九年级数学圆的确定
沪科版数学九年级下册《圆的确定》教学设计2

沪科版数学九年级下册《圆的确定》教学设计2一. 教材分析《圆的确定》是沪科版数学九年级下册的一章内容,主要介绍了圆的定义、圆的性质以及圆的标准方程。
本章节内容在学生的数学知识体系中占据着重要的地位,是为后续学习解析几何和高等数学打下基础的关键章节。
本节课的教学内容不仅要求学生掌握圆的基本概念和性质,还要培养学生运用数学知识解决实际问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了平面几何的基本知识,对图形的性质和变换有一定的了解。
但学生在理解圆的概念和性质方面可能存在一定的困难,尤其是圆的确定方法和相关方程的推导。
因此,在教学过程中,教师需要关注学生的学习情况,针对学生的薄弱环节进行有针对性的教学。
三. 教学目标1.理解圆的定义和性质,掌握圆的标准方程。
2.培养学生运用数学知识解决实际问题的能力。
3.提高学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.圆的定义和性质的理解。
2.圆的标准方程的推导和应用。
3.运用数学知识解决实际问题。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究圆的性质和方程。
2.利用多媒体辅助教学,直观展示圆的性质和图形的变换。
3.采用小组合作学习,培养学生团队合作和交流表达能力。
4.注重实践操作,让学生通过动手操作加深对圆的理解。
六. 教学准备1.多媒体教学设备。
2.圆的相关模型和教具。
3.练习题和案例材料。
七. 教学过程1.导入(5分钟)利用多媒体展示实际生活中的圆形物体,如地球、篮球等,引导学生关注圆形的特征。
提问:你们对这些圆形物体有什么了解?从而引出圆的定义和性质。
2.呈现(10分钟)介绍圆的定义和性质,通过多媒体动画展示圆的生成过程,让学生直观理解圆的特征。
同时,呈现圆的标准方程,让学生初步了解圆的方程形式。
3.操练(10分钟)学生分组讨论,根据圆的性质和方程,尝试解决一些实际问题。
如给定圆的半径和圆心,求解圆的方程;或根据实际问题,确定圆的参数。
九年级数学上册圆的知识点总结

九年级数学上册圆的知识点总结一、圆的概念1.圆的定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆(或圆可以看做是所有到定点O的距离等于定长r的点的集合)。
2.圆心O、半径r、直径d:使圆上任意一点与定点O的距离等于r的动点O叫做圆心,连接圆心与圆上任意一点的线段叫做半径,圆心O与定点A之间的距离叫做直径。
二、圆的性质1.在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等,所对的弦的弦心距相等。
2.在同圆或等圆中,同弧等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。
3.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。
4.圆内接四边形的对角互补。
三、垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
四、圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半;在同圆或等圆中,同弧等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。
五、点和圆的三种位置关系设⊙O的半径为r,点P到圆心的距离OP=d,则有:1.d>r 点P在⊙O外;2.d=r 点P在⊙O上;3.d<r 点P在⊙O内。
六、直线和圆的三种位置关系设⊙O的半径为r,圆心O到直线l的距离为d,则有:1.d>r 直线l与⊙O相离;2.d=r 直线l与⊙O相切;3.d<r 直线l与⊙O相交。
七、正多边形和圆各边相等,各内角都相等的多边形叫做正多边形。
在平面内,各边相等,各内角也都相等的多边形叫做正多边形。
正多边形的外接圆的半径叫做半径;正多边形的中心叫做中心;正多边形的内切圆的半径叫做内心;正多边形的一组邻边的垂直平分线的交点叫做中心。
正n边形的中心角公式:360°/n;正n边形一条边的长度公式:2rsin(180°/n)。
北师大版九年级数学下册第三章3.5确定圆的条件课件(共28张PPT)

判断:
1、经过三点一定可以作圆。(× )
2、三角形的外心就是这个三角形两边垂直平分 线的交点。(√ )
3、三角形的外心到三边的距离相等。(× )
4、等腰三角形的外心一定在这个三角形内。 (×)
1、某一个城市在一块空地新建了三个 居民小区,它们分别为A、B、C,且三个 小区不在同一直线上,要想规划一所中学,
书P125 练习
小结:
课后日记: 今天学了什么:___________ 今天的收获是:______________ 有不明白的地方吗?_______ 它是:_________________
A
如图:⊙O是△ABC的
外接圆, △ABC是⊙O
的内接三角形,点O是
O C △ABC的外心
B
外心是△ABC三条边的垂
直平分线的交点,它到三角
形的三个顶点的距离相等。
如图,请找出图中圆的圆 心,并写出你找圆心的方法?
