半导体制造基本概念

合集下载

半导体器件的基本知识

半导体器件的基本知识

半导体器件的基本知识半导体器件的基本知识,真是个神奇的世界。

咱们常常提到“半导体”,脑海里浮现出那些小小的芯片,觉得它们离我们有点遥远。

其实,半导体就在我们身边,像个无形的助手,让生活变得更加便利。

一、半导体的基本概念1.1 半导体是什么?半导体,简单来说,就是一种介于导体和绝缘体之间的材料。

它们在某些条件下能导电,在其他情况下又不导电。

是不是听上去有点神秘?其实,最常见的半导体材料就是硅。

我们用的手机、电脑,里面的处理器,几乎都离不开硅的身影。

1.2 半导体的特性半导体有很多奇妙的特性,比如它的电导率。

温度变化、杂质掺入,都会影响它的导电性能。

说白了,半导体的电性就像人心一样,瞬息万变。

通过控制这些特性,工程师们可以设计出各种各样的电子器件。

二、半导体器件的类型2.1 二极管咱们来聊聊二极管。

这小家伙看似简单,却是半导体世界的基石。

二极管只允许电流朝一个方向流动。

它就像个单行道,确保电流不走回头路。

常见的应用就是整流器,把交流电转成直流电。

这在生活中非常重要,大家用的手机充电器,就离不开二极管的帮助。

2.2 晶体管接下来是晶体管。

晶体管的发明可谓是科技界的一场革命。

它不仅能放大电信号,还能用作开关,控制电流的流动。

晶体管的出现,让电子产品变得更小、更快。

你知道吗?现代计算机的核心,CPU,里面就有成千上万的晶体管在默默工作。

2.3 其他器件还有很多其他的半导体器件,比如场效应管、光电二极管等。

每种器件都有其独特的用途和应用领域。

它们一起构成了一个复杂而又和谐的生态系统。

可以说,半导体器件的多样性是现代科技发展的动力。

三、半导体的应用3.1 消费电子说到应用,咱们首先想到的就是消费电子。

手机、平板、电视,都是半导体的舞台。

随着科技的进步,半导体技术不断演变,产品功能越来越强大,性能越来越高。

可以说,半导体让我们的生活变得丰富多彩。

3.2 工业应用除了消费电子,半导体在工业中也大显身手。

自动化设备、传感器、控制系统,全都依赖于半导体技术的支持。

半导体基本理论简述

半导体基本理论简述
退出
3. 扩散和漂移达到动态平衡
扩散电流 等于漂移电流,
总电流 I = 0。
• 扩散运动:物质从浓度高的地方向浓度低的地方运动, 这种由于浓度差而产生的运动,称为扩散运动。
• 漂移运动:在电场力的作用下,载流子的运动称为漂 移运动。
2.2 PN 结的单向导电性
1. 外加正向电压(正向偏置) — forward bias
退出
1.半导体基本概念
• 本征半导体(Intrinsic crystal) :纯净、结构完整、 热力学温度T=0 K时没有自由电子的半导体。
• 晶格:晶体中的原子在空间形成排列整齐的点阵, 称为晶格。 以共用电子的形式,形成共价键结构。
稳定的共价键
退出
1.半导体基本概念
• 本征激发:在常温下受热引起电子激发的现象。 • 载流子:本征激发产生自由电子,共价结构中留
退出
空穴和电子产生过程
退出
1.半导体基本概念
• 半导体的导电性: 掺杂性、热敏性、光敏性 • 根据掺入不同的杂质(Doping),可生成N型和P型
两类半导体
– N型半导体:在本征半导体中掺入五价元素(如磷、锑) 后会出现多余电子,从而形成以自由电子为主的载流子, 空穴为少数载流子,这种半导体叫做N型半导体。
续扩散,形成电流,称为正向偏置电压,如图所示:
退出
PN结加反向电压——反向截止
• 如果外加电场与内电场方向相同,使内电场加强(耗尽层变 宽),进一步阻止载流子的扩散,阻止电流的形成,即反向 偏置电压的情况,如图所示:
退出
5-1 半导体基本理论简述
主要内容
1. 半导体基本概念 2. PN结与单向导电性
小结
退出
1.半导体基本概念

