】112a =,442a q =-⇒=-,{||}n a 是以12为首项,以2为公比的等比数列,1121||||||22n n a a a -+++=-。

20.若数列n A :1a ,2a ,…,(2)n a n ≥满足1||1k k a a +-=(k =1,2,…,1n -),则称n A 为E 数列。

记12()n n S A a a a =+++.(1)写出一个满足150a a ==,且5()0S A >的E 数列5A ;(2)若112a =,2000n =,证明:E 数列n A 是递增数列的充要条件是2011n a =;(3)对任意给定的整数(2)n n ≥,是否存在首项为0的E 数列n A ,使得()0n S A =如果存在,写出一个满足条件的E 数列n A ;如果不存在,说明理由。

解:(Ⅰ)0,1,2,1,0是一具满足条件的E 数列A 5。

(答案不唯一,0,1,0,1,0也是一个满足条件的E 的数列A 5) (Ⅱ)必要性:因为E 数列A 5是递增数列,所以)1999,,2,1(11 ==-+k a a k k .所以A 5是首项为12,公差为1的等差数列.所以a 2000=12+(2000—1)×1=2011.充分性,由于a 2000—a 1000≤1,a 2000—a 1000≤1 …… a 2—a 1≤1所以a 2000—a≤19999,即a 2000≤a 1+1999. 又因为a 1=12,a 2000=2011,所以a 2000=a 1+1999.故n n n A k a a 即),1999,,2,1(011 =>=-+是递增数列.综上,结论得证。

(Ⅲ)令.1),1,,2,1(011±=-=>=-=+A k k k c n k a a c 则 因为2111112c c a a c a a ++=++= ……,1211+++++=n n c c c a a所以13211)3()2()1()(-++-+-+-+=n n c c n c n c n na A S)].1()2)(1()1)(1[(2)1(121--++--+----=n c n c n c n n 因为).1,,1(1,1-=-±=n k c c k k 为偶数所以所以)1()2)(1()1)(1*21n c n c n c -++--+-- 为偶数, 所以要使2)1(,0)(-=n n A S n 必须使为偶数, 即4整除*)(144),1(N m m n m n n n ∈+==-或亦即. 当,1,0,*)(14241414-===∈+=--+k k k n a a a A E N m m n 的项满足数列时14=k a),,2,1(m k =时,有;0)(,01==n A S a;0)(,0,0),,,2,1(11144=====+n k k A S a a m k a 有时当n A E N m m n 数列时,*)(14∈+=的项满足,,1,0243314-===---k k k a a a 当)1(,)(3424-∈+=+=m n N m m n m n 时或不能被4整除,此时不存在E 数列A n , 使得.0)(,01==n A S a 北京文(14)设()0,0A ,()4,0B ,()4,3C t +,(),3D t 。

记()N t 为平行四边形ABCD 内部(不含边界)的整点的个数,其中整点是指横、纵坐标都是整数的点,则()0N = ;()N t 的所有可能取值为 。

6;6,7,8(20)(本小题共13分) 若数列12:,,(2)n n A a a a n ≥满足11(1,2,,1)k k a a k n +-==-,则称n A 为E 数列,记()12++n n S A a a a =+。

(I )写出一个E 数列5A 满足13==0a a ;(II )若1=12,=2000a n ,证明:E 数列n A 是递增数列的充要条件是=2011n a (III )在1=4a 的E 数列n A 中,求使得()n S A =0成立的n 的最小值 解:(Ⅰ)0,1,0,1,0是一具满足条件的E 数列A 5。

(答案不唯一,0,1,0,-1,0也是一个满足条件的E 的数列A 5) (Ⅱ)必要性:因为E 数列A 5是递增数列,所以)1999,,2,1(11 ==-+k a a k k .所以A 5是首项为12,公差为1的等差数列.所以a 2000=12+(2000—1)×1=2011.充分性,由于a 2000—a 1000≤1,a 2000—a 1000≤1 …… a 2—a 1≤1所以a 2000—a≤19999,即a 2000≤a 1+1999. 又因为a 1=12,a 2000=2011,所以a 2000=a 1+1999.故n n n A k a a 即),1999,,2,1(011 =>=-+是递增数列.综上,结论得证。

(Ⅲ)111111k k k k k k a a a a a a +++-=⇒-≥-⇒≥-所以有:2113a a ≥-=,3212a a ≥-≥,4311a a ≥-≥,…,8713a a ≥-≥-;9814a a ≥-≥-相加得:1290a a a +++≥,所以在1=4a 的E 数列n A 中,使得()n S A =0成立的n 的最小值为9。