A
O C
B
画出过以下三角形的顶点的圆
A
O ●
B
C
(图一)
A
O ●
┐
B
C
(图二)
A O ●
(1)只有确定了圆心和圆的半径,这个圆的位 置和大小才唯一确定。
(2)经过一个已知点能作无数个圆!
(3)经过两个已知点A、B能作无数个圆!这 些圆的圆心在线段AB的垂直平分线上。
(4)不在同一直线上的三个点确定一个圆。
(5)外接圆,外心的概念。
巩固新知 应用新知
2、如图,
一 根 5m 长 的 绳
于直角三角形斜边中点,钝角三角形的外心位于三角形外.
老师期望:
作三角形的外接圆是必备基本技能,定要熟练掌握.
九年级数学圆的知识点

九年级数学圆的知识点在九年级的数学学习中,圆是一个重要的概念。
掌握圆的基本知识点对于学生正确理解和应用数学知识至关重要。
本文将介绍九年级数学圆的知识点,包括圆的定义、性质、公式以及与圆相关的几何图形等。
让我们一起来详细了解吧。
1. 圆的定义在九年级数学中,我们定义圆为平面上到一个固定点距离相等的所有点的集合。
这个固定点叫做圆心,到圆心的距离叫做半径。
圆由圆心和半径唯一确定。
2. 圆的性质- 半径相等的两个圆是相等的。
- 圆上任意两点到圆心的距离相等。
- 圆的直径是通过圆心的一条线段,它的长度是半径的两倍。
- 圆的周长是圆周长的一半,用公式C = 2πr表示,其中C表示周长,r表示半径。
- 圆的面积由公式A = πr²给出,其中A表示面积。
3. 圆与直线的关系- 圆内的点到圆心的距离小于半径,称为圆内部的点;到圆心的距离等于半径,称为圆上的点;到圆心的距离大于半径,称为圆外的点。
- 切线是与圆只有一个交点的直线。
- 弦是连接圆上两点的线段。
直径是一种特殊的弦,它通过圆心。
- 弧是圆上的一段弯曲的部分。
4. 弧与角的关系- 弧长是弧上的一段长度。
圆的弧长公式为L = 2πr,其中L表示弧长,r表示半径。
- 圆心角是以圆心为顶点的角,它所对的弧长是整个圆的弧长的一部分。
- 弦与其所对的弧所夹的圆心角相等。
5. 圆与其他几何图形的关系- 正方形的内接圆是正方形内接圆周围的正方形。
- 正方形的外接圆是正方形外接圆周围的正方形。
- 直角三角形的内切圆是三角形内接圆周围的圆。
- 直角三角形的外接圆是三角形外接圆周围的圆。
除了上述的知识点,还有关于圆的弦的性质、圆与切线的性质、圆的切线与切点定理、切线长的性质等内容需要学生在九年级进行深入的学习和理解。
通过掌握圆的相关知识点,可以帮助学生在解决几何问题、计算圆的周长和面积等方面得到更好的应用。
总结起来,九年级的数学圆的知识点主要包括圆的定义、性质、公式以及圆与其他几何图形的关系等。
沪科版数学九年级下册24.2.4圆的确定优秀教学案例

5.作业小结:设计具有针对性的作业,让学生巩固所学知识,提高学生的应用能力。同时,引导学生对作业进行自我检查和修改,培养学生的自主学习和自我纠错的能力。教师对学生的作业进行批改和评价,及时了解学生的学习情况,为下一步教学提供参考。
3.引导学生通过观察、操作、思考等途径,自主探索圆的确定方法,提高学生的解决问题的能力。
(三)小组合作
1.组织学生进行小组讨论,共同探讨圆的确定方法,培养学生的合作意识和团队精神。
2.设计具有挑战性的任务,让学生在合作中共同解决问题,提高学生的综合运用知识的能力。
3.鼓励学生相互倾听、交流、反馈,培养学生的沟通能力和批判性思维。
在教学过程中,我以生活实例导入,让学生思考在实际生活中如何确定一个圆的位置和大小。接着,我引导学生通过观察和动手操作,发现圆的确定方法。在学生理解圆的确定方法后,我设计了一系列练习题,让学生在实际问题中运用所学知识,巩固和提高对圆的确定的理解。
