人教版八年级下册 19.1.1 变量与函数 说课稿
人教版八年级数学下册说课课件-19.1.1 变量和函数(共16张PPT)

子表示 y ? y的值随x的值的变化而变化吗?
y = 10x
八年级 数学
第十九章 一次函数
19.1 变量与函数
19.1.1 变 量
活动二 问题(3) lián yī
你见过水中的涟漪吗?圆形水波慢慢地扩大,在这一过程 中,当圆的半径r 分别为10 cm,20 cm,30 cm 时,圆的面积S 分别为多少?S的值随r的值的变化而变化吗?
y= 5-x S = 60t y = 10x S= πr2
活动四:巩固练习
变量:月用水量x吨和月应交水费y元, 常量:自来水价4元/吨。
变量:通话时间t分钟和话费余额w元, 常量:通话费0.2元/分钟和存入话费30元。
变量:半径r和圆周长C 常量:圆周率π及计算公式中的数字2。
变量:第一个抽屉放书量x本和第二个抽屉放书量y本, 常量:书的总数10本。
当r=10cm时,S=400πcm2
当r=30cm时,S=900πcm2
圆面积S= πr2
题目中没有 特别要求时,
要保留π
S的值随r的值变化而变化吗?
八年级 数学
19.1 函数
第十九章 一次函数
19.1.1 变 量
活动二 问题(4)
用10 m 长的绳子围成一个长方形,当长方形的一边长x分
别为 3m,3.5m,4m,4.5m时,它的邻边长y分别为多少?y的值
随x
的值的变化而变化吗? 矩形的周长=(长+宽)×2
已知周长,如何去求长或宽呢?
矩形的宽=周长÷2-长
当x=3m时,y=2m 当x=3.5m时,y=1.5m
当x=4m时,y=1m
y= 5-x
活动二:创设情境-----新知探究
问题1:分别指出思考(1)~(4)的变化过程中所涉及的量, 在这些量中哪些量是发生了变化的?哪些量是始终不变的?
人教版八年级数学下册(教案):19.1.1变量与函数

在学生小组讨论环节,我发现开放性问题能够有效激发学生的思考,他们提出了很多有创意的观点。但是,如何让每一个学生都能积极参与进来,真正达到讨论的目的,这是我需要继续思考的问题。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“函数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.重点难点解析:在讲授过程中,我会特别强调函数的定义及其三要素,以及如何判断两个变量之间是否存在函数关系这两个重点。对于难点部分,我会通过实例和图象来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与函数相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,比如测量不同时间自行车行驶的距离,观察速度与时间的关系。
4.引导学生运用合作、探究的学习方式,培养团队协作和问题解决能力,提高数学交流与反思的能力。
5.培养学生对数学学科的兴趣和美感,激发学生探索数学规律的欲望,形成积极的学习态度。
三、教学难点与重点
1.教学重点
-函数的定义及其三要素:本节课的核心是使学生理解函数的定义,掌握定义域、值域、对应关系这三个基本要素,为后续学习各种具体函数打下基础。
19.1.1变量与函数 第1课时 说课稿 2021—2022学年人教版数学八年级下册

19.1.1 变量与函数第1课时说课稿2021—2022学年人教版数学八年级下册一、课程背景在数学学科中,变量与函数是一个重要的概念。
通过学习变量与函数,可以帮助学生理解数学中的抽象概念,并且培养学生的逻辑思维和解决问题的能力。
本节课以“变量与函数”为主题,意在引导学生正确理解变量与函数的概念,并通过实际例子和计算练习加深学生对变量与函数的认识和应用。
二、教学目标1.掌握变量与函数的基本概念和特点。
2.理解变量与函数之间的关系,并能够正确应用。
3.通过实际计算练习,提高学生的运算能力和问题解决能力。
三、教学重点1.变量与函数的基本概念及特点。
2.变量与函数的关系和区别。
四、教学内容1. 变量的概念定义:变量是可以改变的量,它可以在程序中存储和表示各种值。
在数学中,变量通常用字母表示,如x、y等。
通过赋予变量不同的值,我们可以在程序中进行各种运算和计算。
举例:假设我们要计算一个矩形的面积,可以用一个变量表示矩形的宽度,用另一个变量表示矩形的长度,将宽度和长度相乘即可得到矩形的面积。