半导体知识点总结大全

半导体知识点总结大全

半导体知识点总结大全引言半导体是一种能够在一定条件下既能导电又能阻止电流的材料。

它是电子学领域中最重要的材料之一,广泛应用于集成电路、光电器件、太阳能电池等领域。

本文将对半导体的知识点进行总结,包括半导体基本概念、半导体的电子结构、PN结、MOS场效应管、半导体器件制造工艺等内容。

一、半导体的基本概念(一)电子结构1. 原子结构:半导体中的原子是由原子核和围绕原子核轨道上的电子组成。

原子核带正电荷,电子带负电荷,原子核中的质子数等于电子数。

2. 能带:在固体中,原子之间的电子形成了能带。

能带在能量上是连续的,但在实际情况下,会出现填满的能带和空的能带。

3. 半导体中的能带:半导体材料中,能带又分为价带和导带。

价带中的电子是成对出现的,导带中的电子可以自由运动。

(二)本征半导体和杂质半导体1. 本征半导体:在原子晶格中,半导体中的电子是在能带中的,且不受任何杂质的干扰。

典型的本征半导体有硅(Si)和锗(Ge)。

2. 杂质半导体:在本征半导体中加入少量杂质,形成掺杂,会产生额外的电子或空穴,使得半导体的导电性质发生变化。

常见的杂质有磷(P)、硼(B)等。

(三)半导体的导电性质1. P型半导体:当半导体中掺入三价元素(如硼),形成P型半导体。

P型半导体中导电的主要载流子是空穴。

2. N型半导体:当半导体中掺入五价元素(如磷),形成N型半导体。

N型半导体中导电的主要载流子是自由电子。

3. 载流子浓度:半导体中的载流子浓度与掺杂浓度有很大的关系,载流子浓度的大小决定了半导体的电导率。

4. 质量作用:半导体中载流子的浓度受温度的影响,其浓度与温度成指数关系。

二、半导体器件(一)PN结1. PN结的形成:PN结是由P型半导体和N型半导体通过扩散结合形成的。

2. PN结的电子结构:PN结中的电子从N区扩散到P区,而空穴从P区扩散到N区,当N区和P区中的载流子相遇时相互复合。

3. PN结的特性:PN结具有整流作用,即在正向偏置时具有低电阻,反向偏置时具有高电阻。

半导体专业术语培训内容总结报告

半导体专业术语培训内容总结报告

半导体专业术语培训内容总结报告半导体作为当今高科技产业的基础,已经成为了现代社会的重要组成部分,对人们的生活和经济发展起到了重大的促进作用。

在这样的大背景下,对半导体专业人士的培训和专业术语的掌握显得尤为重要。

以下是半导体专业术语培训内容总结报告:一、半导体基本概念1. 半导体:半导体是一类介于导体和绝缘体之间的材料,它的导电性介于导体和绝缘体之间,可以进行控制电子流动的状态。

