八年级数学上册第1课时 整数指数幂

合集下载

人教版八年级数学上册15.整数指数幂(第1课时)课件

人教版八年级数学上册15.整数指数幂(第1课时)课件

1 1 1 100 10
(3)100×10-1÷10-2 110
102 10
(4)x-2·x-3÷x2 =
1 1 1
1
1


x 2 x 3 x 2 x 2 3 2 x 7
连接中考
1.下列计算正确的是( D )
A.(a+b)2=a2+b2

B.a2+2a2=3a4
C.x2y÷ =x2(y≠0)
3
5
问题3 根据分式的约分,当 a≠0 时,如何计算 a a ?
a3÷a5=
a
3
a3 a2
=
1
a2
(1)
问题4 如果把正整数指数幂的运算性质 a m a n a m n
(a≠0,m,n 是正整数,m >n)中的条件m >n 去掉,即假
设这个性质对于像 a 3 a 5 的情形也能使用,如何计算?
a3÷a5=a3-5=a-2 (2)
探究新知
由(1)(2)想到,若规定a-2=
1
a2
(a≠0),就能使
am÷an=am-n 这条性质也适用于像a3÷a5的情形,因此:
-n
数学中规定:当n 是正整数时,a =
n
这就是说, a (
a 0)是an 的倒数.
1
(a 0).
n
a
探究新知
做一做
填空:
根据整数指数幂的运算性质,当m,n为整数时,
a m a n a m n , a m a - n a m (-n)=a m -n,因此,
n
a m a n a m ,即同底数幂的除法
a m a n 可以转化

人教版数学八年级上册15.2.3.1《整数指数幂》说课稿1

人教版数学八年级上册15.2.3.1《整数指数幂》说课稿1

人教版数学八年级上册15.2.3.1《整数指数幂》说课稿1一. 教材分析人教版数学八年级上册15.2.3.1《整数指数幂》是初中数学的重要内容,属于代数学的范畴。

本节课的主要内容是让学生理解整数指数幂的概念,掌握整数指数幂的运算性质及应用。

通过本节课的学习,为学生进一步学习分数指数幂、负整数指数幂以及指数函数等知识打下基础。

二. 学情分析八年级的学生已经学习了有理数的乘方,对幂的概念有了初步的认识。

但在理解和应用整数指数幂方面,学生还可能存在一定的困难。

因此,在教学过程中,教师需要关注学生的学习需求,引导学生通过自主学习、合作交流等方式,逐步掌握整数指数幂的知识。

三. 说教学目标1.知识与技能目标:让学生理解整数指数幂的概念,掌握整数指数幂的运算性质及应用。

2.过程与方法目标:通过观察、分析、归纳等方法,让学生体会数学知识之间的联系,培养学生的逻辑思维能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作精神,使学生感受到数学在生活中的应用。

四. 说教学重难点1.教学重点:整数指数幂的概念,整数指数幂的运算性质。

2.教学难点:整数指数幂的应用,以及与其他知识点的联系。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例分析法、小组合作法等,引导学生主动探究、积极思考。

