晶粒尺寸的测定
晶粒尺寸的测定

任何一个衍射峰都是由五个基本要素组成的。
¾ 衍射峰的位置,最大衍射强度(Imax),半高宽,形态(通常 衍射峰的峰形态,可具有Gauss, Cauchy, Voigt或Pearson
VII分布)及对称性或不对称性。
¾ 不对称有为左右半高宽不对称;B为左右形态不对称;C为左右
半高宽与形态不对称;D为上下不对称;以及任意不对称;完
¾主峰最大值的对应位置为ξπ、ηπ、
ζπ。主峰的底宽与N成反比,主峰的
面积与N成正比。
¾干涉函数还表明,晶体对X射线的
衍射只在一定方向上才能产生衍射
线,而且每条衍射线本身还具有一定
的强度分布范围。
12
干涉函数
2.微晶宽化效应
¾ 干涉函数的每个主峰就是倒易 空间中的一个选择反射区,他 的有效范围是: ξ=H±(1/N1)、η =K±(1/N2) 、ζ =L±(1/N3)。
IM = Ie× FHKL2× IGI2, 式中IGI2为干涉函数
ξ、η、ζ:倒易点阵的流动坐标,可为任意连续整数;
11
2.微晶宽化效应
干涉函数
¾ 下图为N1=5的干涉函数曲线。整个函数由主峰和副峰组成,两 个主峰之问有N1-2个副峰。副峰的强度比主峰弱得多,主峰两 侧的第一个副峰的强度大约等于主峰的5%,第二个副峰的强度 就更弱。当N1>100时,几乎全部强度都集中在主峰,副峰的强 度可忽略不计。
用X射线粉末衍射法测定 超细晶的粒径及微观应力
适用于1~100纳米的超细晶
问题-1
用X射线粉末衍射法测定超细 晶的粒径及微观应力
¾ 粉末衍射法测定超细晶粒径的原理是什么? ¾ 用粉末衍射法测定超细晶粒径是怎样做的? ¾ 用粉末衍射法测定超细晶粒径要注意什么?
α-Ti晶粒尺寸的EBSD技术测定方法及分析

取 的数 据 , 面 积 法 测 量 时 能 准 确 测 出晶 粒 的 平 均 尺 寸 。但 E S 方 法 测 量 晶粒 尺 寸 时 会 受 到标 定 率 及 误 标 的 明 用 BD
构 共存 的 复 杂 组 织 , B D技 术 测 量 各 种支 持 下 , 展 了 E S 测 量 晶粒 开 BD
尺 寸时 可能存 在 问题 的研 究 。其方 法是将 六 方结构
分 布则 是极 其有 效 的方法 。 与通过 自动图像 仪利 用形 貌像测 定 晶粒尺 寸相 比, B D方法 有如 下 特 点 : 1 自动 图像 分 析 仪 自 ES () 动获 取组织 照 片时 , 只要样 品经 过合适 的浸蚀 , 晶界
为 ql m ×1m 的 圆片 。样 品提 供 方 已进 行 了 b 0m m
文 章 编 号 :0 06 8 (0 10 / 50 8 -6 10 — 1 2 1 ) 4 0 -3 80 2
OT 晶粒 尺寸的 E S Li — B D技术测定方法及分析
鲁 " - 杨 平 ,  ̄X , - 李 萧 孟 利 ,
( 北京科 技 大学 1 .材料科 学 与工程 学 院 , .冶金 工程 研 究 院, 2 北京 10 8 ) 0 0 3
显 影 响 。影 响 最 大 的是 伪 对 称 性 , 当 因大 量 误 标 造 成 小 “ 粒 ” 即 晶 出现 时 , 均 晶 粒 尺 寸 明 显 降低 。通 过 调 整 测 试 平
