与三角形的角有关模型之欧阳光明创编
初一下数学拔高题之欧阳光明创编

1、三角形的三个外角中,钝角最多有()。
欧阳光明(2021.03.07)A:1个 B: 2个 C:3 个 D: 4个2、直角三角形两锐角的平分线相交所成的钝角是()。
A:120° B: 135° C:150° D: 165°3、如图所示,在△ABC中,CD、BE分别是AB、AC边上的高,并且CD、BE交于,点P,若∠A=500 ,则∠BPC等于()A、90°B、130°C、270°D、315°4、一个多边形的每一个外角都等于30°,这个多边形的边数是,它的内角和是(第35、如图所示,若∠A=32°,∠B=45°,∠C=38°,则∠DFE等于( )A.120°B.115°C.110°D.105°6、已知等腰三角形的两边长分别为4cm和7cm, 它的周长是_________㎝.7、等腰三角形一腰上的中线将这个等腰三角形的周长分成15和6两部分,则这个等腰三角形的三边长是_________________。
8、若过m边形的一个顶点有7条对角线,n边形没有对角线,k边形有k条对角线,求(m-k)n的值__________。
9、如图,已知∠BOF=120°,则∠A+∠B+∠C+∠D+∠E+∠F=___10、下列正多边形中,与正三角形同时使用能进行镶嵌的是()A.正十二边形B.正十边形C.正八边形D.正五边形11、如图:小明从A 点出发前进10m ,向右转150,,再前进10m ,右转150……这样一直走下去,他第一次回到出发点A 时,一共走了____m.12、过多边形的一个顶点的所有对角线把多边形分成8个三角形,这个多边形的边数是( ) A 、8 B 、9 C 、10 D 、1113、n 边形的每个外角都为24°,则边数n 为( )A 、13B 、14C 、15D 、1614、在△ABC 中,若∠C =2(∠A +∠B ),则∠C =度。
《急就章》释文之欧阳光明创编

重订《急就章》释文欧阳光明(2021.03.07)《急就章》原名《急就篇》,是西汉元帝时命令黄门令史游为儿童识字编的识字课本。
因篇首有“急就”二字而得名。
《急就篇》用不同的字组成三言、四言或七言的韵文,内容涉及姓名、组织、生物、礼乐、职官等各方面,如一部小百科全书。
该文从汉至唐一直是社会流传的主要识字教材,同时,抄写规范精雅的本子也有作为临书范本的功能。
唐代以后,《急就篇》的主导蒙学教材地位方为《百家姓》、《三字经》、《千字文》所代替。
流传至今最早的《急就章》写本传为皇象书,今有刻本流传。
而以明代吉水(今属江西省)杨政于正统四年(1439)时,据宋人叶梦得颍昌本摹刻的为最著名,因刻于松江,故名“松江本”,原石藏松江县博物馆。
此本为章草和楷书各书一行,字形规范,笔力刚健,寓变化于统一,其字结体略扁,各字间均不牵连。
有些笔画下笔尖细,重按后上挑,出锋镰利,形成不规则的三角形,成为其字的重要特点。
此书点画简约、凝重、含蓄,笔意多隶,笔划虽有牵丝,但有法度,字字独立内敛。
横、捺、点画多作波磔,整篇气息古朴、温厚,沉着痛快,纵横自然。
近人沈曾植《海日楼札丛》称:“细玩此书,笔势全注波发,而波发纯是八分笔势,但是唐人八分,非汉人八分。
”此帖对后世影响甚大,至今仍为古章草的代表作品,亦是公认的章草范本之一。
皇象,字体明,广陵江都人。
官至青州刺史。
三国吴著名书法家。
善八分,小篆,尤善章草。
其章草妙入神品。
他的草书与曹不兴绘画,严武的围棋等并称“八绝。
”《急就章》是古代的识字课本,以皇象写本最早。
前人对皇象书法评价甚高,唐张怀瑾曰:“右军隶书,以一形而众相,万字皆别;休明章草,相众而形一,万字皆同,各造其极。
”可见他创造了“相众而形一”的书风,在书法史上有重要意义。
本人认为,皇象书《急就章》是一行章草,一行楷书,可见《辞海》说,章草是由隶书演变而成是错误的。
章草实是楷书的速写体。
拓片第50幅最末一行书“汉黄门令史游次记”,皇象认为他是代替西汉元帝时黄门令史游写的《急就章》。
七年级三角形四大模型之欧阳体创编

2016年01月07日liwei的初中数学组卷一.选择题(共5小题)1.(2015春•扬中市校级期末)如图1,一副三角板的两个直角重叠在一起,∠A=30°,∠C=45°△COD固定不动,△AOB 绕着O点逆时针旋转α°(0°<α<180°)(1)若△AOB绕着O点旋转图2的位置,若∠BOD=60°,则∠AOC=;(2)若0°<α<90°,在旋转的过程中∠BOD+∠AOC的值会发生变化吗?若不变化,请求出这个定值;(3)若90°<α<180°,问题(2)中的结论还成立吗?说明理由;(4)将△AOB绕点O逆时针旋转α度(0°<α<180°),问当α为多少度时,两个三角形至少有一组边所在直线垂直?(请直接写出所有答案).2.(2014•赤峰)如图1,E是直线AB,CD内部一点,AB∥CD,连接EA,ED.(1)探究猜想:①若∠A=30°,∠D=40°,则∠AED等于多少度?②若∠A=20°,∠D=60°,则∠AED等于多少度?③猜想图1中∠AED,∠EAB,∠EDC的关系并证明你的结论.(2)拓展应用:如图2,射线FE与矩形ABCD的边AB交于点E,与边CD交于点F,①②③④分别是被射线FE隔开的4个区域(不含边界,其中区域③、④位于直线AB上方,P是位于以上四个区域上的点,猜想:∠PEB,∠PFC,∠EPF的关系(不要求证明).3.(2013秋•微山县期中)如图,若∠DBC=∠D,BD平分∠ABC,∠ABC=50°,则∠BCD的大小为()A.50°B.100°C.130°D.150°4.(2013春•连云区校级月考)如图,小亮从A点出发前进10m,向右转15°,再前进10m,又向右转15°,这样一直走下去,他第一次回到出发点A时,一共走了米数是()A.120B.150C.240D.3605.如图,在△ABC中,∠A=42°,∠ABC和∠ACB的三等分线分别交于点D,E,则∠BDC的度数是()A.67°B.84°C.88°D.110°二.填空题(共3小题)6.(2007•遵义)如图所示是重叠的两个直角三角形.将其中一个直角三角形沿BC方向平移得到△DEF.如果AB=8cm,BE=4cm,DH=3cm,则图中阴影部分面积为cm2.7.(2013秋•和县期末)如图,∠ACD是△ABC的外角,∠ABC的平分线与∠ACD的平分线交于点A1,∠A1BC的平分线与∠A1CD的平分线交于点A2,…,∠A nBC的平分线与﹣1∠A n﹣1CD的平分线交于点A n.设∠A=θ.则:(1)∠A1=;(2)∠A2=;(3)∠A n=.8.(2013秋•綦江县校级期中)如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且,则阴影部分的面积等于.三.解答题(共9小题)9.(2009春•江阴市校级月考)一个四边形截去一个角后就一定是三角形吗?画出所有可能的图形,并分别说出内角和和外角和变化情况.10.(2014春•相城区月考)如图,∠A=65°,∠ABD=30°,∠ACB=72°,且CE平分∠ACB,求∠BEC的度数.11.(2015春•建湖县校级月考)我们知道,任何一个三角形的三条内角平分线相交于一点,如图,若△ABC 的三条内角平分线相交于点I,过I作DE⊥AI分别交AB、AC于点D、E.