2.教学手段:利用多媒体课件、黑板、教具等,辅助教学,提高教学效果。

六. 说教学过程1.导入新课:通过复习有理数的乘方,引出整数指数幂的概念。

2.自主学习:让学生自主探究整数指数幂的运算性质,引导学生发现规律。

3.合作交流:学生分组讨论,分享学习心得,互相解答疑问。

4.教师讲解:针对学生的疑问和难点,进行讲解,梳理知识体系。

5.巩固练习:布置练习题,让学生及时巩固所学知识。

6.课堂小结:总结本节课的主要内容,强调重点知识。

7.拓展延伸:引导学生思考整数指数幂在实际生活中的应用,激发学生的学习兴趣。

七. 说板书设计板书设计要清晰、简洁,突出整数指数幂的概念和运算性质。

人教版数学八上 15.2.3整数指数幂(第1课时)教案设计

人教版数学八上 15.2.3整数指数幂(第1课时)教案设计

15.2.3 整数指数幂(第1课时)课标要求:结合分式的运算,将指数的范围从正整数扩大到全体整数,了解整数指数幂的运算性质.教学目标:1.会用整数指数幂的运算性质进行计算;2.类比正整数指数幂,探究负整数指数幂的运算性质,经历数学算理的扩充与发展,体会特殊到一般的思想.教学重点:负整数指数幂的运算.教学难点:负整数指数幂运算性质的理解. 教学方法:启发式、探讨式、合作式学习. 教学准备:多媒体课件. 教学过程: 一、复习旧知1.填空: (1)mna a •= (m,n 是正整数);(2)()nm a = (m,n 是正整数);(3)()nab = (n 是正整数); (4)na b ⎛⎫= ⎪⎝⎭(n 是正整数);(5)m na a ÷= (a ≠0,m ,n 是正整数,且m >n ); (6)0a = (a ≠0). 学生口答,教师展示答案.(从学生已有的数学经验出发,回忆学过的有关整数指数幂的运算性质,为学生经历探究负整数指数幂做准备.)二、探究新知探究一 负整数指数幂的意义2.计算:(1)3a a ÷(0≠a ); (2)63b b ÷ (0≠b ); (3)72x x ÷(0≠x ).(1)解:方法一、由分式的约分可知 3a a ÷= = ①;方法二、若将上题(5)中的条件“m >n ”去掉,我们发现3a a ÷= ②.学生独立思考并作答,教师提问学生不同的算法,并提出以下问题: 问题1 对比①、②两式,你发现了什么?对比①②两式,等号左边都是3a a ÷,等号右边一个是21a,另一个是2-a ,两种方法的若按以往的算理都是正确的,如果我们规定221aa=-(0≠a ),就能使nm n m a a a -=÷也适用于像3a a ÷这样的情形.为使上述运算性质适用范围更广,同时也可以简便地表示分式,数学中规定:一般地,当n 是正整数时,n a -=1na (a ≠0).也就是说,n a -(a ≠0)是na 的倒数.问题2 从以上性质中,你还能得出哪些结论? 如由na-=1n a 可知,n a -形式上像整式,但实质上是分式;1=•-n n a a ;nna a -=1; p p nmm n )()(=-等. 3.填空:32-= ; 2)31(- = ; 2)3(--= ; =-3)1.0( .学生独立思考并作答,教师展示答案.(通过学生自己的观察、思考、计算,教师提问学生不同的算法,师生共同对比两种算法,得出数学规定,体会规定的合理性和数学算理的扩充,培养学生的观察、思辨能力. 在此过程中渗透“一般到特殊”的数学思想方法.)探究二 负整数指数幂的运算性质引入负整数指数幂后,指数的取值范围就推广到全体整数,那么正指数幂的运算性质是否适合负整数呢?问题1 验证同底数幂的运算性质nm nmaa a +=•对于任意整数的情形仍适用.)4(22242421-+--====•a a aa a aa (0≠a ),即)4(242-+-=•a a a . 仿照上式,验证(1))4()2(42-+---=•a a a(0≠a );(2))4(040-+-=•a a a (0≠a ).问题2 类似地,试着用负整数指数幂或0指数幂验证其他的正整数指数幂的运算性质,小组成员分工完成.归纳:随着指数的取值范围由正整数推广到全体整数,前面提到的运算性质就推广到整数指数幂.4.计算(要求:一般情况下,当幂指数为负整数时,最后的计算结果要把幂指数化为正整数.):(1)53a a÷- ; (2)232)(-ab ; (3)342)(b a -.问题3 我们知道,除法和乘法互为逆运算,能否将同底数幂的除法性质n m n m a a a -=÷ 归结到同底数幂的乘法性质n m n m a a a +=•中呢?根据整数指数幂的运算性质,当m 、n 为整数时,nm n m aa a -=÷,n m n m n m a a a a --+-==•)(,因此,n m n m a a a a -•=÷,即同底数幂的除法n m a a ÷ 可以转化为同底数幂的乘法nmaa -•.试着说明商的乘方能否转化为积的乘方? 因此,整数指数幂的运算性质可以归结为: (1)nm n m a a a +=•(m 、n 为整数);(2)mnnm aa =)((m 、n 为整数);(3)nnn b a ab =)(( n 为整数).教师提出以上问题,学生以小组分工合作的形式完成问题一、二、三,师生归纳得出结论.(通过学生自己的观察、思考、师生共同探究负整数指数幂的运算性质,加深学生对负整数指数幂的理解,体会数学算理的扩充与整合,培养学生的观察、思辨、小组合作的能力, 体会化归思想.) 三、学以致用例1 计算:(1)3223)(---•b a b a ;(2)22321)()2(b a bc a ---÷-.分析:计算中,根据运算顺序“先乘方,再乘除,最后算加减,如果有括号的先算括号内的”计算,结果要化为正整数指数幂.解:(1)3223)(---•b a b a (2)22321)()2(b a bc a ---÷-.)()()(966960636603ab b a b b a a b a b a =•=•••=•=----- .88181)()2(657657623)4(3246333cb ac b a c b a b a c b a -=-=-=÷-=-----------先由学生独立思考,教师提问个别学生,说出每一步的依据及过程,教师板书过程. (本部分例题帮助学生理解整数指数幂的运算性质,学生体会代数运算中每一步都要依据算理,细心计算,边做边检查,才可以得出正确的答案.) 四、反馈练习1. 下列计算正确的是( ) A.100)1.0(2=-- B.10001103=-- C.251512-=- D.33212a a =- 答案:A.2.计算(1)2)(-+b a ;(2)3)2(-ba ; (3) ()22322ab a b ---•;(4)22232)(---÷b a b a . 答案:(1)2221bab a ++;(2)338a b ; (3)67a b ;(4)b a 2. (在此设置了比较简单的基础练习题,重在考察学生对基础知识的掌握情况,完成后展示学生的成果,让学生在学习的过程中感受学习的乐趣和成功的喜悦,激发学生的学习兴趣.)五、课堂小结1.本节课我们学习了什么?2.你还有哪些收获?学生小结,教师适当点拨补充,师生共同完成.(学生归纳总结本节课的主要内容,交流在探索负整数指数幂的过程中的心得体会,不断积累数学活动经验.)六、作业布置课本147页习题15.2第7题. 补充:1.下列各式正确的有( )A. 1个B.2个C. 3个D. 4个 2.计算: (1)2023)1.0(14.3)301()101(----+⨯+-; (2)232221)()3(---•n m n m . 3.若2312---=÷y y ym ,求2-m 的值.答案: 1. A.2. (1) 0 ; (2)1069nm .()()01111(1)1,(2)(0),3(),4(0)m mn n m n m n a a aa a a a a a a----+==-≠==≠3.41.。