在教学过程中,我注重启发式教学,引导学生主动探究、积极思考,从而达到理解圆的确定的目的。同时,我关注学生的个体差异,根据学生的实际情况给予有针对性的指导,使他们在原有基础上得到提高。通过本节课的学习,学生不仅掌握了圆的确定方法,而且培养了学生的空间想象能力和逻辑思维能力,为后续学习打下了坚实的基础。
5.注重启发式教学,引导学生主动探究、积极思考,从而达到理解圆的确定的目的。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣和好奇心,激发学生学习数学的内在动力。
2.引导学生感受数学与实际生活的紧密联系,提高学生运用数学知识解决实际问题的意识。
数学九年级下册圆的知识点

数学九年级下册圆的知识点圆是数学几何中的一个重要概念,广泛应用于各个领域。
在九年级的数学学习中,我们将更加深入地学习圆的相关知识。
本文将围绕圆的定义、性质、公式和应用等方面展开详细介绍。
一、圆的定义在数学中,圆是由平面上到一个固定点距离相等的所有点组成的图形。
其中,距离固定点最远的点称为圆的半径,固定点称为圆心。
圆心与圆上任意一点之间的线段称为半径。
二、圆的性质1. 圆的半径相等性质:圆上任意两点间的线段都是半径,且长度相等。
2. 圆的直径性质:圆的直径是圆上任意两点的连线,且长度是半径的两倍。
3. 圆的弦性质:圆上的弦分为等弦和不等弦两种。
等弦对应的弦长相等,而不等弦对应的弦长不相等。
4. 圆的切线性质:过圆上一点可以作无数条切线,这些切线与以该点为顶点的两条切线相等,且相互垂直。
三、圆的公式1. 圆的周长公式:圆的周长称为圆周长,通常用C表示,公式为C = 2πr,其中r为圆的半径,π取近似值3.14。
2. 圆的面积公式:圆的面积称为圆面积,通常用A表示,公式为A = πr²,其中r为圆的半径,π取近似值3.14。
四、圆的应用1. 圆的运动学应用:在物理学中,圆的运动学应用非常广泛,例如机械运动中的回转运动、行星围绕太阳的椭圆轨道等。
2. 圆的建筑应用:在建筑学中,圆被广泛应用于设计和构建中,例如建筑物中的圆形窗户、圆形拱门等。
3. 圆的电子应用:在电子工程中,圆被广泛应用于电路板设计、天线设计等领域。
4. 圆的地理应用:在地理学中,圆被用于表示地球的形状,地球是近似于一个球体。
总结:在数学九年级下册中,我们系统学习了圆的定义、性质、公式和应用等知识点。
掌握了这些知识,我们能够更好地理解圆的特性,应用于各种实际问题中。
通过灵活运用圆的相关知识,我们可以提高解决问题的能力和思维能力,为今后的数学学习打下坚实的基础。
2.3 确定圆的条件 教案-苏科版九年级数学上册

2.3 确定圆的条件教案-苏科版九年级数学上册
一、教学目标
1.了解圆的定义和性质;
2.掌握圆的常识和圆的元素的特点;
3.能够根据给定的条件确定圆。
二、教学重点
1.圆的定义和性质;
2.圆的元素的特点。
三、教学难点
1.根据给定的条件确定圆。
四、教学准备
1.教学课件和投影仪;
2.学生作业本和练习题。
五、教学过程
1. 导入
首先通过展示多种圆形的图片,引出本课的话题——圆。
让学生讨论圆的形状、特点和应用领域。
2. 引入
在第一部分中,我们了解到如果在平面上取一个点,并以该点为圆心,以一定的长度为半径作圆,那么这个平面范围内的所有点与圆心的距离都相等。
这个几何图形就是圆。
3. 圆的定义和性质
1.请同学们读一读关于圆的定义。
圆是平面上的一个点到另一个点的距离固定且小于这个固定值的所有点的集合。
2.根据定义可知,圆有以下性质:
–圆的边界叫做圆周;
–圆周上任意两点与圆心的距离相等;
–圆周的中心即为圆心。
4. 圆的元素
1.圆心:圆的中心点,用字母。
北师大版九年级下册数学第12讲《圆的有关概念及圆的确定》知识点梳理

