模拟退火算法(C++版)
C语言中的人工智能算法实现

C语言中的人工智能算法实现C语言是一种广泛应用于系统编程和嵌入式开发领域的高级编程语言,它非常适合实现人工智能算法。
人工智能算法是近年来备受关注的一个研究领域,它涉及到模拟人类智力和思维过程的算法和技术,为计算机赋予智能。
在C语言中实现人工智能算法需要用到一些基本的数据结构和算法,在此我将介绍几种常见的人工智能算法在C语言中的实现方式。
首先是人工神经网络(Artificial Neural Network,ANN),它是一种模拟人脑神经网络的计算模型。
在C语言中实现神经网络算法时,可以使用矩阵运算库来简化计算过程,比如可以使用OpenBLAS或者Eigen等库来进行矩阵运算。
神经网络实现的关键是构建多层神经元,并定义激活函数和损失函数,通过反向传播算法调整权重和偏置,从而实现模型训练和预测。
其次是遗传算法(Genetic Algorithm,GA),它是受自然选择理论启发的一种优化算法。
在C语言中实现遗传算法时,可以定义个体的遗传编码、适应度函数和交叉、变异等操作。
通过不断进化种群中的个体,找到最优解。
在实现遗传算法时,可以使用C语言的随机数生成函数来生成随机种群,并使用适应度函数评估个体的优劣。
另外是模拟退火算法(Simulated Annealing,SA),它是一种基于退火原理的全局优化算法。
在C语言中实现模拟退火算法时,需要定义能量函数和状态转移函数,并通过控制温度参数来模拟退火过程。
模拟退火算法通过随机接受次优解的策略,逐步逼近全局最优解。
最后是强化学习算法(Reinforcement Learning,RL),它是一种基于奖励信号学习的算法。
在C语言中实现强化学习算法时,可以使用Q-learning或者Deep Q-learning等方法。
强化学习算法通过与环境的交互获得奖励信号,通过更新价值函数或策略函数来实现智能决策。
总的来说,C语言在实现人工智能算法时需要考虑如何高效利用内存和CPU资源,避免内存泄漏和性能瓶颈。
模拟退火算法及应用

一、概论1.1 问题概述在自然科学以及大多数科学当中和社会生活里经常出现最大或最小的问题,我们从小学开始学习大小比较,一直到高中大学时的最优解问题,都是一种名为最优化问题.最优化问题在大多是领域中都有重要的地位,例如管理科学、计算机科学、图像处理等等需要大量数据的学科中都存在着需要解决的组合优化问题。
用我们比较容易理解的说法就是已知一组固定的函数,令这组函数所对应的函数到达最大或最小值.而我们所想到的最简单的方法便是穷举法,然而这种方式存在这大量的数据计算穷举的缺点。
优化组合问题中的NP问题是一个很麻烦的问题,它解得规模会随着问题的规模增大而增大,求解所需的时间也会随问题的规模增大而成指数级增长,而当规模过大时就会因为时间的限制而失去了可行性。
旅行商问题(TSP)是优化组合问题中最为著名的一个问题,它的特点是容易描述却难于求解.这是一个经典的图论问题,假设有n个城市,用表示.城市之间距离为,i,j=1,2,3,···,n,假设所有城市之间两两连通,要求从一个城市出发,把所有城市都走一遍,而TSP问题就是恰好所有城市都走一遍,而所走路径形成回路且路径最短.将这个问题对应在一个n个顶点的完全图上,假设图为对称图,则要从个可能的解当中找到最小的解,需要的对比则要进行次,当的数值增大时,那么需要的次数也会随之以几何数倍增长,例如每秒运算一亿次的计算机,当需要的时间也只是0.0018秒,当需要的时间却是17年,可当时所需的时间却猛增到年,这个结果是我们所不想看到的。
优化组合问题的目标函数是从组合优化问题的可行解集当中求出最优解。
组合优化问题有三个基本要素:变量,约束和目标函数,在求解过程中选定的基本参数成为标量,对于变量的取值的所有限制称之为约束,表示可行的方案的标准的函数称之为目标函数。
随着问题种类的不同以及问题规模的扩大,要找到一种能够已有限代价来求解最优化问题的通用方法一直都是一个难题,建立用最大的可能性求解全局解一直是一个重要问题。
模拟退火算法