参数和后 续处理 可以去 除该影 响。比较 不同级别 降噪后 的数据 可知 , 标定率越 高, 降噪 前后 结果越接 近 ; 定率越 标
实验七 晶体晶粒大小和晶格畸变的测定

实验七晶体晶粒大小和晶格畸变的测定一、实验目的与要求1.学习用X射线衍射峰宽化测定微晶大小与晶格畸变的原理和方法。
2.掌握使用X射线衍射分析软件进行晶粒大小和晶格畸变测定。
二、实验原理X射线衍射峰的宽化主要有三个因素造成的:仪器宽化(本征宽化),晶块细化和微观应变。
要计算晶粒尺寸或微观应变,首先第一步应当从测量的宽度中扣除仪器的宽度,得到晶粒细化或微观应变引起的真实加宽。
但是,这种线形加宽效应不是简单的机械叠加,而是它们形成的卷积。
所以,我们得到一个样品的衍射谱以后,首先要做的是从中解卷积,得到样品因为晶粒细化或微观应变引起的加宽FW(S)。
这个解卷积的过程非常复杂,解卷积的过程,Jade按下列公式进行计算。
式中D称为反卷积参数,可以定义为1-2之间的值。
一般情况下,衍射峰图形可以用柯西函数或高斯函数来表示,或者是它们二者的混合函数。
如果峰形更接近于高斯函数,设为2,如果更接近于柯西函数,则取D=1。
另外,当半高宽用积分宽度代替时,则应取D值为1。
D的取值大小影响实验结果的单值,但不影响系列样品的规律性。
因为晶粒细化和微观应变都产生相同的结果,那么我们必须分三种情况来说明如何分析。
(1)如果样品为退火粉末,则无应变存在,衍射线的宽化完全由晶粒比常规样品的小而产生。
这时可用谢乐方程来计算晶粒的大小。
式中Size表示晶块尺寸(nm),K为常数,一般取K=1,λ是X射线的波长(nm),FW(S)是试样宽化(Rad),θ则是衍射角(Rad)。
计算晶块尺寸时,一般采用低角度的衍射线,如果晶块尺寸较大,可用较高衍射角的衍射线来代替。
晶粒尺寸在30nm左右时,计算结果较为准确,此式适用范围为1-100nm。
超过100nm的晶块尺寸不能使用此式来计算,可以通过其它的照相方法计算。
(2)如果样品为合金块状样品,本来结晶完整,而且加工过程中无破碎,则线形的宽化完全由微观应变引起。
式中Strain表示微观应变,它是应变量对面间距的比值,用百分数表示。
晶粒度的测定方法

晶粒度的测定方法晶粒度是指晶体内部的晶粒大小。
晶粒度的测定方法对于材料的性能和品质有着重要的影响。
下面将介绍几种常用的晶粒度测定方法。
1.金相显微镜法金相显微镜法是最常用的晶粒度测定方法之一、该方法基于金相显微镜的原理,通过对材料进行金相切片和腐蚀处理,观察切面上晶粒的形貌和大小来确定晶粒度。
该方法操作简便,适用于各种金属和合金材料的晶粒度测定。
2.显微照相法显微照相法是通过显微镜和照相设备对材料的显微组织进行观察和记录,然后利用显微照片进行晶粒度测定。
该方法可以对显微结构中的晶体进行精确的测量和分析,尤其适用于有细小晶粒的材料。
3.X射线仪测量法X射线仪测量法是利用X射线衍射原理来测定晶粒度的方法。
通过测量材料中的X射线衍射图样,利用布拉格方程计算晶格常数后,再结合织构测量等方法,可以推算出晶粒的尺寸和分布。
该方法适用于晶粒在纳米到微米尺寸范围内的测定。
4.电子背散射法电子背散射法是利用电子背散射器(EBSD)来测定晶粒度的方法。