2. 晶体:晶体是一种具有空间有序性的固体,具有特定的结构和性能,晶体的结构是一定的重复单元构成。

3. 常见材料:硅材料、氮化硅、氮化镓、氮化铝等。

二、半导体器件1. PN结:PN结是PN电池中特殊的半导体器件,它是由N型半导体和P型半导体连接而成的。

2. 二极管:二极管是一种只能允许电流向一个方向流动的器件。

3. 三极管:三极管是一种电子管,是现代电子中最重要的半导体器件之一。

4. 场效应晶体管:场效应晶体管是一种半导体器件,是半导体器件中使用最广泛的器件。

5. 金属氧化物半导体场效应晶体管:MOSFET是一种常用的半导体器件,是今天数字电子技术的基础。

6. 双极性型晶体管:BJT是一种晶体管,除了放大电子信号之外,还能够正向和反向控制电路中的电流。

三、半导体制造工艺1. 晶圆制造过程包括:晶圆的锯齿切割、切割污染去除、研磨和激光切割等。

2. 电镀过程:电镀是通过将金属置于溶液中电解的方法将金属沉积到半导体表面上,起着增强金属与半导体附着强度的作用。

3. 氧化工艺:氧化工艺是通过加热将半导体浸入氧气环境中产生氧化层,起着保护半导体和增加附着力的作用。

4. 掩模制作工艺:半导体制造中的掩模制作工艺是通过控制光的透过与反射来制定掩膜,起到保护和刻蚀半导体的作用。

以上就是半导体专业术语培训的内容总结报告,希望对您有所帮助。

半导体的基本知识

半导体的基本知识

半导体的基本知识半导体是一种电导率介于导体和绝缘体之间的材料。

半导体的电性质可以通过施加电场或光照来改变,这使得半导体在电子学和光电子学等领域有广泛的应用。

以下是关于半导体的一些基本知识:1. 基本概念:导体、绝缘体和半导体:导体(Conductor):电导率很高,电子容易通过的材料,如金属。

绝缘体(Insulator):电导率很低,电子很难通过的材料,如橡胶、玻璃。

半导体(Semiconductor):电导率介于导体和绝缘体之间的材料,如硅、锗。

2. 晶体结构:半导体通常以晶体结构存在,常见的半导体材料有硅(Si)、锗(Ge)、砷化镓(GaAs)等。

3. 电子能带:价带和导带:半导体中的电子能带分为价带和导带。

电子在价带中,但在施加电场或光照的作用下,电子可以跃迁到导带中,形成电流。

能隙:价带和导带之间的能量差称为能隙。

半导体的能隙通常较小,这使得它在室温下就能够被外部能量激发。

4. 本征半导体和杂质半导体:本征半导体:纯净的半导体材料,如纯硅。

杂质半导体:在半导体中引入少量杂质(掺杂)以改变其导电性质。

掺入五价元素(如磷、砷)形成n型半导体,而掺入三价元素(如硼、铝)形成p型半导体。

5. p-n 结:p-n 结:将p型半导体和n型半导体通过特定工艺连接在一起形成p-n 结。

这是许多半导体器件的基础,如二极管和晶体管。

6. 半导体器件:二极管(Diode):由p-n 结构构成,具有整流特性。

晶体管(Transistor):由多个p-n 结构组成,可以放大和控制电流。

集成电路(Integrated Circuit,IC):在半导体上制造出许多微小的电子器件,形成集成电路,实现多种功能。

7. 半导体的应用:电子学:微电子器件、逻辑电路、存储器件等。

光电子学:光电二极管、激光二极管等。

太阳能电池:利用半导体材料的光伏效应。

这些是半导体的一些基本知识,半导体技术的不断发展推动了现代电子、通信和计算机等领域的快速进步。

半导体器件物理与工艺笔记

半导体器件物理与工艺笔记

半导体器件物理与工艺笔记半导体器件物理与工艺是一个关于半导体器件的科学领域,主要研究半导体材料的性质、器件的物理原理以及制造工艺等方面的知识。