八年级初二数学上册人教版 整数指数幂 名师教学PPT课件(1)

八年级初二数学上册人教版 整数指数幂 名师教学PPT课件(1)

好好学习 天天向上
18
3.下列运算错误的是(C )
A.a 4
2a4
3 a4
B.3a3 • a2
3 a5
C.(a3 )2
1 a5
D.a 7
a2
1 a5
好好学习 天天向上
19
好好学习 天天向上
20
4.计算 3x2 y 3a (xy)1的结果是( C )
a
A.
x2 a2
B.x2 y2
C.
(2)幂的乘方: (am )n amn(m,n是整数)
(3)积的乘方: (ab)n anbn(n是整数)
(4)同底数的幂的除法: am an amn(m,n是整数)
(5)分式的乘方: ( a )n an (n是整数)
b
bn
好好学习 天天向上
9
例2 计算:
(1)a2 • a5;
(2)(a1b2 )3;
好好学习 天天向上
1
a m 中指数m可以是
负数吗?如果可以,
问题1:正整数指数幂有什么运那算么负性整质数?指数幂 (1)同底数的幂的乘法: am • an表示aa什mm么n(m? ,n是正整数 )
(2)幂的乘方: (am )n amn(m,n是正整数 )
(3)积的乘方: (ab)n anbn(n是正整数 )
(b3 • a2 )2
b6 • a4
a4 b6
好好学习 天天向上
12
am an am • an; a a • b1; b ( a )n (a • b1)n. b
归纳:
(1)同底数的幂的乘法: am • an amn(m,n是整数)
(2)幂的乘方: (am )n amn(m,n是整数) (3)积的乘方: (ab)n anbn(n是整数)

