模拟退火算法与MATLAB实现

合集下载

matlab模拟退火算法

matlab模拟退火算法

Matlab模拟退火算法简介模拟退火算法(Simulated Annealing, SA)是一种优化算法,灵感来自于固体退火过程。

它被广泛应用于组合优化问题和全局优化问题中,具有全局搜索能力和对局部最优解的逃逸能力。

在本文中,我们将探讨使用Matlab实现模拟退火算法的过程,以及如何通过调整参数来优化算法的性能。

算法原理模拟退火算法通过模拟金属退火的过程来进行优化。

在退火过程中,金属在高温下熔化,并逐渐降温,使得固体分子逐渐重新排列,形成更有序、能量更低的状态。

在优化问题中,我们将问题的解空间看作是金属的状态空间。

模拟退火算法通过随机扰动当前解,并以一定概率接受较差的解,来遍历整个解空间。

随着温度的降低,接受较差解的概率逐渐减小,最终收敛到全局最优解或近似最优解。

算法步骤模拟退火算法包括以下几个步骤:1. 初始化首先,需要初始化问题的初始解和温度参数。

初始解可以是随机生成的一个解,也可以是某种启发式算法得到的初步解。

温度参数一般设置一个较高的初值。

2. 邻域搜索在每一轮的退火过程中,通过对当前解进行邻域搜索来扰动解。

邻域搜索根据问题的特性可以设计多种方式,例如对解的某个或多个元素进行随机变动,或者进行局部搜索。

3. 目标函数差值计算计算扰动后的解与当前解的目标函数差值。

如果差值小于0,则接受新解;如果差值大于0,则以一定概率接受新解,概率由差值和当前温度决定。

4. 退火过程更新根据退火降温策略更新当前温度。

退火降温策略可以是线性降温、指数降温或自适应降温。

5. 收敛判断判断算法是否达到收敛条件,例如温度是否达到某个阈值,或者已经经过一定的迭代轮数。

6. 重复步骤2-5如果算法未收敛,则重复步骤2-5,直到收敛为止。

Matlab代码实现下面是使用Matlab实现模拟退火算法的伪代码:function [bestSolution, bestValue] = simulatedAnnealing(problem, maxIter, init ialTemp, coolingRate)currentSolution = initialSolution;bestSolution = currentSolution;currentValue = evaluate(problem, currentSolution);bestValue = currentValue;currentTemp = initialTemp;for iter = 1:maxIter% 邻域搜索newSolution = perturb(currentSolution);% 计算目标函数差值newValue = evaluate(problem, newSolution);delta = newValue - currentValue;% 接受新解if delta <= 0 || rand() < exp(-delta / currentTemp)currentSolution = newSolution;currentValue = newValue;end% 更新温度currentTemp = currentTemp * coolingRate;% 更新最优解if currentValue < bestValuebestSolution = currentSolution;bestValue = currentValue;endendend参数调优模拟退火算法的性能受到多个参数的影响,包括初始温度、降温速率、迭代次数等。