(1)请你通过画图、度量,填写右上表(图画在草稿纸上,并尽量画准确)(2)从上表中你发现了∠BIC与∠BDI之间有何数量关系,请写出来,并说明其中的道理.∠BAC的度40°60°90°120°数∠BIC的度数∠BDI的度数12.(2007•福州)如图,直线AC∥BD,连接AB,直线AC、BD及线段AB把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连接PA,PB,构成∠PAC,∠APB,∠PBD三个角.(提示:有公共端点的两条重合的射线所组成的角是0°角)(1)当动点P落在第①部分时,求证:∠APB=∠PAC+∠PBD;(2)当动点P落在第②部分时,∠APB=∠PAC+∠PBD是否成立?(直接回答成立或不成立)(3)当动点P落在第③部分时,全面探究∠PAC,∠APB,∠PBD之间的关系,并写出动点P的具体位置和相应的结论.选择其中一种结论加以证明.13.(2013春•常熟市期末)已知△ABC中,∠A=60°.(1)如图①,∠ABC、∠ACB的角平分线交于点D,则∠BOC=°.(2)如图②,∠ABC、∠ACB的三等分线分别对应交于O1、O2,则∠BO2C=°.(3)如图③,∠ABC、∠ACB的n等分线分别对应交于O1、O2…O n﹣1(内部有n﹣1个点),求∠BO n﹣1C(用n的代数式表示).(4)如图③,已知∠ABC、∠ACB的n等分线分别对应交于O1、O2…O n﹣1,若∠BO n﹣1C=90°,求n的值.14.(2013春•徐州期末)如图,△ABC两个外角(∠CAD、∠ACE)的平分线相交于点P.探索∠P与∠B有怎样的数量关系,并证明你的结论.15.(2008春•临川区校级期末)如图,BD、CD分别是∠ABC 和∠ACB的角平分线,BD、CD相交于点D,试探索∠A与∠D之间的数量关系,并证明你的结论.16.(2013春•工业园区期末)如图,已知AB∥DE,BF,EF 分别平分∠ABC与∠CED,若∠BCE=140°,求∠BFE的度数.17.(2013春•海陵区期末)(1)如图1的图形我们把它称为“8字形”,请说明∠A+∠B=∠C+∠D;(2)如图2,AB∥CD,AP、CP分别平分∠BAD、∠BCD,①图2中共有个“8字形”;②若∠ABC=80°,∠ADC=38°,求∠P的度数;(提醒:解决此问题你可以利用图1的结论或用其他方法)③猜想图2中∠P与∠B+∠D的数量关系,并说明理由.2016年01月07日liwei的初中数学组卷参考答案与试题解析一.选择题(共5小题)1.(2015春•扬中市校级期末)如图1,一副三角板的两个直角重叠在一起,∠A=30°,∠C=45°△COD固定不动,△AOB 绕着O点逆时针旋转α°(0°<α<180°)(1)若△AOB绕着O点旋转图2的位置,若∠BOD=60°,则∠AOC=120°;(2)若0°<α<90°,在旋转的过程中∠BOD+∠AOC的值会发生变化吗?若不变化,请求出这个定值;(3)若90°<α<180°,问题(2)中的结论还成立吗?说明理由;(4)将△AOB绕点O逆时针旋转α度(0°<α<180°),问当α为多少度时,两个三角形至少有一组边所在直线垂直?(请直接写出所有答案).【考点】三角形内角和定理;三角形的外角性质;旋转的性质.【分析】(1)∠BOD=60°,△AOB旋转了30°(2)若0°<α<90°,∠AOC=∠COD+∠AOD,∠BOD+∠AOC=(∠BOD+∠AOD)+∠COD=90°+90°=180°,在旋转的过程中∠BOD+∠AOC的值不变化(3)若90°<α<180°,∠BOD+∠AOC=360°﹣(∠COD+∠AOB)=180°【解答】解:(1)∵∠BOD=60°,△AOB绕着O点旋转了30°,即∠AOD=30°,∴∠AOC=∠AOD+∠COD=30°+90°=120°;(2)若0°<α<90°,∵∠AOD=α,∠AOC=∠COD+∠AOD,∴∠BOD+∠AOC=(∠BOD+∠AOD)+∠COD=90°+90°=180°,在旋转的过程中∠BOD+∠AOC的值不变化,∠BOD+∠AOC=180°;(3)若90°<α<180°,问题(2)中的结论还成立理由:若90°<α<180°,∵∠AOB=∠COD=90°;又∵∠BOD+∠AOC+∠AOB+∠COD=360°∴∠BOD+∠AOC=360°﹣∠AOD﹣∠COD=360°﹣90°﹣90°=180°;(4)α=90°、60°、45°、105°、150°、135°时,两个三角形至少有一组边所在直线垂直.【点评】本题考查了三角形旋转的性质,注意旋转角相等,旋转前后的图形不变.2.(2014•赤峰)如图1,E是直线AB,CD内部一点,AB∥CD,连接EA,ED.(1)探究猜想:①若∠A=30°,∠D=40°,则∠AED等于多少度?②若∠A=20°,∠D=60°,则∠AED等于多少度?③猜想图1中∠AED,∠EAB,∠EDC的关系并证明你的结论.(2)拓展应用:如图2,射线FE与矩形ABCD的边AB交于点E,与边CD交于点F,①②③④分别是被射线FE隔开的4个区域(不含边界,其中区域③、④位于直线AB上方,P是位于以上四个区域上的点,猜想:∠PEB,∠PFC,∠EPF的关系(不要求证明).【考点】平行线的性质.【专题】阅读型;分类讨论.【分析】(1)①根据图形猜想得出所求角度数即可;②根据图形猜想得出所求角度数即可;③猜想得到三角关系,理由为:延长AE与DC交于F点,由AB与DC平行,利用两直线平行内错角相等得到一对角相等,再利用外角性质及等量代换即可得证;(2)分四个区域分别找出三个角关系即可.【解答】解:(1)①∠AED=70°;②∠AED=80°;③猜想:∠AED=∠EAB+∠EDC,证明:延长AE交DC于点F,∵AB∥DC,∴∠EAB=∠EFD,∵∠AED为△EDF的外角,∴∠AED=∠EDF+∠EFD=∠EAB+∠EDC;(2)根据题意得:点P在区域①时,∠EPF=360°﹣(∠PEB+∠PFC);点P在区域②时,∠EPF=∠PEB+∠PFC;点P在区域③时,∠EPF=∠PEB﹣∠PFC;点P在区域④时,∠EPF=∠PFC﹣∠PEB.【点评】此题考查了平行线的性质,熟练掌握平行线的性质是解本题的关键.3.(2013秋•微山县期中)如图,若∠DBC=∠D,BD平分∠ABC,∠ABC=50°,则∠BCD的大小为()A.50°B.100°C.130°D.150°【考点】三角形内角和定理;角平分线的定义.【分析】根据角平分线定义求得∠DBC的度数,再根据三角形的内角和定理即可求解.【解答】解:∵BD平分∠ABC,∠ABC=50°,∴∠DBC=∠ABC=25°.又∠DBC=∠D,∴∠BCD=180°﹣25°×2=130°.故选C.【点评】此题综合运用了角平分线定义和三角形的内角和定理.4.(2013春•连云区校级月考)如图,小亮从A点出发前进10m,向右转15°,再前进10m,又向右转15°,这样一直走下去,他第一次回到出发点A时,一共走了米数是()A.120B.150C.240D.360【考点】多边形内角与外角.【专题】计算题.【分析】第一次回到出发点A时,所经过的路线正好构成一个外角是15度的正多边形,求得边数,即可求解.【解答】解:360÷15=24,则一共走了24×10=240m.故选C.