2. 函数的概念定义:函数是一个特殊的关系,它将一个或多个输入映射到一个输出。
在数学中,函数通常用字母加括号表示,如f(x)、g(x)等。
函数在数学中描述了变量之间的依赖关系,通过输入不同的值,我们可以得到相应的输出。
举例:假设我们有一个函数f(x),表示一个物体从起点出发,以x的速度前进的时间。
通过输入不同的速度值,我们可以计算出物体到达不同距离所需要的时间。
3. 变量与函数的关系变量与函数之间有着密切的关系。
变量可以作为函数的输入,也可以作为函数的输出。
通过变量和函数的组合,我们可以实现各种复杂的计算和运算。
举例:假设我们有一个函数f(x),表示一个物体从起点出发的时间和距离的关系。
如果我们知道物体的速度为x,那么我们可以利用函数f(x)来计算物体到达不同距离所需要的时间。
4. 变量与函数的区别尽管变量和函数在数学中有着紧密的联系,但它们之间还是有一些区别的。
人教版数学八年级下册19.1.1第1课时《变量》说课稿

人教版数学八年级下册19.1.1第1课时《变量》说课稿一. 教材分析《人教版数学八年级下册19.1.1第1课时》这部分教材主要介绍变量的概念。
变量是数学中的一个基本概念,它表示一个可以取不同值的量。
在本节课中,学生将学习变量的定义、分类以及变量与常量的区别。
教材通过丰富的实例和生活中的问题,引导学生理解和掌握变量的概念,培养学生的抽象思维能力。
二. 学情分析八年级的学生已经掌握了初中阶段的基本数学知识,对数学概念有一定的理解能力。
但变量作为一个抽象的概念,对于部分学生来说可能较为难以理解。
因此,在教学过程中,教师需要关注学生的认知水平,通过生动的实例和生活问题激发学生的学习兴趣,引导学生理解和掌握变量的概念。
三. 说教学目标1.知识与技能目标:使学生理解变量的概念,掌握变量的分类,能够区分变量与常量。
2.过程与方法目标:通过实例和问题,培养学生的抽象思维能力,提高学生分析问题和解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作精神,使学生感受到数学与生活的紧密联系。
四. 说教学重难点1.教学重点:理解变量的概念,掌握变量的分类。
2.教学难点:变量与常量的区别,抽象思维能力的培养。
五. 说教学方法与手段本节课采用讲授法、讨论法、实例分析法和问题解决法等多种教学方法。
在教学过程中,充分利用多媒体课件、实例和问题,引导学生主动参与课堂讨论,提高学生的学习兴趣和积极性。
六. 说教学过程1.导入新课:通过一个生活中的实例,如天气预报中的气温变化,引导学生思考什么是变量,引出本节课的主题。
2.讲解与演示:讲解变量的定义、分类以及变量与常量的区别。
通过多媒体课件和实例,生动演示变量的特点,帮助学生理解和掌握。
3.课堂讨论:学生进行小组讨论,让学生分享自己对变量的理解和认识,培养学生的团队合作精神。
4.练习与解答:布置一些有关变量的练习题,让学生独立完成,教师进行讲解和解答。
5.总结与拓展:对本节课的内容进行总结,强调变量的概念和分类,提出一些拓展问题,激发学生的学习兴趣。
人教版数学八年级下册19.1.1《变量与函数》教学设计1

人教版数学八年级下册19.1.1《变量与函数》教学设计1一. 教材分析《变量与函数》是人教版数学八年级下册第19.1.1节的内容,本节课主要介绍变量的概念以及函数的定义。
学生在学习本节课之前,已经掌握了代数基础知识,如代数式、方程等,为本节课的学习打下了基础。
本节课的内容是学生学习更高级数学知识的重要基石,对于培养学生的逻辑思维能力、解决问题的能力具有重要意义。
二. 学情分析八年级的学生已经具备了一定的代数基础,对于未知数、代数式等概念有了初步的了解。
但是,学生在学习过程中,可能对于抽象的变量概念、函数的定义及表示方法等方面存在一定的困难。
因此,在教学过程中,需要注重引导学生通过具体实例来理解抽象概念,提高学生的抽象思维能力。
三. 教学目标1.理解变量的概念,掌握常量与变量的区别。
2.理解函数的定义,掌握函数的表示方法。
3.能够运用变量和函数的知识解决实际问题。
四. 教学重难点1.重点:变量、函数的概念及其表示方法。
2.难点:函数概念的理解,函数表示方法的应用。
五. 教学方法1.情境教学法:通过生活实例引入变量和函数的概念,使学生能够更好地理解抽象知识。
2.引导发现法:教师引导学生通过观察、分析、归纳等方法,自主发现变量和函数的规律。
3.实践操作法:让学生通过动手操作,加深对变量和函数概念的理解。