以下是一些关于半导体器件物理与工艺的笔记:1. 半导体基本概念:- 半导体是指在温度较高时表现出导电性的材料,但在室温下又是非导体的材料。

- 半导体材料有两种类型:N型半导体和P型半导体。

N型半导体是掺杂了电子供体(如磷或砷)的半导体,P型半导体是掺杂了空穴供体(如硼或铝)的半导体。

2. PN结:- PN结是由N型半导体和P型半导体通过扩散而形成的结构。

- 在PN结中,N区的自由电子从N区向P区扩散,而P区的空穴从P区向N区扩散,产生了电子-空穴对的复合,形成正负离子层。

- 在PN结的平衡态下,电子从N区向P区扩散的电流等于空穴从P区向N区扩散的电流,从而形成零电流区域。

3. PN结的运行状态:- 正向偏置:将P区连接到正电压,N区连接到负电压,使PN结变突。

此时,电子从N区向P区流动,空穴从P区向N区流动,形成正向电流。

- 反向偏置:将P区连接到负电压,N区连接到正电压。

此时,电子从P区向N区流动,空穴从N区向P区流动,形成反向电流。

- 断电区:当反向电压超过一定电压(称为击穿电压)时,PN结会进入断电区,电流急剧增加。

4. 半导体器件制造工艺:- 掺杂:在制造半导体器件时,需要将掺杂剂(如磷、硼等)加入到半导体材料中,改变半导体的电子结构,使其成为N型或P型半导体。

- 光刻:通过光刻技术,在半导体材料表面上制作出微小的图案,用于制造电路中的导线和晶体管等元件。

- 氧化:将半导体材料置于高温下与氧气反应,形成一层硅氧化物薄膜,用于对半导体器件进行绝缘和隔离。

- 金属沉积:将金属材料沉积在半导体材料上,用于制造电子元件中的金属电极。

- 焊接:将多个半导体器件通过焊接技术连接在一起,形成电子电路。

这些只是半导体器件物理与工艺的一部分内容,该领域还涉及到更深入的知识和技术。

半导体器件的基本概念和应用有哪些

半导体器件的基本概念和应用有哪些

半导体器件的基本概念和应用有哪些一、半导体器件的基本概念1.半导体的定义:半导体是一种导电性能介于导体和绝缘体之间的材料,常见的有硅、锗、砷化镓等。

2.半导体的导电原理:半导体中的载流子(电子和空穴)在外界条件(如温度、光照、杂质)的影响下,其浓度和移动性会发生变化,从而改变半导体的导电性能。

3.半导体器件的分类:根据半导体器件的工作原理和用途,可分为二极管、三极管、晶闸管、场效应晶体管等。

二、半导体器件的应用1.二极管:用于整流、调制、稳压、开关等电路,如电源整流器、数字逻辑电路、光敏器件等。

2.三极管:作为放大器和开关使用,如音频放大器、数字电路中的逻辑门等。

3.晶闸管:用于可控整流、交流调速、电路控制等,如电力电子设备、灯光调节等。

4.场效应晶体管:主要作为放大器和开关使用,如场效应晶体管放大器、数字逻辑电路等。

5.集成电路:由多个半导体器件组成的微型电子器件,用于实现复杂的电子电路功能,如微处理器、存储器、传感器等。

6.光电器件:利用半导体材料的光电效应,实现光信号与电信号的转换,如太阳能电池、光敏电阻等。

7.半导体存储器:用于存储信息,如随机存储器(RAM)、只读存储器(ROM)等。

8.半导体传感器:将各种物理量(如温度、压力、光照等)转换为电信号,用于检测和控制,如温度传感器、光敏传感器等。

9.半导体通信器件:用于实现无线通信功能,如晶体振荡器、射频放大器等。

10.半导体器件在计算机、通信、家电、工业控制等领域的应用:计算机中的微处理器、内存、显卡等;通信设备中的射频放大器、滤波器等;家电中的集成电路、传感器等;工业控制中的电路控制器、传感器等。