福建理16.(本小题满分13分) 已知等比数列{}n a 的公比3q =,前3项和3133S =.(Ⅰ) 求数列{}n a 的通项公式;(Ⅱ) 若函数()sin(2)(0,0)f x A x A ϕϕπ=+><<在6x π=处取得最大值,且最大值为3a ,求函数()f x 的解析式.解:(Ⅰ)由3133,3q S ==得113a =,所以23n n a -=; (Ⅱ)由(Ⅰ)得33a =,因为函数()f x 最大值为3,所以3A =,又当6x π=时函数()f x 取得最大值,所以sin()13πϕ+=,因为0ϕπ<<,故6πϕ=,所以函数()f x 的解析式为()3sin(2)6f x x π=+。

福建文17.(本小题满分12分)已知数列{a n }中,a 1=1,a 3=-3。

(Ⅰ)求数列{a n }的通项公式; (Ⅱ)若数列{a n }的前k 项和S k =-35,求k 的值。

解:(Ⅰ)由a 1=1,a 3=-3得2d =-,所以a n =3-2n ; (Ⅱ)(1)35k S k k k =--=-,解得k =7。

广东理11.等差数列{}n a 前9项的和等于前4项的和.若141,0k a a a =+=,则k = ..10,02,0,0,:10.k :0)61(31)1(611,61d 3d),2(24d)9(1),(29,24)(29)(,:710479876549415419149=∴==+=∴=++++∴===-⋅++---=∴+=++=∴+=+=k a a a a a a a a a S S k a a a a a a a S S 从而解法二得由即即解法一20.(本小题满分12分) 设0,b >数列{}n a 满足111=,(2)22n n n nba a b a n a n --=≥+-,(1)求数列{}n a 的通项公式;(2)证明:对于一切正整数n,1112n n n b a ++≤+1111111211,22111112,,{},,, 2.222212112(),2211122{},,22(2)12n n n n n n n n n n n n n n nba n n a a n a b a bn n n n n b a a a a a a n n b a b b a bn a b a b b b bn a b ------==⋅++--==+=∴==-≠+=+--++=---∴+-解:(1)由可得当时则数列是以为首项为公差的等差数列从而 当时,则数列是以为首项为公比的等比数列12212(2)()(),,(2)222,(2).(2)(0,2)2n n n n n n n n n n nb b a b b b b b b b a nb b b b b--=⋅=⋅∴=---=⎧⎪=⎨->≠⎪-⎩ 综上1111111111232211123122,2,22(2)(2),,22222,22222222n n n n n n n n n n n n n n n nn n n n n n nn nn n n n n n b b a a b nb bb n b b a b b bn b b b b b b b b b +++++++++-----+-----==∴=--≠≤≤≤--≤+++++≤++++(2)当b=2时,+1+1,从而原不等式成立;1当b 2时,要证+1,只需证+1即证+1即证+即证n 212231121211232221,22222221)()()()222222,,.n n n n n n n n n n n n b b b b b b b b b bb b b b nb -+---+-++++++++++++++≥+⋅=∴≠而上式左边=(当b 2时原不等式也成立从而原不等式成立 广东文11.已知{}n a 是递增等比数列,4,2342=-=a a a ,则此数列的公比=q .2 20.(本小题满分14分) 设b>0,数列}{n a 满足b a =1,11(2)1n n n nba a n a n --=≥+-.(1)求数列}{n a 的通项公式;(2)证明:对于一切正整数n ,121+≤+n n b a .解:(1)1110,1n n n nba a b a a n --=>=+-由可知111111,,n n n n n n n A A a b b a a b--∴=+==令则,-11n 11n 1111111112=++n n n nn A A A b b b b b b b b ---≥=+++=++当时, 11(1)11(1)1n n n n b b b A b b b--≠==--①当b 1时,;n A n =②当b =1时,(1),111,1n n n nb b b a b b ⎧-≠⎪∴=-⎨⎪=⎩;(2)12(1)121,1n n n nnb b b a b b +-≠=≤+-当时,欲证 112(1)1n nn b nb bb +-≤+-只需证,12211121(1)11n n n n n n n b bb b b b b b +-+---+=+++++++-11111()n n n n n b b b b b b b--=++++++(222)2nnb nb >+++=,12(1)211n n n nnb b a b b +-∴=<+-; 11221n n b a b +===+当时,,12+1n n a b +≤综上所述。

相关文档
最新文档