六. 教学准备1.教学课件:制作生动有趣的教学课件,帮助学生直观地理解变量和函数的概念。
2.教学实例:准备一些生活实例,用于引导学生学习变量和函数。
3.练习题:准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用生活实例,如气温、水位等,引导学生思考这些量是如何变化的。
通过观察、讨论,让学生初步理解变量概念。
2.呈现(10分钟)介绍常量与变量的定义,让学生明确常量与变量的区别。
接着,引入函数的定义,讲解函数的表示方法,如解析式、图象等。
3.操练(10分钟)让学生分组讨论,举例说明生活中的一些函数关系,如身高与年龄的关系、商品价格与数量的关系等。
八年级数学下册第19章一次函数 函数第1课时变量说课稿新版新人教版

变量各位领导各位老师,你们好!今天我将要为大家说课的内容九义初中数学人教版的第19章第一节第一课时《变量》首先,我对本节教材进行一些分析一、教材结构与内容简析本节内容的地位和作用:《变量》是本章的第一课,本节知识是理解函数概念的前提知识,是学习正比例函数、一次函数、反比例函数、二次函数的基础。
学好本届知识为过渡到学习本章正比例函数、一次函数起着铺垫作用。
本节内容是第一部分,因此,在本章中,占据重要的地位。
二、教学理念及学情分析:作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识;在新的课改理念的指导下如何调动学生的学习激情和让学生自主学习、合作探究成为课堂教学的主流。
考虑到初二学生已有的认知结构心理特征 ,以及本章知识与生活和生产实践联系非常紧密,教师要抓住这一特点让学生感知数学即生活,生活即数学,同时让学生感受数学的有用性,从而更加热爱数学学习。
三、教学目标1、知识与技能:在具体情境中了解变量、自变量、因变量等概念,理解反映变量之间关系的实例;能够从表格中获得有关变量之间关系的信息;2、过程与方法:经历探索具体情境中两个变量之间关系的过程,体验变量之间的辩证关系;3、情感与价值观:在探索的过程中,感知数学即生活,培养学生参与数学活动的积极性和良好的学习态度。
四、重点、难点本着课程标准,在吃透教材基础上,我确立了如下的教学重点、难点重点:能从具体事件中分清什么是变量、自变量与因变量,理解因变量随自变量的变化的规律。
通过让学生自主学习与合作探究的方式突出重点难点:理解两个变量之间的依赖关系。
通过小组交流,课堂展示,和试一试,做一做的习题训练突破难点五、教法数学是一门培养人的思维,发展人的思维的重要学科,因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。
我采用了启发式教学法,让学生成为课堂的主人,学生自主学习、合作探究。
从而激活课堂开启学生智慧。
六、学法我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,因而在教学中要特别重视学法的指导。
《19.1.1变量与函数》说课稿

变量与函数说课稿说课内容:人教版八年级数学下册第十九章第一节“变量与函数”的内容。
本节课主要是由实例引入函数的基本概念,根据函数概念判断函数关系,结合实例体会函数的应用,了解函数的三种表示方法。
下面,我将从以下几个方面对这节课的设计进行说明。
一、教材分析(一)教材的地位和作用函数是中学数学中最重要的基本概念之一,它揭示了现实世界中数量关系之间相互依存和变化的实质,是刻画和研究现实世界变化规律的重要模型。
在这里,学生第一次接触函数的概念,它需要用变量的观点初步探讨函数的概念、表示方法、图象等,是函数学习的入门,也是进一步学习的基础。
(二)教学目标:根据新课程标准的要求,结合本节教材的特点,以及八年级学生的认知规律,我制定如下目标。
知识目标:1.探索简单实例中的数量关系和变化规律,了解函数的概念。
2.能根据所给条件确定一些函数解析式。
3.能确定简单实际问题中函数自变量的取值范围,并会求出函数值。
能力目标:1、经历从实际问题中抽象概括函数概念的过程,培养学生的抽象概括能力。
2、引导学生体会函数思想,发展学生的思维,提高分析问题和解决问题的能力。
情感目标:培养学生积极参与、大胆探索的精神,体验探究的乐趣,感受成功的快乐,增强学生学习数学的兴趣。
(三)教学重点、难点重点:函数概念的形成过程。
(通过列举生活实例,如常见的路程问题,销售问题,弹簧问题,几何图形的面积问题等等,逐步形成变量与常量、自变量与函数的概念,来突出重点。