人教版八年级上册15.2.3整数指数幂(教案)

人教版八年级上册15.2.3整数指数幂(教案)
此外,我在教学过程中尽量采用直观、生动的教学方法,如使用纸牌进行实验操作,让学生更直观地理解指数幂的概念。从学生的反馈来看,这种教学方式效果不错,有助于提高他们的学习兴趣。在以后的教学中,我会继续探索更多有趣的教学方法,让课堂更加生动活泼。
同时,我也发现部分学生在解决实际问题时,仍然存在不知道如何运用整数指数幂的问题。针对这一情况,我计划在接下来的课程中,增加一些综合性的练习题,让学生在解决实际问题的过程中,逐步掌握运用整数指数幂的方法。
举例:讲解同底数幂相乘法则时,以2^3 × 2^4为例,强调指数相加的概念,确保学生理解并掌握ቤተ መጻሕፍቲ ባይዱ一运算规则。
2.教学难点
-理解并运用幂的乘方、积的乘方性质,尤其是指数的变化规律。具体难点包括:
-幂的乘方:(a^m)^n = a^(m×n);
-积的乘方:(ab)^n = a^n × b^n。
-将实际问题抽象为指数幂问题,利用指数幂的性质和运算规则解决问题。
-鼓励学生互相交流、讨论,共同解决难点问题,提高学生的合作能力;
-对学生在学习过程中遇到的共性问题进行归纳总结,进行针对性的讲解。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《整数指数幂》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算非常大或非常小的数字的情况?”(如:科学记数法表示的较大或较小数值)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索整数指数幂的奥秘。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。比如,用纸牌模拟幂的乘方过程,让学生直观地理解指数的概念。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。