EBSD可以通过对材料表面的电子背散射信号进行采集和分析,来获得晶粒的晶格方位和形貌信息。
该方法可以在纳米尺度下进行晶粒度测定,并可以对晶粒边界、晶胞取向和位错等进行研究。
5.中子衍射法中子衍射法利用中子的原理和特性对材料的晶格结构和晶粒度进行测定。
中子具有较好的穿透性和灵敏度,可以通过材料的散射响应来确定晶粒的大小和形貌。
该方法适用于各种晶体材料,在晶体结构研究和材料科学领域有重要的应用价值。
综上所述,晶粒度的测定方法有金相显微镜法、显微照相法、X射线仪测量法、电子背散射法和中子衍射法等。
不同方法适用于不同尺度和类型的晶体材料,可以根据需要选择合适的方法进行测定。
这些方法的应用能够提供关于材料结构和性能的有价值的信息,对于材料研究和工程应用都具有重要意义。
第十二章 晶粒尺度的测定及评级方法 PPT

单相铜合金晶粒度的测定(参考YB797-71)
(3) 面积计算法 在保证计算面积内不少于50个晶粒的条件下,选好有代表 性的视场,投影到毛玻璃上或摄成照片,在其上划5000平方毫 米的圆(也可小些),然后数出在此圆内晶粒数z,再数出被圆 周所交截的晶粒度n。按下式计算出一个晶粒的平均面积 a(mm)。
第十二章 晶粒尺度的测定及评级方法
(1) 利用物镜测微尺寸出目镜测微尺(或毛玻璃投影屏上的 刻尺)每一刻度的实际值。
选定物镜,并选用带有目镜测微尺的目镜。将物镜测微尺 置于样品台上,调焦、调节样品台,使物镜测微尺的刻度与目 镜测微尺(或投影屏上的刻度尺)良好吻合 。
图1 目镜和物镜测微尺的校正 图2 目镜测微尺的测量显示图
式中:n——每1mm3内平均晶粒数。 n1——a轴方向每一毫米长度平均晶粒数。 n2——b轴方向每一毫米长度平均晶粒数。 n3——c轴方向每一毫米长度平均晶粒数。 0.7——晶粒扁园度系数。
单相铜合金晶粒度的测定(参考YB797-71)
单相铜合金晶粒度的测定,通常用比较法,在有疑议时, 可用直测计算法或面积计算法校准。
b. 将显微图象投影到毛玻璃屏上,计算被一条直线相交的晶粒 数目,直线要有足够的长度,以便使被一条直线相交截的晶粒数不 少于10个。
c. 计算时,直线端部未被完全交截的晶粒应以一个晶粒计算。 d. 最少应选择三个不同部位的三条直线来计算相截的晶粒数。 用相截的晶粒总数除以选用直线的总长度(实际长度以毫米计),得 出弦的平均长度(mm)。 e. 用弦的平均长度查表2确定钢的晶粒度。 f. 计算也可以在带有刻度的目镜上直接进行。
奥氏体本质晶粒度——当钢加热至930℃和保温足够 的时间所个有的奥氏体晶粒大小。它表示钢的奥氏体晶 粒在规定温度下长大的倾向。
材料分析学7-晶粒度的测定

(3)环境扫描电子显微镜(ESEM)
(4)扫描透射电子显微镜(STEM)
(5)分析电子显微镜(AEM)
这些电子显微镜与波长色散谱仪和能量色散谱仪结合,可
以对微区成分进行分析,并可以得到微区元素的面分布图
§ 7.2 磁透镜
电子在磁场中运动,受 洛仑兹 力:
F eV H
(7.1)
e-
v
如图,当v与H垂直时,电子在磁中
(1) 仪器展宽 包括由于仪器聚焦不完全、K双线( K1、 K2)未分离等等引起。
没有仪器展宽的衍射峰应为图中峰a ,有仪器展宽变成b.