)难点:对函数概念的深刻理解和灵活应用。
(突破难点的关键是通过生活实例帮助学生从一个变化过程、两个变量、一种对应关系三个方面来认识和理解函数的概念,应用函数知识解决简单的实际问题,比如书上油箱中剩余油量和汽车行驶的时间之间的函数关系问题等。
)二、教学方法与教学手段1、在本节教学时,教师应根据学生的认知基础,创设丰富的现实情境,使学生在丰富的现实情境中感知变量和函数的存在和意义,体会变量之间的相互依存关系和变化规律,真正起好组织者、引导者和合作者的作用。
人教版八年级下第19章一次函数19.1.1变量与函数教案

3.培养学生合作交流、自主探究的学习习惯,提高数学建模和数学运算的核心素养。
4.激发学生学习兴趣,培养勇于挑战、善于思考的学习态度,提升学生的数学素养和综合素质。
在教学过程中,重点关注学生在以下方面的表现:
1.能否运用所学知识,分析并解决实际问题,体现数学的应用价值。
3.重点难点解析:在讲授过程中,我会特别强调变量与常量的区别以及函数的三要素。对于难点部分,我会通过举例和图示来帮助大家理解一次函数的定义和图像特点。
(三)实践活动(用时10ቤተ መጻሕፍቲ ባይዱ钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一次函数相关的实际问题,如公交车票价与乘车距离的关系。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,比如用尺子和直尺绘制一次函数的图像,观察斜率和截距的变化。
五、教学反思
在上完这节课之后,我对自己的一些教学设计和学生的反应进行了思考。我发现,通过生活中的实例引入变量和函数的概念,学生们能够更直观地理解这些抽象的数学概念。他们对于一次函数的应用表现出浓厚的兴趣,尤其是当我将函数与他们的日常生活联系起来时,比如购物打折、手机话费等问题。
我注意到,在教学过程中,有些学生对一次函数的图像绘制感到困惑。我意识到,这里可能需要更多的直观演示和实际操作,让学生亲手尝试,从而更好地理解图像的生成过程。在接下来的课程中,我打算增加一些互动环节,比如让学生分组在教室里用道具来模拟一次函数的图像,这样既能增强他们的动手能力,也能加深对一次函数图像特征的理解。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解变量与函数的基本概念。变量是随着某些条件变化而变化的量,而函数则是描述两个变量之间依赖关系的数学模型。它们在数学和生活中都有着广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版数学八年级下说课设计19.1.1变量与函数说课稿
教材分析
本节是选自《人教版八年级下册第十九章第一节》的内容,将从具体的概念性知识转移到抽象概念,也是初中知识的一个过度,学习本节知识,学生将初步认识什么是变量、什么是常量、什么是函数。
本节也是后期学习一次函数、二次函数等的一个铺垫,以及为高中学习的一个基础。
学情分析
本节内容针对的是八年级的学生,有一定的自学能力,掌握知识和理解概念的能力相应的有一些具备,但是对抽象概念的理解是初步接触,在学习上会有一定的疑惑感是很正常的,通过教师的引导将会摆脱疑惑。
教学目标
知识与技能:理解变量、常量、自变量、因变量的概念,掌握函数概念,掌握函数表达式的三种表示方法,运用函数解析式的表示方法求解实际问题
数学思考:通过引入生活中一个量发生变化,另一个量也会发生变化的例子,引导学生观察思考。
问题解决:通过对生活例子的研究,理解变量、常量、自变量、因变量及函数概念。
掌握函数满足条件和表示方法。
情感态度:结合对实际生活例子的探索获取数学新知,体验数学来源于生活,体会树形结合思想。
教学重点:函数与变量的概念,函数的三种表示方法(列表法、图像法、解析式法)
教学难点:变量与函数概念的讲解与理解。
教法分析
结合教学目标及重难点采用“情景教学法”进行启发、引导教学。
教学过程
创设情景:在学习和生活中经常会遇到一些研究数量关系的问题,结合坐标系的知识思考下面的问题。
问题一:如图是曲靖某地一天的气温变化情况。
看图回答问题:
(1)这天的6时、10时和14时的气温分别为多少?任意给出这天中的某一时刻,说出这一时刻的气温.
(2)这一天中,最高气温是多少?最低气温是多少?
(3)这一天中,什么时段的气温在逐渐升高?什么时段的气温在逐渐降低?