【点评】本题考查了正多边形的外角的计算,第一次回到出发点A时,所经过的路线正好构成一个外角是15度的正多边形是关键.5.如图,在△ABC中,∠A=42°,∠ABC和∠ACB的三等分线分别交于点D,E,则∠BDC的度数是()A.67°B.84°C.88°D.110°【考点】三角形内角和定理.【分析】根据三角形的内角和定理可得∠ABC+∠ACB=138°,再由∠B和∠C的三等分线可得∠DBC+∠DCB,即可求得∠BDC的度数.【解答】解:∵∠A=42°,∴∠ABC+∠ACB=180﹣42=138°,∴∠DBC+∠DCB=×138°=92°,∴∠BDC=180°﹣92°=88°.故选C.【点评】本题考查的是三角形内角和定理,求角的度数常常要用到“三角形的内角和是180°这一隐含的条件.二.填空题(共3小题)6.(2007•遵义)如图所示是重叠的两个直角三角形.将其中一个直角三角形沿BC方向平移得到△DEF.如果AB=8cm,BE=4cm,DH=3cm,则图中阴影部分面积为26cm2.【考点】相似三角形的判定与性质;平移的性质.【专题】压轴题.【分析】根据平移的性质可知:AB=DE,BE=CF;由此可求出EH和CF的长.由于CH∥DF,可得出△ECH∽△EFD,根据相似三角形的对应边成比例,可求出EC的长.已知了EH、EC,DE、EF的长,即可求出△ECH和△EFD的面积,进而可求出阴影部分的面积.【解答】解:由平移的性质知,DE=AB=8,CF=BE=4,∠DEC=∠B=90°∴EH=DE﹣DH=5cm∵HC∥DF∴△ECH∽△EFD∴===,又∵BE=CF,∴EC=,∴EF=EC+CF=,∴S阴影=S△EFD﹣S△ECH=DE•EF﹣EC•EH=26c m2.【点评】本题考查了相似三角形的判定和性质、直角三角形的面积公式和平移的性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.7.(2013秋•和县期末)如图,∠ACD是△ABC的外角,∠ABC的平分线与∠ACD的平分线交于点A1,∠A1BC的平分线与∠A1CD的平分线交于点A2,…,∠A nBC的平分线与﹣1∠A n﹣1CD的平分线交于点A n.设∠A=θ.则:(1)∠A1=;(2)∠A2=;(3)∠A n=.【考点】三角形内角和定理;三角形的外角性质.【分析】(1)根据角平分线的定义可得∠A1BC=∠ABC,∠A1CD=∠ACD,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,整理即可得解;(2)与(1)同理求出∠A2;(3)根据求出的结果,可以发现后一个角等于前一个角的,根据此规律即可得解.【解答】(1)解:(1)∵A1B是∠ABC的平分线,A1C是∠ACD的平分线,∴∠A1BC=∠ABC,∠A1CD=∠ACD,又∵∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,∴(∠A+∠ABC)=∠ABC+∠A1,∴∠A1=∠A,∵∠A=θ,∴∠A1=,故答案为:;(2)同理可得∠A2=∠A1=,故答案为:;(3)同理可得∠A2=∠A1=×=,所以∠A n=故答案为:.【点评】本题主要考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记性质然后推出后一个角是前一个角的一半是解题的关键.8.(2013秋•綦江县校级期中)如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且,则阴影部分的面积等于2cm2.【考点】三角形的面积.【分析】如图,因为点F是CE的中点,所以△BEF的底是△BEC的底的一半,△BEF高等于△BEC的高;同理,D、E、分别是BC、AD的中点,△EBC与△ABC同底,△EBC的高是△ABC高的一半;利用三角形的等积变换可解答.【解答】解:如图,点F是CE的中点,∴△BEF的底是EF,△BEC的底是EC,即EF=EC,高相等;∴S△BEF=S△BEC,D、E、分别是BC、AD的中点,同理得,S△EBC=S△ABC,∴S△BEF=S△ABC,且S△ABC=8cm2,∴S△BEF=2cm2,即阴影部分的面积为2cm2,故答案是:2cm2.【点评】本题主要考查了三角形面积的等积变换:若两个三角形的高(或底)相等,其中一个三角形的底(或高)是另一三角形的几倍,那么这个三角形的面积也是另一个三角形面积的几倍.结合图形直观解答.三.解答题(共9小题)9.(2009春•江阴市校级月考)一个四边形截去一个角后就一定是三角形吗?画出所有可能的图形,并分别说出内角和和外角和变化情况.【考点】多边形内角与外角.【分析】先根据截去一个角后的图形是三角形、四边形或五边形画出图形,再根据三角形及多边形的内角和定理即可解答.【解答】解:锯掉一个角时可能出现以下几种情况,如答图因此剩下的图形可能是五边形、四边形、三角形,内角和可能为540°、360°、180°.外角和无变化,外角和为360°.【点评】此题比较简单,考查的是多边形的外角和及内角和定理,解答此题时要熟知:(1)任意多边形的外角和为360°;(2)多边形的内角和=(n﹣2)•180°.10.(2014春•相城区月考)如图,∠A=65°,∠ABD=30°,∠ACB=72°,且CE平分∠ACB,求∠BEC的度数.【考点】三角形内角和定理.【专题】几何图形问题.【分析】先根据∠A=65°,∠ACB=72°得出∠ABC的度数,再由∠ABD=30°得出∠CBD的度数,根据CE平分∠ACB得出∠BCE的度数,根据∠BEC=180°﹣∠BCE﹣∠CBD即可得出结论.【解答】解:在△ABC中,∵∠A=65°,∠ACB=72°∴∠ABC=43°∵∠ABD=30°∴∠CBD=∠ABC﹣∠ABD=13°∵CE平分∠ACB∴∠BCE=∠ACB=36°∴在△BCE中,∠BEC=180°﹣13°﹣36°=131°.故答案为:131°【点评】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.11.(2015春•建湖县校级月考)我们知道,任何一个三角形的三条内角平分线相交于一点,如图,若△ABC 的三条内角平分线相交于点I,过I作DE⊥AI分别交AB、AC于点D、E.(1)请你通过画图、度量,填写右上表(图画在草稿纸上,并尽量画准确)(2)从上表中你发现了∠BIC与∠BDI之间有何数量关系,请写出来,并说明其中的道理.∠BAC的度数40°60°90°120°∠BIC的度数∠BDI的度数【考点】三角形的角平分线、中线和高;三角形内角和定理.【专题】探究型.【分析】(1)通过画图、度量,即可完成表格;(2)先从上表中发现∠BIC=∠BDI,再分别证明∠BIC=90°+∠BAC,∠BDI=90°+∠BAC.【解答】解:(1)填写表格如下:∠BAC的度数40°60°90°120°∠BIC的度数110°120° 135°150°∠BDI的度数110°120°135°150°(2)∠BIC=∠BDI,理由如下:∵△ABC的三条内角平分线相交于点I,∴∠BIC=180°﹣(∠IBC+∠ICB)=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠BAC)=90+∠BAC;∵AI平分∠BAC,∴∠DAI=∠DAE.