北师大版九年级下册数学第 12 讲《圆的有关概念及圆的确定》知识点梳理【学习目标】1.知识目标:理解圆的描述概念和圆的集合概念;理解半径、直径、弧、弦、弦心距、圆心角、同心圆、等圆、等弧的概念;经历探索点与圆的位置关系的过程,会运用点到圆心的距离与圆的半径之间的数量关系判断点与圆的位置关系;了解不在同一直线上的三点确定一个圆,了解三角形的外接圆、三角形的外心、圆的外接三角形的概念.2.能力目标:能应用圆半径、直径、弧、弦、弦心距的关系,进行计算或证明;会过不在同一直线上的三点作圆.3.情感目标:在确定点和圆的三种位置关系的过程中体会用数量关系来确定位置关系的方法,逐步学会用变化的观点及思想去解决问题,养成学生之间发现问题、探讨问题、解决问题的习惯.【要点梳理】要点一、圆的定义1.圆的描述概念如图,在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 随之旋转所形成的图形叫做圆,固定的端点O 叫做圆心,线段OA 叫做半径. 以点O 为圆心的圆,记作“⊙O”,读作“圆O”.要点诠释:①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;②圆是一条封闭曲线.2.圆的集合概念圆心为O,半径为r 的圆是平面内到定点O 的距离等于定长r 的点的集合.平面上的一个圆,把平面上的点分成三类:圆上的点,圆内的点和圆外的点.圆的内部可以看作是到圆心的距离小于半径的的点的集合;圆的外部可以看成是到圆心的距离大于半径的点的集合.要点诠释:①定点为圆心,定长为半径;②圆指的是圆周,而不是圆面;③强调“在一个平面内”是非常必要的,事实上,在空间中,到定点的距离等于定长的点的集合是球面,一个闭合的曲面.P rPrPr要点二、点与圆的位置关系点和圆的位置关系有三种:点在圆内,点在圆上,点在圆外.若⊙O 的半径为r,点P 到圆心O 的距离为d,那么:点P 在圆内⇔d <r ;点P 在圆上⇔d=r;点P 在圆外⇔d >r.“⇔”读作“等价于”,它表示从左端可以推出右端,从右端也可以推出左端.要点诠释:点在圆上是指点在圆周上,而不是点在圆面上;要点三、与圆有关的概念1.弦弦:连结圆上任意两点的线段叫做弦.直径:经过圆心的弦叫做直径.弦心距:圆心到弦的距离叫做弦心距.要点诠释:直径是圆中通过圆心的特殊弦,也是圆中最长的弦,即直径是弦,但弦不一定是直径.为什么直径是圆中最长的弦?如图,AB 是⊙O 的直径,CD 是⊙O 中任意一条弦,求证:AB≥CD.证明:连结OC、OD∵AB=AO+OB=CO+OD≥CD(当且仅当CD 过圆心O 时,取“=”号)∴直径AB 是⊙O 中最长的弦.2.弧弧:圆上任意两点间的部分叫做圆弧,简称弧.以A、B 为端点的弧记作,读作“圆弧AB”或“弧AB”.半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆;优弧:大于半圆的弧叫做优弧;劣弧:小于半圆的弧叫做劣弧.要点诠释:①半圆是弧,而弧不一定是半圆;②无特殊说明时,弧指的是劣弧.3.等弧在同圆或等圆中,能够完全重合的弧叫做等弧.要点诠释:①等弧成立的前提条件是在同圆或等圆中,不能忽视;②圆中两平行弦所夹的弧相等.4.同心圆与等圆圆心相同,半径不等的两个圆叫做同心圆.圆心不同,半径相等的两个圆叫做等圆.要点诠释:同圆或等圆的半径相等.5.圆心角顶点在圆心的角叫做圆心角.要点诠释:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,反之也成立.要点四、确定圆的条件(1)经过一个已知点能作无数个圆;(2)经过两个已知点A、B 能作无数个圆,这些圆的圆心在线段AB 的垂直平分线上;(3)不在同一直线上的三个点确定一个圆.