八年级数学整数指数幂的运算法则

八年级数学整数指数幂的运算法则

整数指数幂的运算法则是数学中的基本概念之一,也是数学运算中的重要知识点之一、在八年级数学课程中,学生将进一步学习和掌握整数指数幂的各种运算法则。

下面是关于整数指数幂运算法则的详细介绍,希望能帮助大家更好地理解和掌握这一知识点。

一、指数的定义和性质1.定义:整数指数幂是指一个数的底数连乘自身的运算。

如果a为一个不为零的实数,n为任意整数,那么称a的整数次幂为:a^n(a的n次方)2.性质:(1)相同底数的乘方,底数不变,指数相加。

即a^m*a^n=a^(m+n)。

(2)一个数的0次方等于1、即a^0=1(3)一个数的1次方等于它本身。

即a^1=a。

(4)任何数的负指数等于其倒数的相应正指数。

即a^(-n)=1/(a^n)。

(5)任何数的指数幂的指数幂等于它们指数的乘积。

即(a^m)^n=a^(m*n)。

1.同底数幂的乘法规则当两个底数相等的幂相乘时,可以利用指数的性质将底数不变,指数相加。

即a^m*a^n=a^(m+n)。

例如:2^3*2^4=2^(3+4)=2^7=1282.同底数幂的除法规则当两个底数相等的幂相除时,可以利用指数的性质将底数不变,指数相减。

即a^m/a^n=a^(m-n)。

例如:5^6/5^3=5^(6-3)=5^3=1253.指数幂的乘法规则两个指数幂相乘时,底数不变,指数相加。

即(a^m)^n=a^(m*n)。

例如:(2^3)^4=2^(3*4)=2^12=40964.指数幂的除法规则两个指数幂相除时,底数不变,指数相减。

即(a^m)/(a^n)=a^(m-n)。

例如:(4^5)/(4^2)=4^(5-2)=4^3=645.指数幂的幂的规则一个指数幂的幂等于底数不变,指数相乘。

即(a^m)^n=a^(m*n)。

例如:(3^2)^4=3^(2*4)=3^8=65616.指数为0和1的规则任何数的0次方等于1、即a^0=1任何数的1次方等于它本身。

即a^1=a。

7.负指数的规则任何数的负指数等于其倒数的相应正指数。

人教版八年级数学上册整数指数幂1

人教版八年级数学上册整数指数幂1

b8 a8
练习一
(1() 0.1)3 (2() 3)2
2
(3() 3a2)(3 a 0)
练习二 计算:
(1) Байду номын сангаас2y-3(x-1y)3;
(2) (2ab2c-3)-2÷(a-2b)3
思考: 下列计算对吗?
(1)am an am • an (2) ( a )n a bn n b
例4. 下列等式是否正确?为什么?
幂an的意义是什么?
an=a·a·a········a(n是正整数)
n个a
正整数指数幂:an(n是正整数)
回顾与思考 正整数指数幂有以下运算性质:
(1) am an amn (m、n是正整数)
(2)
am n amn
(m、n是正整数)
(3) ab n anbn ( n是正整数)
(4) am an amn (a≠0,m、n是
a3 a5
=
a3 a3 • a2
1 a2
a3÷a5=a3-5=a-2
规定:
a
2
1 a2
a
n
1 an
这就是说:a-n(a≠0)是an的倒数
例如: a1a1
a5
1 a5
引入负整数指数幂后,指数的取 值范围就扩大到全体整数。
an (n是正整数) 1 (n=0, a≠0 )
例1 填空:
(1) 2-1=___, 3-1=___, x-1=___.
(5)
a b
n
an bn
正整数,m>n) ( n是正整数)
当a≠0时,a0=1。(0指数幂)
思考:
我们知道:

一般地, 中指数m可以是负整数吗? 如果可以,那么负整数指数幂 表 示什么?

新人教版八年级上册初中数学 课时1 整数指数幂 教案(教学设计)

新人教版八年级上册初中数学 课时1 整数指数幂 教案(教学设计)