Keynote:尤志强
背景
模拟退火算法是Kirkpatrick提出,应组合优化问题而产生的,主要解决的是NP-hard问题。 优化问题可以分为:函数优化问题和组合优化问题两大类
1、函数优化问题: 可以描述为:令S为上的有界子集(即变量的定义域),f:S—>R为n维实值函数,所谓函数f在S域上全局最 小化就是寻求点XminS使得f(Xmin)在S域上全局最小,即X S:f(Xmin)<=f(X)
pr exp[(E j Ei ) / kt]
大于[0,1)区间内的随机数则仍旧接受新状态j为当前状态,若不成立则保留i为当前状态,其中k为 Boltzmann常数。 这种重要性采样过程在高温下可接受与当前状态能量差较大的新状态,而在低温下基本只接受与当 前能量差较小的新状态,而且当温度趋于零时,就不能接受比当前状态能量高的新状态。
背景
计算复杂度
由于某些优化算法所需的计算时间和存储空间难以承受,因此算法可解的问题在实践中不 一定可解。如TSP问题,可能的路径有n!,暴力求解显然是不行的。所以只有了解了研究 问题的复杂性,才能有针对性地设计算法,进而提高优化效率。
算法的时间和空间复杂性对计算机求解非常重要。问题的时间复杂性是指求解该问题的所 有算法中时间复杂性最小的算法的时间复杂性,同理,空间复杂性也有类似定义。这样, 按照计算复杂性理论研究问题求解的难易程度,可把问题分为P类、NP类和NP完全类。
背景
4、基于系统动态演化算法
将优化过程转化为系统动态的演化过程,基于系统动态的演化来实现优化,如神经网络和混沌 搜索等。
5、混合型算法 上述算法从结果或者操作上相混合而产生的各类算法
数学建模模拟退火算法

数学建模模拟退火算法
数学建模是一种将实际问题转化为数学问题,通过建立数学模型来分析和解决问题的方法。
而模拟退火算法则是一种基于概率的全局优化算法,常被用于求解复杂问题的最优解。
在数学建模中,模拟退火算法可以应用于各种领域,如图像处理、目标识别、路线规划等。
模拟退火算法的基本思想是从一个随机解开始,通过随机扰动和接受策略来探索可能解空间,并逐渐降温,使得随机扰动的程度逐渐减小,最终达到全局最优解。
在应用模拟退火算法时,需要确定初始温度、温度下降速度以及接受策略等参数。
在数学建模中,模拟退火算法可以应用于很多问题。
例如,在图像处理中,可以通过模拟退火算法对图像进行优化,如图像的平滑处理、边缘检测等。
在目标识别领域,模拟退火算法可以用于对目标进行跟踪和识别。
在路线规划问题中,模拟退火算法可以用于求解最优路径。
在应用模拟退火算法时,需要考虑算法的效率和精度。
为了提高效率,可以采用多种优化技巧,如快速随机数生成、启发式信息引导等。
为了提高精度,可以适当增加迭代次数和初始温度,以便探索更广泛的解空间。
总之,模拟退火算法是一种非常有用的全局优化算法,可以应用于很多数学建模问题中。
在实际应用中,需要根据具体问题的特点和需求来选择算法参数和优化技巧,以达到最佳效果。
- 1 -。
模拟退火算法

模拟退火算法模拟退火是一种通用概率算法,目的是在固定时间内在一个大的搜寻空间内寻求给定函数的全局最优解。
它通常被用于离散的搜索空间中,例如,旅行商问题。
特别地,对于确定的问题,模拟退火算法一般是优于穷举法。
这是由于我们一般只需得到一个可接受的最优解,而不是精确的最优解。
退火一词来源于冶金学。
退火(见图1)是将材料加热后再经特定速率冷却,目的是增大晶粒的体积,并且减少晶格中的缺陷。
材料中的原子原来会停留在使内能有局部最小值的位置,加热使能量变大,原子会离开原来位置,而随机在其他位置中移动。
退火冷却时速度较慢,使得原子有较多可能可以找到内能比原先更低的位置。
因此,我们将热力学的理论应用到统计学上,将搜寻空间内每一点想象成空气内的分子;分子的能量,就是它本身的动能;而搜寻空间内的每一点,也像空气分子一样带有“能量”,以表示该点对命题的合适程度。
而模拟退火算法先以搜寻空间内一个任意点作起始:每一步先选择一个“邻居”,然后再计算从现有位置到达“邻居”的概率。
模拟退火原理最早是 S. Kirkpatrick, C. D. Gelatt 和 M. P. Vecchi 在1983年所创造的。
而 V . Černý 在1985年也独立发明了此算法。
1. 问题描述数学上的最优化问题一般描述为如下形式:()()minimize()g 0,1,2,,subject to 0,1,2,,i i f x x i m h x i p≤=⎧⎪⎨==⎪⎩ 其中,():R n f x R →称作问题的目标函数,()g 0i x ≤称作问题的不等式约束条件,()0i h x =称作问题的等式约束条件。
寻求上述问题的最优解的过程就类似于从热动力系统的任意一个初始状态向内能最小的状态转移的过程,即退火过程。
2. 模拟退火算法基本思想模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有图1 物理退火原理图序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。
c语言编写的模拟退火算法的代码