∵DE⊥AI于I,∴∠AID=90°.∴∠BDI=∠AID+∠DAI=90°+∠BAC.∴∠BIC=∠BDI.【点评】本题主要考查了三角形的内心的性质,三角形内角和定理、外角的性质,角平分线的性质以及垂线的性质,比较简单.12.(2007•福州)如图,直线AC∥BD,连接AB,直线AC、BD及线段AB把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连接PA,PB,构成∠PAC,∠APB,∠PBD三个角.(提示:有公共端点的两条重合的射线所组成的角是0°角)(1)当动点P落在第①部分时,求证:∠APB=∠PAC+∠PBD;(2)当动点P落在第②部分时,∠APB=∠PAC+∠PBD是否成立?(直接回答成立或不成立)(3)当动点P落在第③部分时,全面探究∠PAC,∠APB,∠PBD之间的关系,并写出动点P的具体位置和相应的结论.选择其中一种结论加以证明.【考点】平行线的性质;角平分线的性质.【专题】动点型;探究型.【分析】(1)如图1,延长BP交直线AC于点E,由AC∥BD,可知∠PEA=∠PBD.由∠APB=∠PAE+∠PEA,可知∠APB=∠PAC+∠PBD;(2)过点P作AC的平行线,根据平行线的性质解答;(3)根据P的不同位置,分三种情况讨论.【解答】解:(1)解法一:如图1延长BP交直线AC于点E.∵AC∥BD,∴∠PEA=∠PBD.∵∠APB=∠PAE+∠PEA,∴∠APB=∠PAC+∠PBD;解法二:如图2过点P作FP∥AC,∴∠PAC=∠APF.∵AC∥BD,∴FP∥BD.∴∠FPB=∠PBD.∴∠APB=∠APF+∠FPB=∠PAC+∠PBD;解法三:如图3,∵AC∥BD,∴∠CAB+∠ABD=180°,∠PAC+∠PAB+∠PBA+∠PBD=180°.又∠APB+∠PBA+∠PAB=180°,∴∠APB=∠PAC+∠PBD.(2)不成立.(3)(a)当动点P在射线BA的右侧时,结论是:∠PBD=∠PAC+∠APB.(b)当动点P在射线BA上,结论是:∠PBD=∠PAC+∠APB.或∠PAC=∠PBD+∠APB或∠APB=0°,∠PAC=∠PBD(任写一个即可).(c)当动点P在射线BA的左侧时,结论是∠PAC=∠APB+∠PBD.选择(a)证明:如图4,连接PA,连接PB交AC于M.∵AC∥BD,∴∠PMC=∠PBD.又∵∠PMC=∠PAM+∠APM(三角形的一个外角等于与它不相邻的两个内角的和),∴∠PBD=∠PAC+∠APB.选择(b)证明:如图5∵点P在射线BA上,∴∠APB=0度.∵AC∥BD,∴∠PBD=∠PAC.∴∠PBD=∠PAC+∠APB或∠PAC=∠PBD+∠APB或∠APB=0°,∠PAC=∠PBD.选择(c)证明:如图6,连接PA,连接PB交AC于F∵AC∥BD,∴∠PFA=∠PBD.∵∠PAC=∠APF+∠PFA,∴∠PAC=∠APB+∠PBD.【点评】此题考查了角平分线的性质;是一道探索性问题,旨在考查同学们对材料的分析研究能力和对平行线及角平分线性质的掌握情况.认真做好(1)(2)小题,可以为(3)小题提供思路.13.(2013春•常熟市期末)已知△ABC中,∠A=60°.(1)如图①,∠ABC、∠ACB的角平分线交于点D,则∠BOC=120°.(2)如图②,∠ABC、∠ACB的三等分线分别对应交于O1、O2,则∠BO2C=100°.(3)如图③,∠ABC、∠ACB的n等分线分别对应交于O1、O2…O n﹣1(内部有n﹣1个点),求∠BO n﹣1C(用n的代数式表示).(4)如图③,已知∠ABC、∠ACB的n等分线分别对应交于O1、O2…O n﹣1,若∠BO n﹣1C=90°,求n的值.【考点】三角形内角和定理;三角形的外角性质.【专题】规律型.【分析】(1)先根据三角形内角和定理求得∠ABC+∠ACB,再根据角平分线的定义求得∠OBC+∠OCB,即可求出∠BOC.(2)先根据三角形内角和定理求得∠ABC+∠ACB,再根据三等分线的定义求得∠O2BC+∠O2CB,即可求出∠BO2C.(3)先根据三角形内角和定理求得∠ABC+∠ACB,再根据n 等分线的定义求得∠O nBC+∠O n﹣1CB,即可求出∠BO n﹣1C.﹣1(4)依据(3)的结论即可求出n的值.【解答】解:∵∠BAC=60°,∴∠ABC+∠ACB=120°,(1)∵点O是∠ABC与∠ACB的角平分线的交点,∴∠OBC+∠OCB=(∠ABC+∠ACB)=60°,∴∠BOC=120°;(2)∵点O2是∠ABC与∠ACB的三等分线的交点,∴∠O2BC+∠O2CB=(∠ABC+∠ACB)=80°,∴∠BO2C=100°;(3)∵点O n是∠ABC与∠ACB的n等分线的交点,﹣1∴∠O n﹣1BC+∠O n﹣1CB=(∠ABC+∠ACB)=×120°,∴∠BO n﹣1C=180°﹣×120°=(1+)×60°;(4)由(3)得:(1+)×60°=90°,解得:n=4.【点评】此题练习角的等分线的性质以及三角形内角和定理.根据题意找出规律是解题的关键.14.(2013春•徐州期末)如图,△ABC两个外角(∠CAD、∠ACE)的平分线相交于点P.探索∠P与∠B有怎样的数量关系,并证明你的结论.【考点】三角形内角和定理;三角形的外角性质.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和与角平分线的定义表示出∠PAC和∠PCA,再根据三角形的内角和定理列式整理即可得解.【解答】解:由三角形的外角性质,∠DAC=∠B+∠ACB,∠ACE=∠B+∠BAC,∵PA、PC分别是∠DAC和∠ACE的角平分线,∴∠PAC=∠DAC=(∠B+∠ACB),∠PCA=∠ACE=(∠B+∠BAC),在△ACP中,∠P+∠PAC+∠PCA=180°,∴∠P+(∠B+∠ACB)+(∠B+∠BAC)=180°,∴2∠P+∠B+∠ACB+∠B+∠BAC=360°,在△ABC中,∠ACB+∠B+∠BAC=180°,∴2∠P+∠B=180°,∴∠P=90°﹣∠B.【点评】本题考查了三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质与定理并准确识图是解题的关键,整体思想的利用也很关键.15.(2008春•临川区校级期末)如图,BD、CD分别是∠ABC 和∠ACB的角平分线,BD、CD相交于点D,试探索∠A与∠D之间的数量关系,并证明你的结论.【考点】三角形内角和定理;角平分线的定义.【专题】探究型.【分析】先根据角平分线的性质求出∠DBC、∠DCB与∠A的关系,再根据三角形内角和定理求解即可.【解答】解:∵BD、CD是∠ABC和∠ACB的角平分线,∴∠DBC=∠ABC,∠DCB=∠ACB,∵∠ABC+∠ACB=180°﹣∠A,∠BDC=180°﹣∠DBC﹣∠DCB=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=90°+∠A,∴∠BDC=90°+∠A.【点评】本题考查的是角平分线的性质及三角形内角和定理.三角形内角和定理:三角形的内角和为180°.16.(2013春•工业园区期末)如图,已知AB∥DE,BF,EF 分别平分∠ABC与∠CED,若∠BCE=140°,求∠BFE的度数.