以上就是关于半导体器件的基本概念和应用的详细介绍,希望对您有所帮助。

习题及方法:1.习题:请简述半导体的导电原理。

方法:半导体中的载流子(电子和空穴)在外界条件(如温度、光照、杂质)的影响下,其浓度和移动性会发生变化,从而改变半导体的导电性能。

半导体制造技术ppt

半导体制造技术ppt

半导体制造的环保与安全
05
采用低能耗的设备、优化生产工艺和强化能源管理,以降低能源消耗。
节能设计
利用废水回收系统,回收利用生产过程中产生的废水,减少用水量。
废水回收
采用低排放的设备、实施废气处理技术,以减少废气排放。
废气减排
半导体制造过程中的环保措施
严格执行国家和地方的安全法规
安全培训
安全检查
半导体制造过程的安全规范
将废弃物按照不同的类别进行收集和处理,以便于回收利用。
废弃物处理和回收利用
分类收集和处理
利用回收技术将废弃物进行处理,以回收利用资源。
回收利用
按照国家和地方的规定,将无法回收利用的废弃物进行合法处理,以减少对环境的污染。
废弃物的合法处理
未来半导体制造技术的前景展望
06
新材料
随着人工智能技术的发展,越来越多的半导体制造设备具备了智能化控制和自主学习的能力。
半导体制造设备的最新发展
更高效的生产线
为了提高生产效率和降低成本,各半导体制造厂家正在致力于改进生产线,提高设备的联动性和生产能力。
更先进的材料和工艺
随着科学技术的发展,越来越多的先进材料和工艺被应用于半导体制造中,如石墨烯、碳纳米管等材料以及更为精细的制程工艺。
薄膜沉积
在晶圆表面沉积所需材料,如半导体、绝缘体或导体等。
封装测试
将芯片封装并测试其性能,以确保其满足要求。
半导体制造的基本步骤
原材料准备
晶圆制备
薄膜沉积
刻蚀工艺
离子注入
封装测试
各步骤中的主要技术
制造工艺的优化
通过对制造工艺参数进行调整和完善,提高产品的质量和产量。
制造工艺的改进
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

半导体制造基本概念晶圆(Wafer)晶圆(Wafer)的生产由砂即(二氧化硅)开始,经由电弧炉的提炼还原成冶炼级的硅,再经由盐酸氯化,产生三氯化硅,经蒸馏纯化后,透过慢速分解过程,制成棒状或粒状的「多晶硅」。

一般晶圆制造厂,将多晶硅融解后,再利用硅晶种慢慢拉出单晶硅晶棒。

一支85公分长,重76.6公斤的8?? 硅晶棒,约需2天半时间长成。

经研磨、??光、切片后,即成半导体之原料晶圆片。

光学显影光学显影是在光阻上经过曝光和显影的程序,把光罩上的图形转换到光阻下面的薄膜层或硅晶上。

光学显影主要包含了光阻涂布、烘烤、光罩对准、曝光和显影等程序。

小尺寸之显像分辨率,更在IC 制程的进步上,扮演着最关键的角色。

由于光学上的需要,此段制程之照明采用偏黄色的可见光。

因此俗称此区为黄光区。

干式蚀刻技术在半导体的制程中,蚀刻被用来将某种材质自晶圆表面上移除。

干式蚀刻(又称为电浆蚀刻)是目前最常用的蚀刻方式,其以气体作为主要的蚀刻媒介,并藉由电浆能量来驱动反应。

电浆对蚀刻制程有物理性与化学性两方面的影响。

首先,电浆会将蚀刻气体分子分解,产生能够快速蚀去材料的高活性分子。

此外,电浆也会把这些化学成份离子化,使其带有电荷。

晶圆系置于带负电的阴极之上,因此当带正电荷的离子被阴极吸引并加速向阴极方向前进时,会以垂直角度撞击到晶圆表面。

芯片制造商即是运用此特性来获得绝佳的垂直蚀刻,而后者也是干式蚀刻的重要角色。

基本上,随着所欲去除的材质与所使用的蚀刻化学物质之不同,蚀刻由下列两种模式单独或混会进行:1. 电浆内部所产生的活性反应离子与自由基在撞击晶圆表面后,将与某特定成份之表面材质起化学反应而使之气化。

如此即可将表面材质移出晶圆表面,并透过抽气动作将其排出。

2. 电浆离子可因加速而具有足够的动能来扯断薄膜的化学键,进而将晶圆表面材质分子一个个的打击或溅击(sputtering)出来。

化学气相沉积技术化学气相沉积是制造微电子组件时,被用来沉积出某种薄膜(film)的技术,所沉积出的薄膜可能是介电材料(绝缘体)(dielectrics)、导体、或半导体。