(2) 晶粒尺寸 由于小晶粒尺寸引起的峰展宽,这样由于仪器展宽和晶粒尺寸小到一
定尺寸(100nm-500nm)引起的展宽总和就是峰变成途中的c。
(3) 晶粒微应变 由于小晶粒内微观应力引起,使峰变成图中d.。
的半高宽为:
K
( 6.1)
DCos
(6.1)式称为谢乐公式,K 为一常数。此公式可由简单的光学衍射原 理推导出来。
常数K一般取0.89
需要注意的是:
(1)这里测定的是晶粒尺寸。
(2)这里假定尺寸是均匀的.若尺寸有一定分布,应使用广义谢乐公 式(见“丛秋滋:多晶二维X射线衍射,科学出版社,1997”)
1. K 双线的分离 由于K1 和K2两条线的波长相差非常小,往往在光源中没法滤掉其中 一
条,二者都参加衍射,引起衍射线重叠在一起。 我们说衍射峰中包含有K1 和K2两个分量。 为了从重叠峰中消除K2分量,得到单一的K1 X射线的衍射峰,就需要
对K 双线进行分离。 这里所谓K 双线进行分离,就是指衍射峰中包含的K1 和K2两个分量的
假定峰形具有高斯分布:则
B B12 B02
奥氏体晶粒度的测定

奥氏体晶粒度的测定奥氏体晶粒度是指奥氏体晶粒的尺寸大小,是衡量金属材料显微组织中晶粒细小程度的参数之一。
奥氏体晶粒度的测定对于金属材料的性能和应用具有重要意义。
本文将介绍奥氏体晶粒度的测定方法和其在材料科学中的应用。
一、奥氏体晶粒度的测定方法1. 金相显微镜法金相显微镜法是一种常用的测定奥氏体晶粒度的方法。
首先,将待测材料的试样进行金相制备,即将试样进行机械研磨、腐蚀和抛光处理,然后在金相显微镜下观察试样的显微组织。
通过显微镜观察,可以直接测量奥氏体晶粒的尺寸,进而计算出奥氏体晶粒的平均尺寸。
2. 电子显微镜法电子显微镜法是一种高分辨率的测定奥氏体晶粒度的方法。
通过电子显微镜观察试样的显微组织,可以得到更精确的奥氏体晶粒尺寸。
电子显微镜法主要有透射电子显微镜和扫描电子显微镜两种。
透射电子显微镜可以观察材料的晶格结构,进而测量奥氏体晶粒的尺寸;扫描电子显微镜则可以获得材料表面的形貌信息,从而间接推断奥氏体晶粒的尺寸。
3. X射线衍射法X射线衍射法是一种非破坏性的测定奥氏体晶粒度的方法。
通过照射待测材料,利用X射线的衍射现象,可以得到奥氏体晶粒的晶格参数,从而计算出晶粒的尺寸。
X射线衍射法具有快速、准确和非破坏性的优点,适用于大批量材料的晶粒度测定。
二、奥氏体晶粒度的应用1. 材料性能评估奥氏体晶粒度是衡量金属材料显微组织细小程度的重要参数之一。
晶粒尺寸的大小会对材料的力学性能、耐磨性、耐腐蚀性等产生影响。
通过测定奥氏体晶粒度,可以评估材料的细晶化程度,从而预测材料的性能。
2. 热处理优化热处理是通过控制材料的加热和冷却过程,改变材料的显微组织和性能的一种方法。
奥氏体晶粒度的测定可以帮助优化热处理工艺,选择合适的加热温度和冷却速率,以获得细小的奥氏体晶粒和优良的性能。
3. 材料的晶界工程晶界是相邻晶粒之间的界面区域,对材料的力学性能和导电性能具有重要影响。
奥氏体晶粒度的测定可以为材料的晶界工程提供基础数据。
晶粒尺寸测定国标

晶粒尺寸测定国标1、前言晶粒是晶体的组成单位,晶粒尺寸是影响晶体性质和性能的重要因素。
快速、准确测定晶粒尺寸的方法对于材料研究和生产具有重要的意义。
我国对于晶粒尺寸测定制定了一系列的国家标准,本文将通过对这些国标的介绍,来系统地了解晶粒尺寸测定的方法、准确性以及应用。
2、ASTM E112ASTM E112是国际上用于定义和描述晶粒结构的标准。
该标准规定了用金相显微镜测量晶粒尺寸的方法和程序。
测量过程中需要注意样品的制备,包括样品的制片和腐蚀处理,以便于清晰、准确地观察晶粒形貌。