【考点】平行线的性质;角平分线的定义.【专题】计算题.【分析】过点C作CP∥AB,然后利用两直线平行,内错角相等得到∠ABC+∠CED=∠BCP+∠ECP=∠BCE=140°;同理过点F作FM∥DE,则∠BFM=∠ABF,∠MFE=∠DEF,结合角平分线的性质就可求出∠BFE的度数.【解答】解:如图,过点C作CP∥AB,则∠BCP=∠ABC,∠ECP=∠CED,∴∠ABC+∠CED=∠BCP+∠ECP=∠BCE=140°;又∵BF,EF分别平分∠ABC,∠CED,∴∠ABF=∠ABC,∠DEF=∠DEC;∴∠ABF+∠DEF=(∠ABC+∠DEC)=70°,过点F作FM∥DE,则∠BFM=∠ABF,∠MFE=∠DEF,∴∠BFE=∠BFM+∠MFE=∠ABF+∠DEF=70°.【点评】本题主要考查作辅助线构造三条互相平行的直线,然后利用平行线的性质和角的和差关系求解.17.(2013春•海陵区期末)(1)如图1的图形我们把它称为“8字形”,请说明∠A+∠B=∠C+∠D;(2)如图2,AB∥CD,AP、CP分别平分∠BAD、∠BCD,①图2中共有6个“8字形”;②若∠ABC=80°,∠ADC=38°,求∠P的度数;(提醒:解决此问题你可以利用图1的结论或用其他方法)③猜想图2中∠P与∠B+∠D的数量关系,并说明理由.【考点】三角形内角和定理;平行线的性质;三角形的外角性质.【分析】(1)利用三角形的内角和定理表示出∠AEB与∠DEC,再根据对顶角相等可得∠AEB=∠DEC,然后整理即可得解;(2)①根据“8字形”的结构特点,根据交点写出“8字形”的三角形,然后确定即可;②根据(1)的关系式求出∠DCO﹣∠BAO=42°,再根据角平分线的定义求出∠DAM﹣∠PCM,然后利用“8字形”的关系式列式整理即可得解;③根据“8字形”用∠B、∠D表示出∠OCD﹣∠OAB,再用∠B、∠P表示出∠BAM﹣∠PCM,然后根据角平分线的定义可得∠BAM﹣∠PCM=(∠OCD﹣∠OAB),然后整理即可得证.【解答】解:(1)在△AEB中,∠AEB=180°﹣∠A﹣∠B,在△DEC中,∠DEC=180°﹣∠D﹣∠C,∵∠AEB=∠DEC(对顶角相等),∴180°﹣∠A﹣∠B=180°﹣∠D﹣∠C,∴∠A+∠B=∠D+∠C;(2)①交点有点M、N各有1个,交点O有4个,所以,“8字形”图形共有6个;故答案为:6;②∵∠ABC=80°,∠ADC=38°,∴∠OAB+80°=∠DOC+38°,∴∠DCO﹣∠BAO=42°,∵AP、CP分别是∠DAB和∠BCD的角平分线,∴∠DAM=∠DAB,∠PCM=∠OCD,又∵∠DAM+∠P=∠PCD+∠ADC,∴∠P=∠PCD+∠ADC﹣∠DAM=(∠DCO﹣∠BAO)+∠ADC=×42°+38°=59°;③根据“8字形”数量关系,∠OAB+∠B=∠OCD+∠D,∠BAM+∠B=∠PCM+∠P,所以,∠OCD﹣∠OAB=∠B﹣∠D,∠PCM﹣∠BAM=∠B﹣∠P,∵AP、CP分别是∠DAB和∠BCD的角平分线,∴∠BAM=∠OAB,∠PCM=∠OCD,∴(∠B﹣∠D)=∠B﹣∠P,整理得,2∠P=∠B+∠D.【点评】本题考查了三角形内角和定理,角平分线的定义,多边形的内角和定理,对顶角相等的性质,整体思想的利用是解题的关键.时间:2021.02.03 创作:欧阳体。
《全等三角形》说课稿之欧阳光明创编

《全等三角形》说课稿欧阳光明(2021.03.07)张市高新区东辛庄中学郭军尊敬的各位评委、老师,大家好!我说课的内容是《全等三角形》。
下面我主要从教材分析、教法与学法和教学流程三个方面,与大家进行交流。
(一)教材分析。
针对教材,我对以下几方面进行了分析:一、教材的地位和作用《全等三角形》位于新课标北师大版七年级数学(下)册第五章第三节,本节内容是在学生学习了线段、角、相交线、平行线以及三角形的有关概念之后引入的,它先介绍了一般图形的全等,再从一般到特殊介绍全等三角形的概念。
全等是用于证明线段相等、角相等的重要方法,是今后证明几何问题的重要工具,而且在学习过程中,通过学生动手操作,渗透全等变换的思想。
本节内容也是后面探究三角形全等条件的奠基石,它对知识的联系起到承上启下的作用。
二、教学目标1、在知识与技能方面:(1)了解全等三角形的相关概念,掌握寻找全等三角形对应元素的基本方法。
(2)掌握全等三角形的性质,会运用这些性质进行简单计算并能解决简单的实际问题。
2、在过程与方法方面:(1)让学生联系实际生活,通过观察、操作、探究、归纳、总结等过程,获得全等三角形的性质和寻找对应边与对应角的方法。
(2)在图形变换以及实际操作的过程中发展学生的空间观念,培养学生的几何直觉。
3、在情感、态度与价值观方面:学生通过观察、发现生活中的全等形,感受生活中的数学美,增强审美意识;在探究和运用全等三角形性质的过程中敢于阐述自己的观点,增强自信,感受成功的乐趣。
三、教学重点与难点(1)本节课的教学重点是:[探究全等三角形的性质][设计意图:全等是用于证明线段相等、角相等的重要方法,是今后研究几何图形、证明几何问题的重要工具,所以把探究全等三角形的性质定为本节课的重点。
(2)本节课的教学难点是:][掌握两个全等三角形的对应边、对应角的寻找规律,能准确地指出两个全等三角形的对应元素][设计意图:学生初次接触到全等三角形,对于全等三角形呈现出的各种不同的位置关系,还不能准确熟练地找出对应顶点、对应边、对应角,所以探究全等三角形对应元素的寻找方法,是一个难点。
28.1锐角三角函数说课稿之欧阳光明创编

《28.1锐角三角函数》说课稿欧阳光明(2021.03.07)尊敬的各位评委、老师:大家好!今天我说课的内容是九年义务教育人教版九年级下册第二十八章《锐角三角函数》中第一节《28.1锐角三角函数》的第一课时。
根据新课标的理念,我从以下几个方面对本节课加以说明。
一、教材分析(一)教材的地位和作用本节课是在学习了直角三角形两锐角关系、勾股定理等知识的基础上,对直角三角形边角关系的进一步深入和拓展;也是对函数概念的一次充实和进一步开阔视野;另外,又为下一节解直角三角形等知识奠定基础,同时也是高中进一步研究三角函数,反三角函数、三角方程的基础,所以本节课不仅有着广泛的实际应用价值,而且还起着承前启后的作用。
(二)学情分析九年级学生思维活跃,接受能力较强,具备了一定的数学探究能力和应用数学的意识,逻辑思维从经验型向理论型转变,观察力,记忆力和想象力也随着迅速发展。
学生已经掌握了直角三角形各边和各角的关系,能灵活运用相似图形的性质和判定方法解决问题,有较强的推理证明能力,这为顺利完成本节课的教学任务打下了基础。
(三)教材的重难点重点:理解正弦函数的概念,会求锐角的正弦值。
难点:正弦函数的概念,难点在于正弦函数的概念反映了角度与比值之间对应的函数关系,这种角与数之间的对应关系,以及用含有几个字母的符号sinA等表示函数,对学生来讲过去没有接触过,有一定难度。
关键:只有正确掌握正弦函数的概念才能真正理解直角三角形中边角之间的关系,掌握重点,突破难点。
(四)教学目标知识与技能:(1)理解正弦函数的概念,进一步体会变化与对应的函数的思想,能够正确的运用sinA等求锐角的正弦值。
(2)熟记特殊角30°、45°、60°的正弦值并能根据这些特殊的正弦值说出相应的锐角。