(4)经过三角形各个顶点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,这个三角形叫做圆的内接三角形.如图:⊙O 是△ABC 的外接圆,△ABC 是⊙O 的内接三角形,点O 是△ABC 的外心.外心的性质:外心是△ABC 三条边的垂直平分线的交点,它到三角形的三个顶点的距离相等.要点诠释:(1)不在同一直线上的三个点确定一个圆.“确定”的含义是“存在性和唯一性”.(2)只有确定了圆心和圆的半径,这个圆的位置和大小才唯一确定.【典型例题】类型一、圆的定义1.(2014 秋•邳州市校级月考)如图所示,BD,CE 是△ABC 的高,求证:E,B,C,D 四点在同一个圆上.【思路点拨】要证几个点在同一个圆上,就是证明这几个点到同一点的距离都相等即可.【答案与解析】证明:如图所示,取BC 的中点F,连接DF,EF.∵BD,CE 是△ABC 的高,∴△BCD 和△BCE 都是直角三角形.∴DF,EF 分别为Rt△BCD 和Rt△BCE 斜边上的中线,∴DF=EF=BF=CF.∴E,B,C,D 四点在以F 点为圆心,BC 为半径的圆上.【总结升华】要证几个点在同一个圆上,只能依据圆的定义,去说明这些点到平面内某一点的距离相等.举一反三:【变式】平行四边形的四个顶点在同一圆上,则该平行四边形一定是()A.正方形B.菱形C.矩形D.等腰梯形【答案】C.2.爆破时,导火索燃烧的速度是每秒0.9cm,点导火索的人需要跑到离爆破点120m 以外的安全区域.这个导火索的长度为18cm,那么点导火索的人每秒钟跑6.5m 是否安全?【思路点拨】计算在导火索燃烧完的时间内人跑的距离与120m比较.【答案与解析】∵导火索燃烧的时间为18=2(0s)0.9相同时间内,人跑的路程为20×6.5=130(m)∴人跑的路程为130m>120m,∴点导火索的人安全.【总结升华】爆破时的安全区域是以爆破点为圆心,以120m为半径的圆的外部,如图所示.类型二、圆的有关计算3.已知,点P 是半径为5 的⊙O 内一点,且OP=3,在过点P 的所有的⊙O 的弦中,弦长为整数的弦的条数为( )A.2B.3C.4D.5【思路点拨】在一个圆中,过一点的最长弦是经过这一点的直径,最短的弦是经过这一点与直径垂直的弦.【答案】C.【解析】作图,过点P 作直径AB,过点P 作弦,连接OC则OC=5,CD=2PC,由勾股定理,得,∴CD=2PC=8,又∵AB=10,∴过点P 的弦长的取值范围是,弦长的整数解为8,9,10,根据圆的对称性,弦长为9 的弦有两条,所以弦长为整数的弦共4 条.故选C.【总结升华】利用垂径定理来确定过点P 的弦长的取值范围.根据圆的对称性,弦长为9 的弦有两条,容易漏解. 举一反三:【变式】平面上的一个点到圆的最小距离是4cm,最大距离是9cm,则圆的半径是().A.2.5cmB.6.5cmC. 2.5cm 或6.5cmD. 5cm 或13cm【答案】C.类型三、确定圆的条件的有关作图与计算4.已知:不在同一直线上的三点A、B、C,求作:⊙O 使它经过点A、B、C.【思路点拨】作圆的关键是找圆心得位置及半径的大小,经过两点的圆的圆心一定在连接这两点的线段的垂直平分线上,进而可以作出经过不在同一直线上的三点的圆.【解析】作法:1、连结AB,作线段AB 的垂直平分线MN;2、连接AC,作线段AC 的垂直平分线EF,交MN 于点O;3、以O 为圆心,OB 为半径作圆.所以⊙O 就是所求作的圆.【总结升华】通过这个例题的作图可以作出锐角三角形的外心(图一),直角三角形的外心(图二),钝角三角形的外心(图三).探究各自外心的位置.52 - 42【变式】(2015•江干区二模)给定下列图形可以确定一个圆的是( )A .已知圆心B .已知半径C .已知直径D .不在同一直线上的三个点【答案】D.