c语言编写的模拟退火算法的代码以下是一个简单的C语言编写的模拟退火算法的代码示例: c.#include <stdio.h>。
#include <math.h>。
#include <stdlib.h>。
#include <time.h>。
#define N 100 // 待优化参数的个数。
#define T_INITIAL 100.0 // 初始温度。
#define T_FINAL 0.1 // 最终温度。
#define ALPHA 0.9 // 降温速率。
// 计算当前解的能量。
double calculateEnergy(double solution[]) {。
// 这里可以根据具体问题来定义能量的计算方式。
// 以下是一个简单的示例,假设能量为各参数的平方和。
double energy = 0.0;for (int i = 0; i < N; i++) {。
energy += solution[i] solution[i];}。
return energy;}。
// 生成新的解。
void generateNewSolution(double currentSolution[], double newSolution[], double T) {。
// 这里可以根据具体问题来定义如何生成新解。
// 以下是一个简单的示例,假设每个参数在当前解的基础上增加一个随机值。
for (int i = 0; i < N; i++) {。
newSolution[i] = currentSolution[i] + (double)rand() / RAND_MAX T;}。
}。
// 模拟退火算法。
void simulatedAnnealing() {。
double currentSolution[N]; // 当前解。
double newSolution[N]; // 新的解。
模拟退火算法算法

1 模拟退火算法概述
1.1 固体退火过程
数学表述
在温度T,分子停留在状态r满足Boltzmann概率分布
E (r ) 1 P{E E (r )} exp Z (T ) k BT E 表示分子能量的一个随 机变量,E (r )表示状态r的能量, k B 0为Boltzmann 常数。Z (T )为概率分布的标准化因 子:
• • • •
设定初始温度
控制参数的修改 解在邻域中的变化 最优解
模拟退火算法
SAA机理
优化问题的解视为固体的状态; 随机给定优化问题的初始解; 给定初始温度; 根据当前的解产生新的解; 依据Metropolis准则对两个解进行取舍; 重复以上两步直到达到热平衡; 降低温度继续上述过程直到温度降到最低, 最后的状态就认为是问题的解。
Pi kt
Metropolis准则
在温度t,初始状态i,该状态的能量为 Ei , 随机选取某个粒子的位移随机地产生一微小 变化,得到一个新状态j,新状态的能量为E j
E j Ei E j Ei
r e xp(
若r
则接受新状态j
则考虑到热运动的影响
E j Ei kt
) [0,1) 随机数
E ( s) Z (T ) exp k T sD B 温度低时能量低的微观状态概率大,温度趋于零时, 固体几乎处于概率最大能量最小的基态。
1 模拟退火算法概述
1.1 固体退火过程
数学表述
在同一个温度T,选定两个能量E1<E2,有
E1 E2 E1 1 P{E E1} P{E E2 } exp 1 exp Z (T ) k T k T B B
模拟退火算法