过程与方法:通过正弦函数概念的建立使学生经历从特殊到一般的认知过程,体会数形结合的思想。
情感态度价值观:通过自主学习,养成主动探究的学习习惯,通过小组学习,培养学生的团队精神与竞争意识,通过探索,分析,论证,总结获取新知识的过程体验成功的喜悦,从而培养学生学习数学的兴趣。
四年级数学《三角形》单元测试之欧阳法创编

2021.03.09四年级数学《三角形》单元知识归纳要点1、三角形的定义:由三条线段围成的图形(每相邻两条线段的端点相连或重合),叫三角形。
2、从三角形的一个顶点到它的对边做一条垂线,顶点和垂足间的线段叫做三角形的高,这条对边叫做三角形的底。
三角形只有3条高。
重点:三角形高的画法。
3、三角形的特性:稳定性。
如:自行车的三角架,电线杆上的三角架。
4、边的特性:任意两边之和大于第三边。
5、为了表达方便,用字母A、B、C分别表示三角形的三个顶点,三角形可表示成三角形ABC。
6、三角形的分类:按照角大小来分:锐角三角形,直角三角形,钝角三角形。
按照边长短来分:等边三角形、等腰三角形、三条边都不相等的三角形7、三个角都是锐角的三角形叫做锐角三角形。
8、有一个角是直角的三角形叫做直角三角形。
(其他两个角必定是锐角)9、有一个角是钝角的三角形叫做钝角三角形。
(其他两个角比定是锐角)10、每个三角形都至少有两个锐角;每个三角形都至2021.03.09 欧阳法创编2021.03.09多有1个直角;每个三角形都至多有1个钝角。
11、两条边相等的三角形叫做等腰三角形。
(等腰三角形的特点:两腰相等,两个底角相等)12、三条边都相等的三角形叫等边三角形(正三角形) (等边△的三边相等,每个角是60度)13、等边三角形是特殊的等腰三角形14、三角形的内角和等于180°;四边形的内角和是360°;五边形的内角和是540°15、图形的拼组:用任意2个完全一样的三角形一定能拼成一个平行四边形。
16、用2个相同的三角形可以拼成一个平行四边形。
17、用2个相同的直角三角形可以拼成一个长方形、一个平行四边形、一个大等腰三角形。
18、用2个相同的等腰直角的三角形可以拼成一个正方形、一个平行四边形、一个大的等腰的直角的三角形。
四年级数学《三角形》单元测试卷一、填空题。
1、从三角形的一个顶点到它的对边做一条垂线,顶点和垂足之间的线段叫做三角形的(),这条对边叫做三角形的()。
全等几何模型讲解之欧阳治创编

欧阳治创编 2021.03.10 欧阳治创编 2021.03.10常见的几何模型时间 2021.03.10创作:欧阳治一、旋转主要分四大类:绕点、空翻、弦图、半 角。
这四类旋转的分类似于平行四边形、矩形、菱形、 正方形的分类。
1.绕点型(手拉手模型)(1)自旋转:例题讲解:1. 如图所示,P 是等边三角形 ABC 内的一个点, PA=2,PB= ,PC=4,求△ABC 的边长。
2. 如图,O 是等边三角形 ABC 内一点,已知: ∠AOB=115°,∠BOC=125°,则以线段 OA、 OB、OC 为边构成三角形的各角度数是多少?欧阳治创编 2021.03.10 欧阳治创编 2021.03.10欧阳治创编 2021.03.10 欧阳治创编 2021.03.103.如图,P 是正方形 ABCD 内一点,且满足 PA: PD:PC=1:2:3,则∠APD=.4.如图(2-1):P 是正方形 ABCD 内一点,点 P 到 正方形的三个顶点 A、B、C 的距离分别为 PA=1, PB=2,PC=3。
求此正方形 ABCD 面积。
(2)共旋转(典型的手拉手模型)模型变形:例题讲解:1. 已知△ABC 为等边三角形,点 D 为直线 BC 上的 一动点(点 D 不与 B,C 重合),以 AD 为边作菱 形 ADEF( 按 A,D,E,F 逆 时 针 排 列 ) , 使 ∠DAF=60°,连接 CF.(1) 如图 1,当点 D 在边 BC 上时,求证: ① BD=CF ‚ ②AC=CF+CD.(2)如图 2,当点 D 在边 BC 的延长线上且其他条件 不变时,结论 AC=CF+CD 是否成立?若不成 立,请写出 AC、CF、CD 之间存在的数量关 系,并说明理由;欧阳治创编 2021.03.10 欧阳治创编 2021.03.10欧阳治创编 2021.03.10 欧阳治创编 2021.03.10(3)如图 3,当点 D 在边 BC 的延长线上且其他条件 不变时,补全图形,并直接写出 AC、CF、CD 之间存在的数量关系。
与三角形有关的角之欧阳术创编

第2讲与三角形有关的角时间:2021.02.02 创作:欧阳术一、知识重点1.三角形内角和定理(1)定理:三角形三个内角的和等于180°.(2)证明方法:(3)理解与延伸:因为三角形内角和为180°,所以延伸出三角形中很多的角的特定关系如:①一个三角形中最多只有一个钝角或直角;②一个三角形中最少有一个角不小于60°;③直角三角形两锐角互余;④等边三角形每个角都是60°等.(4)作用:已知两角求第三角或已知三角关系求角的度数.谈重点三角形内角和定理的理解三角形内角和定理是最重要的定理之一,是求角的度数问题中最基础的定理,应用非常广泛.【例1】填空:(1)在△AB C中,若∠A=80°,∠C=20°,则∠B=__________°;(2)若∠A=80°,∠B=∠C,则∠C=__________°;(3)已知△ABC的三个内角的度数之比∠A∶∠B∶∠C=2∶3∶5,则∠B=__________°,∠C=__________°.2.直角三角形的性质与判定(1)直角三角形的性质:直角三角形的两个锐角互余.如图所示,在Rt△ABC中,如果∠C=90°,那么∠A+∠B =90°.【例2-1】将一个直角三角板和一把直尺如图放置,如果∠α=43°,则∠β的度数是().A.43° B.47° C.30° D.60°.答案:B(2)直角三角形的判定:有两个角互余的三角形是直角三角形.如图所示,在△ABC中,如果∠A+∠B=90°,那么∠C=90°,即△ABC是直角三角形.【例2-2】如图所示,AB∥CD,直线EF分别交AB,CD于点E,F,∠BEF的平分线与∠DFE的平分线相交于点P,求证:△EPF是直角三角形..3.三角形的外角(1)定义:三角形的一边与另一边的延长线组成的角,叫做三角形的外角.如图,∠ACD就是△ABC其中的一个外角.(2)特点:①三角形的一个外角和与它同顶点的内角互为邻补角,这是内、外角联系的纽带.②一个三角形有6个外角,其中两两互为对顶角,如图所示.破疑点三角形外角的理解外角是相对于内角而言的,也是三角形中重要的角,一个角对一个三角形来说是外角,而对于另一个三角形来说可能是内角;三角形的角是指的三角形的内角,这点要注意.【例3】在△ABC中,∠A等于和它相邻的外角的四分之一,这个外角等于∠B的两倍,那么∠A=__________,∠B=__________,∠C=__________.4.三角形外角性质(1)性质:三角形的外角等于与它不相邻的两个内角的和.如图所示:∠1=∠B+∠C(或∠B=∠1-∠C,∠C=∠1-∠B).注意:三角形的外角和不是所有外角的和,是每个顶点处取一个外角,是一半数目外角的和.(2)作用:①求角的度数,在外角、不相邻的两内角中知道两角能求第三角,也能求出相邻内角的度数;②证明角相等,一般是把外角作为中间关系式证明角相等.