解:(1)这天的6时、10时和14时的气温分别为-1℃、2℃、5℃;
(2)这一天中,最高气温是5℃.最低气温是-4℃;
(3)这一天中,3时~14时的气温在逐渐升高.0时~3时和14时~24时的气温在逐渐降低.
从图中我们可以看到,随着时间t(时)的变化,相应地气温T(℃)也随之变化.那么在生活中是否还有其它类似的数量关系呢?
问题二:汽车以60km/h的速度匀速行驶,行驶的路程是S km,行驶的时间为t h,填写下面的表格,S的值随t的值变化而变化吗?
t/h12345
s/km
解:其中在整个过程中时间t在发生变化,随之路程s也随之发生改变,速度v=60km/h是不变的,当时间t不断变长是,路程s也在变长。
(时间 t≥0)
问题三:收音机刻度盘的波长和频率分别是用米(m)和千赫兹(kHz)为单位标刻的.下面是一些对应的数值:
观察上表回答:
(1)波长l和频率f数值之间有什么关系?
(2)波长l越大,频率f就________.
解:(1) l与f的乘积是一个定值,即l*f=300000,或者说f= 300 000
(根据分式的意义l不能为0即 l≠0)
l
(2)波长l越大,频率f就越小
问题四:用10m的绳子围一个矩形,当矩形的一边长x分别为3m,3.5m,4m,4.5m时,它的邻边长y分别是多少?完成下面的表格,
回答y与x之间有什么关系?y的值随x的值的变化而变化吗?
解:由方程思想可知y与x之间满足y=5-x由于长度x不能为0,边长x只能在0和5之间。
即(0<x<5)
当边长x变大时,邻边y变小,
探究发现:在上面的问题中,我们研究了一些数量关系,它们都刻画了某些变化规律。
这里出现了各种各样的量变化,特别值得注意的是出现了一些数值会发生变化的量。
例如问题1中,刻画气温变化规律的量是时间t和气温T,气温T随着时间t的变化而变化,它们都会取不同的数值。
问题二中的整个过程中时间t在发生变化,随之路程s也随之发生改变,速度v=60km/h是不变的,当时间t不断变长时,路程s也在变长。
获取新知:像这样在某一变化过程中,可以取不同数值的量(如:边长x和邻长y、时间t和气温T),叫做变量(variable)。
数值始终不变的量叫做常量(constant)。
(如:速度v=60km/h、定值300 000)
探索发现:上面四个问题中,都出现了两个变量,它们互相依赖,密切相关。
每一变量改变都会对应另一个变量的变化,且在这种变化时都有唯一确定的值对应。
(如:问题一中气温T随着时间t的变化而变化,问题二中邻长y随边长x的变化而变化)
获取新知:一般地,如果在一个变化过程中,有两个变量,例如x和y,对于x的每一个值,y都有唯一的值与之对应,我们就说x是自变量(independent variable),y是因变量(dependent variable),此时也称
y是x的函数(function).(因变量也叫函数值)
提问:我们知道函数的概念,那么函数要用什么来表示呢?
回顾:回顾以上四个问题可知,问题一时用图像的形式表示,问题二用一个列表的形式表示,问题三、问题四用列表的形式和一个等式的形式表示。
四个问题自变量要满足一定的条件时,函数才有意义。
获取新知:(1)函数的表示方法:①列表法②图像法③解析式法(2)确定自变量取值范围时,不仅要考虑使函数关系式有意义,而且还要注意问题的实际意义
实践练习:
例:写出下列各问题中的关系式,并指出其中的常量与变量、自变量与因变量及自变量的取值范围:
(1)圆的周长C与半径r的关系式;
(2)火车以120千米/时的速度行驶,它驶过的路程s(千米)和所用时间t(时)的关系式;
(3)n边形的内角和S与边数n的关系式.
解(1)C=2π r,2π是常量,r、C是变量;
(2)s=120t,120是常量,t、s是变量,自变量是t,因变量是s,自变量(t≥0);
(3)S=(n-2)×180,2、180是常量,n、S是变量,自变量是n,因变量是S,自变量(n≥3)
小结:(1)什么函数?函数要满足的条件有哪些?(自变量、因变量、对应关系)
(2)函数的表示方法:①列表法②图像法③解析式法作业布置:必做习题巩固P81(1、2)+预习第二节选做第二节的练习题
板书设计:
教学反思:
本节内容主要时概念性的讲解,学生初步接触,抽象性比较大,课程内容较为枯燥,在讲解过程中学生可能不太感兴趣,我将做出改正,对需要详细透彻讲解的用概括性比较高的例题加以理解。