目录
搜索算法简介
模拟退火算法的原理
模拟退火算法的应用
英文文献介绍
参考文献
搜索问题
最小最优解的搜索
局部最优
除对当 前的位 置外, 对环境 无任何 感知。
全局最优
搜索算法
• 盲目搜索与启发式搜索 • 按照预定的控制策略实行搜索,在搜索过程中 获取的中间信息不用来改进控制策略,称之为 盲目搜索,反之,称为启发式搜索。 • 盲目搜索
文献讲解——问题描述
• 如图,为一个二维运输网,由供应商,直接转运设施与用 户组成,本文做出以下相关假设,约束条件方便建模。
文献讲解——算法应用
• 退火算法流程 所示如图
• 求新解的方法 1.改变货物的顺序 2.改变进入车的顺序 3.改变出去车的顺序
文献讲解——计算与结论
• 通过设置不同的参数(S/C/D/Fmax) • 文中设置了两个例子分析:单产品,单卡车模型与多产品 多卡车模型。
外文文献讲解[2]
• 文献题目:Simulated annealing approach for transportation problem of cross-docking network design • 译名:使用模拟退火方法解决运输问题中的直接转运网的 设计 • 2014年,Uludag 大学,第二届世界商业经济管理大会 • 研究背景:在产品供应链管理中,运输效率是一个重要因 素,高效的运输既满足了顾客的需求,也降低了成本。直 接转运策略降低了储存成本加速了产品流通,而直接转运 网的设计与优化是一个研究热点。 • 研究目的:设计二维的直接转运网络,设计卡车载运计划 与货物的流通路径来实现最低的运输费用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
double r1 = ((double)rand())/(RAND_MAX+1.0);
double r2 = ((double)rand())/(RAND_MAX+1.0);
int pos1 = (int)(N*r1); //第一个交叉点的位置
int pos2 = (int)(N*r2);
int temp = city_list[pos1];
}
}
}
T *= q; //降温
count++;
}
finish = clock(); //退火过程结束
double duration = ((double)(finish-start))/CLOCKS_PER_SEC; //计算时间
printf("采用模拟退火算法,初始温度T0=%.2f,降温系数q=%.2f,每个温度迭代%d次,共降温%d次,得到的TSP最优路径为:\n",T0,q,L,count);
#include<stdlib.h>
#include<string.h>
#include<time.h>
#include<math.h>
#define T0 50000.0 //初始温度
#define T_end (1e-8)
#define q 0.98 //退火系数
#define L 1000 //每个温度时的迭代次数,即链长
city_list[pos1] = city_list[pos2];
city_list[pos2] = temp; //交换两个点
}
//主函数
int main(void)
{
srand((unsigned)time(NULL)); //初始化随机数种子
time_t start,finish;
start = clock(); //程序运行开始计时
{18,40},{13,40},{82,7},{62,32},{58,35},{45,21}}; //中国27个城市坐标
//41 94;37 84;53 67;25 62;7 64;2 99;68 58;71 44;54 62;83 69;64 60;18 54;22 60;
//83 46;91 38;25 38;24 42;58 69;71 71;74 78;87 76;18 40;13 40;82 7;62 32;58 35;45 21
f2 = path_len(city_list);
df = f2 - f1;
//以下是Metropolis准则
if(df >= 0)
{
r = ((double)rand())/(RAND_MAX);
if(exp(-df/T) <= r) //保留原来的解
{
memcpy(city_list,city_list_copy,N*sizeof(int));
printf("程序运行耗时:%lf秒.\n",duration);
return 0;
}
double dis = distance(city_pos[index1-1],city_pos[index2-1]);
path += dis;
}
int last_index = *(arr+N-1); //最后一个城市序号
int first_index = *arr; //第一个城市序号
double last_dis = distance(city_pos[last_index-1],city_pos[first_index-1]);
#define N 27 //城市数量
int city_list[N]; //用于存放一个解
double city_pos[N][2] = {{41,94},{37,84},{53,67},{25,62},{7,64},{2,99},{68,58},{71,44},{54,62},
{83,69},{64,60},{18,54},{22,60},{83,46},{91,38},{25,38},{24,42},{58,69},{71,71},{74,78},{87,76},
/*
*使用模拟退火算法(SA)求解TSP问题(以中国TSP问题为例)
*参考自《Matlab智能算法30个案例分析》
*模拟退火的原理这里略去,可以参考上书或者相关论文
* update: 16/12/11
* author:lyrichu
* email:919987476@
*/
#include<stdio.h>
path = path + last_dis;
return path; //返回总的路径长度
}
//初始化函数
void init()
{
for(int i=0;i<N;i++)
city_list[i] = i+1; //初始化一个解
}
//产生一个新解
//此处采用随机交叉两个位置的方式产生新的解
void create_new()
double T;
int count = 0; //记录降温次数
T = T0; //初始温度
init(); //初始化一个解
int city_list_copy[N]; //用于保存原始解
double f1,f2,df; //f1为初始解目标函数值,f2为新解目标函数值,df为二者差值
double r; // 0-1之间的随机数,用来决定是否接受新解
{
double x1 = *city1;
double y1 = *(city1+1);
double x2 = *(city2);
double y2 = *(city2+1);
double dis = sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));
return dis;
}
//函数声明
double distance(double *,double *); //计算两个城市距离
double path_len(int *); //计算路径长度
void init(); //初始化函数
void create_new(); //产生新解
//距离函数
double distance(double * city1,double * city2)
for(int i=0;i<N-1;i++) //输出最优路径
{
printf("%d--->",city_list[i]);
}
printf("%d\n",city_list[N-1]);
double len = path_len(city_list); //最优路径长度
printf("最优路径长度为:%lf\n",len);
//计算路径长度
double path_len(int * arr)
{
double path = 0; //初始化路径长度
int index = *arr; //定位到第一个数字(城市序号)
for(int i=0;i<N-1;i++)
{
int index1 = *(arr+i);
int index2 = *(arr+i+1);
while(T > T_end) //当温度低于结束温度时,退火结束
{
for(int i=0;i<L;i++)
{
memcpy(city_list_copy,city_list,N*sizeof(int)); //复制数组
create_new(); //产生新解
f1 = path_len(city_list_copy);