析规律三角形外角的性质的理解①三角形的一个外角等于和它不相邻的两内角和,是由三角形内角和是180°和邻补角关系推导出来的,是它们应用的延伸,所以用这个性质能得出的结论,用三角形内角和也能推出,但走了弯路.②因为三角形外角是通过图表现出来的,具有隐蔽性,所以应用时要注意观察图形.【例4】如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则∠1+∠2=__________.5.三角形外角和(1)定义(规定):如图所示,在每一个顶点上取一个外角,如∠1,∠2,∠3,它们的和叫做三角形的外角和.(2)三角形外角和定理:三角形的外角和等于360°.注意:三角形的外角和不是所有外角的和,是每个顶点处取一个外角,是一半数目外角的和.【例5】如图所示.用两种方法说明∠1+∠2+∠3=360°.点评:同一顶点上的内、外角互为邻补角是内、外角关系转换的最基础的依据.6.三角形内角和定理应用三角形内角和定理是三角形中最重要的定理之一,是三角形中关于角度计算的基础,也是其他多边形求角度数问题必备的基础知识,目前它的应用方式主要表现在以下几个方面:(1)已知两角求第三角这是内角和定理最简单、直接的应用,一般是直接或间接给出三个内角中的两角,求第三角,比较简单,直接用180°减去两角度数得出,往往与考查角的单位换算相联系.(2)已知三角的比例关系求各角这类题目一般给出三个角的比例关系,通过设未知数列方程的方法求解,一般是设每一份为x度,用含未知数的式子分别表示出每一个角的度数,根据它们的和是180°列方程求解,然后再求出每一个角的度数.有时是通过求角的度数判断三角形的形状,但熟练后从比例关系中可以直接确定三角形的形状.(3)已知三角之间相互关系求未知角这类题目一般是已知各角之间的和、差、倍、分等的数量关系,通过等式变形,用一共同的角表示其他两角,然后根据内角和是180°列出等式,求出其中一角,然后再根据它们之间的数量关系分别求出另两角,有时也可以列方程(组)求角的度数.解技巧利用三角形内角和求三角形的内角运用三角形内角和定理求角的度数题目形式多样,方法也不同,要根据实际灵活运用.7.三角形外角性质的应用外角性质应用:三角形外角性质是三角形角度计算中的重要定理,也是求角度运算中常用的定理.如图所示,∠1是△ABC的一个外角,在∠1,∠B,∠C三个角中,知道任意两个角就可以求出第三个角.①∠1=∠B+∠C;②∠B=∠1-∠C;③∠C=∠1-∠B.破疑点利用三角形外角的性质求一个角的方法因三角形外角的性质是由三角形内角和与邻补角定义推出的,所以用外角性质能进行的运算,用三角形内角和也能进行运算,但有外角时,应用外角性质更简便,所以要改变原来习惯用三角形内角和定理的思维定式,学会运用外角性质定理解决问题.8.三角形内角和定理、外角性质、平行线性质综合运用三角形内角和定理、外角性质定理都反映了角之间的数量关系,在求角度数问题中占有重要地位.同样平行线中也蕴含了大量的角之间的关系(两直线平行,内错角相等、同位角相等、同旁内角互补),因此它们常常结合在一起,综合应用,通过角的等量转化,以求角的度数或证明角相等.解技巧三角形内角和、外角性质的综合运用因为三角形的内角、外角以及形成的邻补角、对顶角等都是通过图形反映出来的,在已知中不提及,因此运用时要注意观察图形,善于发现各角之间的位置关系,进而确定它们的大小关系.【例6-1】在△ABC中,∠A=80°,∠B=60°,则∠C=__________°.【例6-2】已知在△ABC中,∠A=40°,∠B-∠C=40°,则∠B=__________,∠C=__________.【例6-3】在△ABC中,∠A∶∠B∶∠C=5∶3∶2,那么△ABC是().A.锐角三角形B.直角三角形C.钝角三角形 D.任意三角形【例6-4】锐角三角形的三个内角是∠A,∠B,∠C.如果∠α=∠A+∠B,∠β=∠B+∠C,∠γ=∠C+∠A,那么∠α,∠β,∠γ这三个角中().A.没有锐角 B.有1个锐角C.有2个锐角 D.有3个锐角【例7】填空:(1)如图(1),P为△ABC中BC边的延长线上一点,∠A=50°,∠B=70°,则∠ACP=________°.(2)如图(2)所示,已知∠ABE=142°,∠C=72°,则∠A=__________°,∠ABC=__________°.(3)如图(3),∠3=120°,则∠1-∠2=________°.【例8-1】如图(1),将一等边三角形剪去一个角后,∠1+∠2等于().A.120° B.240°C.300° D.360°【例8-2】如图,a∥b,则下列式子中值为180°的是().A.∠α+∠β-∠γB.∠α+∠β+∠γC.∠β+∠γ-∠αD.∠α-∠β+∠γ9.运用三角形内角和定理判断三角形形状判断三角形形状是三角形问题中经常遇到的题目,而判定三角形形状方法多样,其中运用三角形内角和定理求角,进而判断三角形形状是最常用的方法.因为三角形按角分类可以分为三类:钝角三角形、锐角三角形、直角三角形,此外根据角的度数还能判定等腰三角形、等边三角形,因此根据三角形内角和定理求出三角形某些角的度数,不仅可以按角分类判断三角形的形状,还可以按边分类判断三角形的形状,进而了解边的大小关系.解技巧利用三角形内角和确定三角形的形状运用三角形内角和定理求角判断三角形形状问题比求角度问题多一步判断,但不同点是:判断形状不是求出所有角,而是根据所给三角形各内角关系,求某些关键的角,一般是最大角,然后进行判断.【例9-1】一个三角形三个内角的度数之比为2∶3∶7,这个三角形一定是().A.直角三角形 B.等腰三角形C.锐角三角形 D.钝角三角形【例9-2】在△ABC中,若∠A=2∠B=3∠C,试判断这个三角形的形状.分析:根据∠A=2∠B=3∠C,可设∠A=x°,那么∠B=12x°,∠C=13x°,根据三角形内角和是180°列方程求出x,再求出最大角的大小,即可判断出三角形的形状.10.角平分线的夹角与三角形内角关系的探究根据三角形的内角和,三角形外角与内角的关系及角平分线的意义,可以探究有关角平分线的夹角问题.(1)三角形的两内角平分线的夹角与内角的关系如图,在△ABC中,∠ABC的平分线与∠ACB的平分线交于点O,求∠BOC与∠A之间的关系.结论:三角形两内角的平分线所夹的钝角等于90°加上第三角的一半,即∠BOC =90°+12∠A .(2)三角形两外角的平分线的夹角与内角的关系如图,在△ABC 中,BP ,CP 分别是△ABC 的外角∠DBC 和∠ECB 的平分线,试探究∠BPC 与∠A 的关系.结论:三角形的两个外角的平分线所夹的锐角等于90°减去第三个角的一半,即∠BPC =90°-12∠A .(3)一个内角平分线与一个外角平分线的夹角与内角的关系 如图,在△ABC 中,CE 平分∠ACB ,BE 是△ABC 的外角∠ABD 的平分线,试探究∠BEC 与∠A 的关系.结论:三角形的一个内角平分线与外角平分线相交成的锐角等于第三个内角的一半,即∠BEC =12∠A .【例10-1】 如图,已知△ABC ,∠ABC 的平分线与∠ACB 的平分线交于点O ,求∠BOC 与∠A 之间的关系.