第十五章分式15.2.3 整数指数幂课时1 整数指数幂【知识与技能】(1)知道负整数指数幂(a≠0,n是正整数).(2)掌握整数指数幂的运算性质.【过程与方法】通过指数的取值范围由正整数推广到全体整数,培养学生抽象的数学思维能力.【情感态度与价值观】在数学公式中感受数学公式的简洁美、和谐美,体会数学中的转化思想.掌握整数指数幂的运算性质.负整数指数幂的性质的理解和应用.多媒体课件.教师共同回忆:1.正整数指数幂的运算性质:(1)同底数幂的乘法:a m·a n=a m+n(m,n是正整数);(2)幂的乘方:(a m)n=a mn(m,n是正整数);(3)积的乘方:(ab)n=a n b n(n是正整数);(4)同底数幂的除法:a m÷a n=a m-n(a≠0,m,n是正整数,m>n);(5)分式的乘方:2.零指数幂的规定,即当a≠0时,a0=1.教师引导学生回忆,并提出问题:a m中指数m可以是负整数吗?如果可以,那么负整数指数幂a m表示什么?探究1:整数指数幂教师:当a≠0时,,再假设把正整数指数幂的运算性质a m÷a n=a m-n(a≠0,m,n是正整数,m>n)中的条件m>n去掉,那么a3÷a5=a3-5=a-2,于是得到(a≠0).然后引导学生总结负整数指数幂的运算性质:一般地,当n是正整数时,(教师板书)这就是说,a-n(a≠0)是a n的倒数.教师强调:引入负整数指数幂后,指数的取值范围就推广到全体整数.教师提出问题:引入负整数指数幂后,正整数指数幂的性质仍然适用吗?探究2:整数指数幂的运算性质教师出示投影:计算:想一想,正整数指数幂的运算性质在整数范围内仍然适用吗?学生独立计算,小组内互相交流:在(1),说明同底数幂的乘法运算性质在整数的范围内仍然适用;在(2)中,,说明幂的乘方的运算性质在整数范围内仍然适用;在(3)中说明积的乘方的运算性质在整数范围内仍然适用.教师根据巡视情况点拨,进一步引导归纳:可以看作,所以同底数幂的除法的运算性质和分式的乘方的运算性质在整数范围内也适用.教师梳理学生讨论的情况,并板书:整数指数幂的运算性质:(1)a m·a n=a m+n(m,n是整数);(2)(a m)n=a mn(m,n是整数);(3)(ab)n=a n b n(n是整数);(4)a m÷a n=a m-n(a≠0,m,n是整数);教师出示教材P144例9:计算:让四名学生进行板演,师生共同点评:教师提醒:本例是运用推广后的整数指数幂的运算性质进行计算的,计算结果有负整数指数幂时,要写成分数的形式.接着教师让学生独立完成教材P145练习第1,2题,同桌之间互相检查.整数指数幂的运算性质:(1)a m·a n=a m+n(m,n是整数);(2)(a m)n=a mn(m,n是整数);(3)(ab)n=a n b n(n是整数);(4)a m÷a n=a m-n(a≠0,m,n是整数);【正式作业】教材P146习题15.2第7题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