提示:A 、已知圆心只能确定圆的位置不能确定圆的大小,故错误;B 、C 、已知圆的半径和直径只能确定圆的大小并不能确定圆的位置,故错误;D 、不在同一直线上的三点确定一个圆,故正确,故选 D .5. 如图,⊙O 的直径为 10,弦 AB=8,P 是弦 AB 上的一个动点,那么 OP 的长的取值范围是 .【思路点拨】求出符合条件的 OP 的最大值与最小值.【答案】3≤OP ≤5.【解析】OP 最长边应是半径长,为 5;根据垂线段最短,可得到当 OP ⊥AB 时,OP 最短.∵直径为 10,弦 AB=8∴∠OPA=90°,OA=5,由圆的对称性得 AP=4,由勾股定理的 OP= = 3 ,∴OP 最短为 3.∴OP 的长的取值范围是 3≤OP ≤5.【总结升华】关键是知道 OP 何时最长与最短.举一反三:【变式】已知⊙O 的半径为 13,弦 AB=24,P 是弦 AB 上的一个动点,则 OP 的取值范围是.【答案】 OP 最大为半径,最小为 O 到 AB 的距离.所以 5≤OP ≤13.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
尝试与交流 过如下三点能不能做圆? 为什么?
A B C
不在同一直线上的三点确定一个圆
牛刀小试
1.将一个如图所示的破 损的圆盘复原了吗?
方法: 1、在圆弧上任取三点A、 B、C。 2、作线段AB、BC的垂 直平分线,其交点O即为 圆心。 3、以点O为圆心,OC 长为半径作圆。 ⊙O即为所求。
A
B
C
构成圆的基本要素有那些?
o r
两个条件: 圆心 半径
那么我们又如何画圆呢?
1、过一点可以作几条直线? 2、过几点可确定一条直线?
过几点可以确定一个圆呢?
1、过一点作圆
过一点可以作无数个圆
2.过两个点作圆
过两个点可以作无数个圆 圆心在什么位置呢?
经过三个点A、B、C能确定 一个圆吗?
Hale Waihona Puke A假设经过A、B、C三点 N F 的⊙O存在 (1)圆心O到A、B、C三 C O E M 点距离 相等 (填“相等” B 或”不相等”)。 (2)连结AB、AC,过O点 分别作直线MN⊥AB, EF⊥AC,则MN是AB 的 垂直平分线 ;EF是AC的 垂直平分线 。 (3)AB、AC的中垂线的交点O到B、C的距 离 相等 。
2.书 练习
1、某一个城市在一块空地新建了三个 居民小区,它们分别为A、B、C,且三个 小区不在同一直线上,要想规划一所中学, 使这所中学到三个小区的距离相等。请问 同学们这所中学建在哪个位置?你怎么确 定这个位置呢?
●
A
●
B
●
C
学到了什么
(1)只有确定了圆心和圆的半径,这个圆的位 置和大小才唯一确定。
(2)经过一个已知点能作无数个圆! (3)经过两个已知点A、B能作无数个圆!这 些圆的圆心在线段AB的垂直平分线上。 (4)不在同一直线上的三个点确定一个圆。 (5)外接圆,外心的概念。
O
点和圆的位置关系有几种?
(1)d<r (2)d=r 点在圆内 点在圆上
(3)d>r
点在圆外
2.已知△ABC,用直尺与圆规作出过A、B、C 三点的圆
已知△ABC,用直尺和圆 规作出过点A、B、C的圆
已知△ABC,用直尺和 圆规已知△ABC,用直 尺和圆规作出过点A、 B、C的圆 作出过点A、B、C的圆
A
O
C
B
走进生活
图中工具的CD边所在直线恰好垂直平分 AB边,怎样用这个工具找出一个圆的圆心。 A
B
· 圆心
C
D
练一练
1.下列命题不正确的是
A.过一点有无数个圆.
C.弦是圆的一部分.
B.过两点有无数个圆.
D.过同一直线上三点不能画圆.
2.三角形的外心具有的性质是
A.到三边的距离相等. C.外心在三角形的外. B.到三个顶点的距离相等. D.外心在三角形内.