在进行化学气相沉积制程时,包含有被沉积材料之原子的气体,会被导入受到严密控制的制程反应室内。

当这些原子在受热的昌圆表面上起化学反应时,会在晶圆表面产生一层固态薄膜。

而此一化学反应通常必须使用单一或多种能量源(例如热能或无线电频率功率)。

CVD制程产生的薄膜厚度从低于0.5微米到数微米都有,不过最重要的是其厚度都必须足够均匀。

较为常见的CVD薄膜包括有:■二气化硅(通常直接称为氧化层)■氮化硅■多晶硅■耐火金属与这类金属之其硅化物可作为半导体组件绝缘体的二氧化硅薄膜与电浆氮化物介电层(plasmas nitride dielectrics)是目前CVD技术最广泛的应用。

这类薄膜材料可以在芯片内部构成三种主要的介质薄膜:内层介电层(ILD)、内金属介电层(IMD)、以及保护层。

此外、金层化学气相沉积(包括钨、铝、氮化钛、以及其它金属等)也是一种热门的CVD应用。

物理气相沉积技术如其名称所示,物理气相沉积(Physical Vapor Deposition)主要是一种物理制程而非化学制程。

此技术一般使用氩等钝气,藉由在高真空中将氩离子加速以撞击溅镀靶材后,可将靶材原子一个个溅击出来,并使被溅击出来的材质(通常为铝、钛或其合金)如雪片般沉积在晶圆表面。

制程反应室内部的高温与高真空环境,可使这些金属原子结成晶粒,再透过微影图案化(patterned)与蚀刻,来得到半导体组件所要的导电电路。

解离金属电浆(IMP)物理气相沉积技术解离金属电浆是最近发展出来的物理气相沉积技术,它是在目标区与晶圆之间,利用电浆,针对从目标区溅击出来的金属原子,在其到达晶圆之前,加以离子化。

离子化这些金属原子的目的是,让这些原子带有电价,进而使其行进方向受到控制,让这些原子得以垂直的方向往晶圆行进,就像电浆蚀刻及化学气相沉积制程。

这样做可以让这些金属原子针对极窄、极深的结构进行沟填,以形成极均匀的表层,尤其是在最底层的部份。

高温制程多晶硅(poly)通常用来形容半导体晶体管之部分结构:至于在某些半导体组件上常见的磊晶硅(epi)则是长在均匀的晶圆结晶表面上的一层纯硅结晶。

多晶硅与磊晶硅两种薄膜的应用状况虽然不同,却都是在类似的制程反应室中经高温(600℃至1200℃)沉积而得。

即使快速高温制程(Rapid Thermal Processing, RTP)之工作温度范围与多晶硅及磊晶硅制程有部分重叠,其本质差异却极大。

RTP并不用来沈积薄膜,而是用来修正薄膜性质与制程结果。

RTP将使晶圆历经极为短暂且精确控制高温处理过程,这个过程使晶圆温度在短短的10至20秒内可自室温升到1000℃。

RTP通常用于回火制程(annealing),负责控制组件内掺质原子之均匀度。

此外RTP也可用来硅化金属,及透过高温来产生含硅化之化合物与硅化钛等。

最新的发展包括,使用快速高温制程设备在晶极重要的区域上,精确地沉积氧及氮薄膜。

离子植入技术离子植入技术可将掺质以离子型态植入半导体组件的特定区域上,以获得精确的电子特性。

这些离子必须先被加速至具有足够能量与速度,以穿透(植入)薄膜,到达预定的植入深度。

离子植入制程可对植入区内的掺质浓度加以精密控制。

基本上,此掺质浓度(剂量)系由离子束电流(离子束内之总离子数)与扫瞄率(晶圆通过离子束之次数)来控制,而离子植入之深度则由离子束能量之大小来决定。

化学机械研磨技术化学机械研磨技术(Chemical Mechanical Polishing, CMP)兼其有研磨性物质的机械式研磨与酸碱溶液的化学式研磨两种作用,可以使晶圆表面达到全面性的平坦化,以利后续薄膜沉积之进行。