该标准还规定了晶粒尺寸的测量方法,可以通过直接计数测量法、线交法、区域计数法等不同的方法来获得晶粒尺寸数据。
该标准对于金属材料、陶瓷材料等不同种类的材料都适用。
3、GB/T6394GB/T6394是我国用金相显微镜测量晶粒尺寸的国家标准。
该标准参考ASTM E112,规定了晶粒尺寸的测量程序和方法,包括样品的制备和观察、测量方法和设备以及数据的处理和统计。
该标准适用于金属材料和陶瓷材料等不同种类的材料。
该标准比ASTM E112多了一些内容,如样品的制片方法和显微镜的光源规范等。
4、GB/T6478GB/T6478是我国用电子后散射衍射(EBSP)法测量晶粒尺寸的国家标准。
该标准规定了EBSP法测量晶粒尺寸的方法和程序,包括样品的制备、显微镜的设置以及数据的处理和统计。
相比于金相显微镜法,EBSP法可以获得更为准确和精细的晶粒尺寸数据。
该方法适用于金属材料和半导体材料等不同种类的材料。
5、GB/T13320GB/T13320是我国用透射电子显微镜(TEM)法测量晶粒尺寸的国家标准。
该标准规定了TEM法测量晶粒尺寸的方法和程序,包括样品的制备、显微镜的设置以及数据的处理和统计。
相比于金相显微镜法和EBSP法,TEM法可以获得更高分辨率和更小的晶粒尺寸数据。
该方法适用于金属材料、陶瓷材料、半导体材料等不同种类的材料。
6、总结晶粒尺寸测定是材料科学和工程领域的重要内容之一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电源上; 3.更换物镜,目镜时要格外小心,严防失手落地; 4.调节物体和物镜前透镜间轴向距离(以下筒称聚焦)时,必须首先弄清粗
调旋钮转向与载物台升降方向的关系。初学者应该先用粗调旋钮将物镜调 至尽量靠近物体,但绝不可接触。然后仔细观察视场内的亮度并同时用粗 调旋钮缓慢将物镜向远离物体方向调节。待视场内忽然变得明亮甚至出现 映象时,换用微调旋钮调至映象最清晰为止; 5.用油系物镜时,滴油量不宜过多,用完后必须立即用二甲苯洗净、擦干; 6.待观察的试样必须完全吹干,用氢氟酸浸蚀过的试样吹干时间要长些,因 氢氟酸对镜片有严重腐蚀作用。
实验二、金相显微镜的构造与使用
实验目的:
了解金相显微镜的构造; 了解金相显微镜的明场、暗场照明方式及偏光技术。 掌握金相显微镜的使用方法。
一、金相显微镜的构造
光学金相显微镜的构造一般包括光路
系统、放大系统和机械系统三部分。
光路系统
放大系统
显微镜的总放大倍数M = 物镜放大倍数 ╳ 目镜放大倍数
d=
.=nsin
机械系统
载物台 粗调机构 微调机构 物镜转换器
二、显微镜中的偏振光技术
偏振光显微镜的应用
组织与晶粒的显示 多相合金的相分析 非金属夹杂物的鉴别 塑性变形、择优取向的测定
三.实验内容
利用多媒体教学软件理解金相显微镜的原理、构造、 使用与维护;
反复练习显微镜的聚焦,直到熟练掌握; 反复改变孔镜光阑,视场光阑的大小。加或不加滤光
实验四、晶粒尺寸的测定
实验目的 1.熟悉用定量金相方法测定晶粒尺寸; 2.学会用测微尺来换算晶粒尺寸的大小。
实验内容 借助测微尺测量单相或两相合金的晶粒 尺寸(在同一倍数下)。
L=
测微尺的使用
测微目镜
测微尺
实验步骤
1.借助测微尺对测微目镜进行标定; 2.每人需在不同视场测出三个以上数据; 3.整理全部实验原始数据,按所设计的表格
片,观察同一视场映象的清晰程度; 将同一试样分别放在显微镜的明场和暗场照明方式下
进行对比观察; 将同一试样分别放在显微镜的明场和偏光方式下进行
对比观察; 按照实验报告要求完成实验报告
在操作光学金相显微镜时应注意
1.操作者的手必须洗净擦干,并保持环境的清洁、干燥; 2.用低压钨丝灯泡作光源时,接通电源必须通过变压器,切不可误接在220V