分析:根据角平分线意义和三角形内角和定理,采用整体代入方法,由∠BOC =180°-(∠OBC +∠OCB ),经过代换得,∠BOC =180°-12∠ABC -12∠ACB =180°-12(∠ABC +∠ACB )=180°-12(180°-∠A ),化简得出结论.【例10-2】 如图,BO ,CO 分别是∠ABC ,∠ACB 的两条平分线,∠A =100°,则∠BOC 的度数是( ).A .80°B .90°C .120°D .140°【例10-3】 如图所示,∠ABC 的平分线和△ABC 的外角∠ACE 的平分线交于点D ,∠D =30°,∠A 的度数是__________;当∠D =__________时,∠A 的度数是90°.11.与三角形有关的角的问题的一题多解由于用三角形外角性质得到的结论都能用三角形内角和定理和邻补角定义推出,以及外角的多样性和求角度的方法多样性,因此这部分内容中的题目解法多样,很多题目解法都不唯一,例如:如图(1)是由平面上五个点A ,B ,C ,D ,E 连接而成,求∠A +∠B +∠C +∠D +∠E 的度数是多少? 由于每个角的度数都不知道,所以需要将五个角转化到同一个三角形中解决,解决此问题有多种方法,①如图(2),连接BC ,根据三角形内角和定理和对顶角相等,可将∠A +∠B +∠C +∠D +∠E 转化到△ABC 中求解;②如图(3),延长BD ,交AC 于F ,根据三角形的一个外角等于和它不相邻的两个内角的和,可将∠A +∠B +∠C +∠D +∠E 转化到△COF 中求解;③如图(4),也可以延长CE 交AB 于G ,运用三角形的一个外角等于和它不相邻的两内角和,将∠A +∠B +∠C +∠D +∠E 转化到△BOG 中求解;④向两方延长DE 也能构造出三角形求解.【例11】 如图(1)所示是小亮的爸爸带回家的一种零件示意图,它要求∠BDC =140°才合格,小明通过测量得∠A =90°,∠B =19°,∠C =40°后就下结论说此零件不合格,于是爸爸让小亮解释这是为什么呢?小亮很轻松地说出了原因,你能解释吗?二、综合练习一、选择题1.三角形的三个外角之比为2:3:4,则与之相应的三个内角之比为( )A.2:3:4B.4:3:2C.5:3:1D.1:3:52.如图4,工人师傅砌门时,常用木条EF 固定矩形门框ABCD ,使其不变形,这种做法的根据是( )A.两点之间直线段最短B.矩形的稳定性 C.矩形四个角都是直角D.三角形的稳定性3.如图5,1∠,2∠,3∠,4∠恒满足的关系式是( ) A.1234+=+∠∠∠∠B.1243+=-∠∠∠∠C.1423+=+∠∠∠∠D.1423+=-∠∠∠∠4.如图6,123456+++++∠∠∠∠∠∠等于( )5.如图7,在ABC △中,D 是AB 上的一点,E 是AC 上一点,BE CD ,相交于F ,70A =∠,20ACD =∠,28ABE =∠,则CFE ∠的度数为( )A.62B.68C.78D.906.如图2,以BC 为公共边的三角形的个数是( ) A.2B.3C.4D.57.若三条线段中3a =,5b =,c 为奇数,那么由a b c ,,为边组成的三角形共有( )A.1个B.3个C.无数多个D.无法确定 8.如果线段a b c ,,能组成三角形,那么它们的长度比可能是( )A.1:2:4B.1:3:4C.3:4:7D.2:3:49.不一定能构成三角形的一组线段的长度为( )A.3,7,5B.3x ,4x ,()50x x >C.5,5,()010a a <<D.2a ,2b , 10.已知有长为1,2,3的线段若干条,任取其中3样构造三角形,则最多能构成形状或大小不同的三角形的个数是( )A.5B.7C.8D.10二、填空题11.如图1,ABC ∠的平分线交ACB ∠的平分线于l ,若60A =∠,则BIC =∠_____.12.一个三角形中最多有_____个内角是钝角,最多可有_____个角是锐角.13.三角形两个外角的和等于第三个内角的4倍,则第三个内角等于_____.14.如图2,A B C D E ++++=∠∠∠∠∠_____.15.如图3,1234+++=∠∠∠∠_____.16.两根木棒的长分别为7cm 和10cm .要选择第三根木棒,将它们钉成一个三角形框架,那么,第三根木棒长x (cm )的范围是______.17.如图1,1234+++=∠∠∠∠______.18.ABC △中,6a =,8b =,则周长P 的取值范围是______. 19.a b c ,,是ABC △中A ∠,B ∠,C ∠的对边,若4a λ=,3b λ=,14c =,则λ的取值范围是______.20.若a b c ,,为ABC △的三边,则a b c a b c ---+______0(填“>,=,<”).三、解答题 21. 已知,如图8,点D 是ABC △中AC 边上的一点,点E 是BC 边延长线上一点,说明:ADB CDE >∠∠.22. 已知,如图9,ABC △中,ABC ∠的平分线与ACE ∠的平分欧阳术创编 2021.02.02 欧阳美创编 2021.02.02 欧阳术创编 2021.02.02 欧阳美创编 2021.02.02 线交于D 点,若80A =∠,求D ∠的度数.23. 如图10,已知折线ABCDE ,且360B C D ++=∠∠∠.说明:AB CD ∥.24.已知:如图3,AB CD ∥,45B =∠,78BED =∠,求D ∠的度数.25.已知,如图4,AB CD ∥,EH AB ⊥,垂足为H ,若150=∠,则E ∠为多少度?26.已知,如图5,在ABC △中,O 是高AD 和BE 的交点,观察图形,试猜想C ∠和DOE ∠之间具有怎样的数量关系,并论证你的猜想. 时间:2021.02.02 创作:欧阳术。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
与三角形有关的角
欧阳光明(2021.03.07)
基础知识点回顾:
1、三角形的内角:三角形的内角和为180°;
2、三角形的外角:三角形一边与另一边延长线组成的角;
三角形外角定理:三角形的一个外角等于与它不相邻的两个内角的和。
知识讲解概览:
1、“8”字模型
2、飞镖模型
3、内外角平分线模型
一、“8”字模型与飞镖模型
(1)“8”字模型
如图,线段AB与CD相交于点O,连接A、C,连接B、D,则有∠A+∠C=∠B+∠D
(2)飞镖模型
如图,则有∠A+∠B+∠C=∠ADC
例1:下图是一个五角星,求∠A+∠B+∠C+∠D+∠E的大小。
例2:如下图,BE平分∠ABC,DE平分∠ADC,BE与AD相交于点G,BC与DE相交于点H。
求证:2∠E=∠A+∠C。
二、内外角平分线问题
(1)内角平分线+内角平分线
如图,在△ABC 中,点P 是∠ABC 和∠ACB 角平分线的交点,则
∠P=90°+21
∠A
(2)内角平分线+外角平分线
如图,在△ABC 中,点P 是∠ABC 和外角∠ACD 角平分线的交
点,则∠P=21
∠A
(3)外角平分线+外角平分线
如图,在△ABC 中,点P 是∠ABC 和外角∠ACB 角平分线的交
点,则∠P=90°-21
∠A
例3:在△ABC 中,AD ⊥BC ,AE 平分∠BAC ,AG ⊥AE ,CG 是外角∠ACF 的平分线,若∠G -∠DAE =60°,则∠ACB=。