作品编号:91855558874563331258
学校:元明壮市文银汉镇便家蚕小学*
教师:青稞酒*
班级:飞鸟参班*
15.2.3整数指数幂
第1课时整数指数幂
一、新课导入
1.导入课题:
同学们还记得正整数指数幂的运算性质吗?由a m÷a n=a m-n,当m<n时,底数a的指数(m-n)是负整数,那么它表示什么呢?
2.学习目标:
(1)知道负整数指数幂的意义及表示法.
(2)能运用分式的有关知识推导整数指数幂的意义.
3.学习重、难点:
重点:整数指数幂的意义的推广.
难点:用负整数指数幂的意义进行有关计算和变式.
二、自学
1.自学指导:
(1)自学内容:教材第142页到第143页“思考”之前的内容.
(2)自学时间:5分钟.
(3)自学方法:认真阅读课本,回顾正整数指数幂的意义,思
考a m 中当m<0时,a m 表示什么?
(4)自学参考提纲: ①a -2=
21
a
是如何得来的? 一方面a 3
÷a 5
=a 3-5
=a -2
,另一方面,a3÷a5=35a a =323a a a •=21
a
.
∴a -2=
2
1
a ②当n 是正整数时,a -n =
1n a
(n≥1), 即a -n
(a≠0)是a n 的倒数. ③试说说当m 分别是正整数、0、负整数时,am 各表示什么意义?
当m 是正整数时,a m 表示m 个a 相乘.当m 是0时,a 0表示一个数的n 次方除以这个数的n 次方,所以特别规定,任何除0以外的实数的0次方都是1.
当m 是负整数时,am 表示|m|个
1
a
相乘.
2.自学:请同学们结合自学指导进行自学.
3.助学: (1)师助生:
①明了学情:了解学生的自学情况,收集学生自学中存在的问题. ②差异指导:对学困生进行学习方法和认知方法的指导. (2)生助生:结合实例讨论如何得出a -n=1an (a≠0) 4.强化:
(1)当n为正整数时,a-n=1
n
a
(a≠0),即a-n(a≠0)是a n的倒数. (2)a m的意义(m为正整数、0、负整数).
(3)口答:4-1=1
4(1
4
)-1=4 (-1
4
)2=1
16
-2-2=-1
4(1
3
)-3=27 (-1
3
)3=-1
27
(3-2)0=1
1.自学指导:
(1)自学内容:教材第143页“思考”到第144页例9上面的内容.
(2)自学时间:5分钟.
(3)自学方法:尝试教材上的方法,用负整数幂或0指数幂,验证正整数幂的性质.
(4)自学参考提纲:
①教材第143页几个具体实例说明了什么?a m·a n=a m+n
②换其他整数指数验证①中的规律.
a7·a-7=a7-7=a0=1,a-8·a-2=a-8-2=a-10
③试用教材第143页的方法,计算a-5÷a-3、(ab)-4、(1
2
)-3,验证并归纳相应的运算性质.
④综合①②③实例说明了什么?a m·a n=a m+n,这条性质对于m,n是任意整数的情形仍然适用.
⑤试用你找到的规律填空(结果写成分式的形式):
⑥由以上的试验运算说明:正整数指数幂的运算性质可以推广到整数指数幂的运算.
2.自学:请同学们结合自学提纲进行自学.
3.助学:
(1)师助生:
①明了学情:了解学生的自学情况,看是否真正理解正整数指数幂的运算性质可推广到整数指数幂.
②差异指导:对部分学生进行学习方法和认知方法的引导.
(2)生助生:学生之间相互交流帮助.
4.强化:
(1)交流同学们的验证结果,归纳a m·a n;a m÷a n;(a m)n;(ab)n中m、n 的适用范围.
(2)练习:
1.自学指导:
(1)自学内容:教材第144页例9及以下内容
(2)自学时间:10分钟.
(3)自学方法:阅读例9之前,回顾一下整数指数幂的运算性质.
(4)自学参考提纲:
①研究例9思考如何进行整数指数幂的运算,计算结果一般应化成怎样的形式?
运用整数指数幂的运算性质进行运算,结果一般化为最简分式或整式形式.
②引入负整数指数幂后,指数的范围就扩大到了全体整数,那么整数指数幂的性质有哪些?
上述式子中,m,n均为任意整数.
2.自学:同学们结合自学指导进行自学.
3.助学:
(1)师助生:
①明了学情:了解学生的自学情况,收集学生自学中存在的问题.
②差异指导:对例题中运算过程不熟知的学生进行引导,引导运算性质的识记和运用.
(2)生助生:学生之间相互交流帮助.
4.强化:
(1)整数指数幂的运算性质(式子表示)
(2)计算:
(3)整数指数幂的运算步骤及要求.
三、评价
1.学生的自我评价(围绕三维目标):学生代表交流自己的学习收获和学后体验.
2.教师对学生的评价:
(1)表现性评价:对学生的学习态度、方法、成果及不足进行归纳点评.
(2)纸笔评价:课堂评价检测.
3.教师的自我评价(教学反思):
整数指数幂是在学生学习了分式的基本性质及乘除法之后的教
学,教材中利用同底数幂相除的性质给出负整数指数及零指数的意义.在教学中,教师可在复习幂的有关运算性质后提出问题:“幂的这些运算性质中指数都要求是正整数,如果是负数又表示什么意义呢?”通过提问让学生寻找规律,猜想出零指数幂和负整数指数幂的意义,这不但可以调动学生学习的积极性,还可以达到预期效果.
一、基础巩固(每题10分,共70分)
1.填空:
2.若m,n为正整数,则下列各式错误的是(D)
3.下列计算正确的是(C)
4.计算:
5.若(x-3)-2有意义,则x≠3;若(
1
x
x )-1有意义,则x≠0且x≠-1.
7.下列等式一定正确的是(D )
二、综合应用(每题10分,共20分)
三、拓展延伸(10分) 10.若a+a -1=3,试求a 2+a -2的值. 解:∵a+a -1=3,
∴(a+a-1)2=9,∴a2+a-2+2=9,∴a2+a-2=7.。

相关文档
最新文档