在CMP制程的硬设备中,研磨头被用来将晶圆压在研磨垫上并带动晶圆旋转,至于研磨垫则以相反的方向旋转。

在进行研磨时,由研磨颗粒所构成的研浆会被置于晶圆与研磨垫间。

影响CMP制程的变量包括有:研磨头所施的压力与晶圆的平坦度、晶圆与研磨垫的旋转速度、研浆与研磨颗粒的化学成份、温度、以及研磨垫的材质与磨损性等等。

制程监控在下个制程阶段中,半导体商用CD-SEM来量测芯片内次微米电路之微距,以确保制程之正确性。

一般而言,只有在微影图案(photolithographic patterning)与后续之蚀刻制程执行后,才会进行微距的量测。

光罩检测(Retical Inspection)光罩是高精密度的石英平板,是用来制作晶圆上电子电路图像,以利集成电路的制作。

光罩必须是完美无缺,才能呈现完整的电路图像,否则不完整的图像会被复制到晶圆上。

光罩检测机台则是结合影像扫描技术与先进的影像处理技术,捕捉图像上的缺失。

当晶圆从一个制程往下个制程进行时,图案晶圆检测系统可用来检测出晶圆上是否有瑕疵包括有微尘粒子、断线、短路、以及其它各式各样的问题。

此外,对已印有电路图案的图案晶圆成品而言,则需要进行深次微米范围之瑕疵检测。

一般来说,图案晶圆检测系统系以白光或雷射光来照射晶圆表面。

再由一或多组侦测器接收自晶圆表面绕射出来的光线,并将该影像交由高功能软件进行底层图案消除,以辨识并发现瑕疵。

切割晶圆经过所有的制程处理及测试后,切割成壹颗颗的IC。

举例来说:以0.2 微米制程技术生产,每片八?季г采峡芍谱鹘?六百颗以上的64M DRAM。

封装制程处理的最后一道手续,通常还包含了打线的过程。

以金线连接芯片与导线架的线路,再封装绝缘的塑料或陶瓷外壳,并测试IC功能是否正常。

由于切割与封装所需技术层面比较不高,因此常成为一般业者用以介入半导体工业之切入点。

300mm为协助晶圆制造厂克服300mm晶圆生产的挑战,应用材料提供了业界最完整的解决方案。

不但拥有种类齐全的300mm晶圆制造系统,提供最好的服务与支持组织,还掌握先进制程与制程整合的技术经验;从降低风险、增加成效,加速量产时程,到协助达成最大生产力,将营运成本减到最低等,以满足晶圆制造厂所有的需求。

应用材料的300mm全方位解决方案,完整的产品线为:高温处理及离子植入设备(Thermal Processes and Implant)介质化学气相沉积(DCVD:Dielectric Chemical Vapor Deposition)金属沉积(Metal Deposition)蚀刻(Etch)化学机械研磨(CMP:Chemical Mechanical Polishing)检视与量测(Inspection & Metrology)制造执行系统(MES:Manufacturing Execution System)服务与支持(Service & Support)铜制程技术在传统铝金属导线无法突破瓶颈之情况下,经过多年的研究发展,铜导线已经开始成为半导体材料的主流,由于铜的电阻值比铝还小,因此可在较小的面积上承载较大的电流,让厂商得以生产速度更快、电路更密集,且效能可提升约30-40%的芯片。

亦由于铜的抗电子迁移(electro-migration)能力比铝好,因此可减轻其电移作用,提高芯片的可靠度。

在半导体制程设备供货商中,只有应用材料公司能提供完整的铜制程全方位解决方案与技术,包括薄膜沉积、蚀刻、电化学电镀及化学机械研磨等。

应用材料公司的铜制程全方位解决方案在半导体组件中制造铜导线,牵涉不仅是铜的沉积,还需要一系列完整的制程步骤,并加以仔细规划,以便发挥最大的效能。

应用材料公司为发展铜制程相关技术,已与重要客户合作多年,具有丰富的经验;此外在半导体制程设备所有供货商中,也只有应用材料公司能够提供铜导线结构的完整制程技术,包括薄膜沉积、蚀刻、电化学电镀及化学机械研磨等。

相关文档
最新文档