matlab带约束模拟退火算法

matlab带约束模拟退火算法

【文章】matlab带约束模拟退火算法深入探讨和分析matlab带约束模拟退火算法在现代科学和工程领域,优化问题是十分常见的。

而其中,约束优化问题更是一种常见的形式。

为了解决这类问题,人们经过长时间的探索,提出了许多方法,其中模拟退火算法便是一种被广泛应用的优化算法之一。

而在matlab中,带约束的模拟退火算法更是得到了丰富的实现和应用。

本文将从简单到复杂,由浅入深地介绍matlab带约束模拟退火算法,以帮助读者更好地理解和掌握这一优化方法。

1. 什么是模拟退火算法?模拟退火算法是一种基于模拟退火过程的全局优化算法。

它模拟了金属在高温下退火时的物理过程,通过不断降低系统的温度来寻找全局最优解。

在matlab中,模拟退火算法通常通过设置初始温度、终止温度、温度下降率等参数来实现。

2. 为什么需要约束?在实际问题中,许多优化问题都存在着一定的约束条件。

比如工程设计中的材料强度、生产计划中的资源限制等。

如何在求解优化问题时满足这些约束条件便成为了一个重要的问题。

3. matlab带约束模拟退火算法是如何工作的?在matlab中,带约束的模拟退火算法通过引入罚函数、拉格朗日乘子等方法来处理约束条件。

它不仅要寻找全局最优解,还要确保解满足一定的约束条件。

这就需要在温度下降的过程中,不断调整解的位置,以在搜索最优解的同时满足约束条件。

4. 代码实现及应用在matlab中,带约束的模拟退火算法通常通过调用现成的优化工具箱来实现。

我们可以通过设置目标函数、约束条件等参数,来对不同的优化问题进行求解。

可以用该算法来求解工程设计中的优化问题、生产计划中的调度优化问题等。

总结回顾通过本文的介绍,我们对matlab带约束模拟退火算法有了一个较为全面的了解。

我们知道了模拟退火算法是如何工作的,以及在matlab中如何处理带约束的优化问题。

在实际应用中,我们可以根据具体的问题,合理地设置参数和约束条件,来求解复杂的优化问题。

matlab模拟退火法

matlab模拟退火法

模拟退火算法是一种基于物理中退火过程的优化算法,适用于解决全局优化问题。

以下是一个基本的MATLAB模拟退火算法实现示例:
matlab
function SA()
% 参数设置
T = 1000; % 初始温度
alpha = 0.95; % 降温系数
x = rand(1,10); % 初始解
f = @(x) sum(x.^2 - 10*cos(2*pi*x) + 10); % 目标函数
while T > 1e-5
% 随机生成新解
x_new = x + randn(1,10);
% 计算新解的函数值
f_new = f(x_new);
% 计算接受概率
p = exp(-(f_new - f(x))/T);
% 以概率p接受新解,否则拒绝
if rand() < p
x = x_new;
f = f_new;
end
% 降温
T = T*alpha;
end
% 输出最优解和最优值
fprintf('最优解:%f\n', x);
fprintf('最优值:%f\n', f);
end
这个示例中,我们定义了一个目标函数f,它是一个简单的多峰函数。

我们使用一个随机生成的初始解作为初始解x,然后在一个循环中不断生成新的解,并计算其函数值。

我们根据接受概率决定是否接受新解,如果新解更好,则接受;否则,我们以一定的概率接受新解。

在每次迭代中,我们都会降低温度T,直到达到预设的终止条件。

最后,我们输出最优解和最优值。

模拟退火算法及其Matlab实现

模拟退火算法及其Matlab实现

模拟退火算法及其Matlab 实现模拟退火算法(Simulated Annealing algorithm ,简称SA )是柯克帕垂克(S. Kirkpatrick )于1982年受热力学中的固体退火过程与组合优化问题求解之间的某种“相似性”所启发而提出的,用于求解大规模组合优化问题的一种具有全局搜索功能的随机性近似算法。

与求解线性规划的单纯形法、Karmarkar 投影尺度法,求解非线性规划的最速下降法、Newton 法、共轭梯度法,求解整数规划的分支定界法、割平面法等经典的优化算法相比,模拟退火算法在很大程度上不受制于优化问题的具体形式和结构,具有很强的适应性和鲁棒性,因而也具有广泛的应用价值。

模拟退火算法源于对固体退火过程的模拟;采用Metropolis 接受准则;并用一组称为冷却进度表的参数来控制算法进程,使得算法在多项式时间里给出一个近似最优解。

固体退火过程的物理现象和统计性质是模拟退火算法的物理背景;Metropolis 接受准则使算法能够跳离局部最优的“陷阱”,是模拟退火算法能够获得整体最优解的关键;而冷却进度表的合理选择是算法应用的关键。

1 物理退火过程物理中的固体退火是先将固体加热至熔化,再徐徐冷却,使之凝固成规整晶体的热力学过程。

在加热固体时,固体粒子的热运动不断增加,随着温度的升高,粒子与其平衡位置的偏离越来越大,当温度升至溶解温度后,固体的规则性被彻底破坏,固体溶解为液体,粒子排列从较有序的结晶态转变为无序的液态,这个过程称为溶解。

溶解过程的目的是消除系统中原先可能存在的非均匀状态,使随后进行的冷却过程以某一平衡态为始点。

溶解过程与系统的熵增过程相联系,系统能量也随温度的升高而增大。

冷却时,液体粒子的热运动渐渐减弱,随着温度的徐徐降低,粒子运动渐趋有序。

当温度降至结晶温度后,粒子运动变为围绕晶体格点的微小振动,液体凝固成固体的晶态,这个过程称为退火。

退火过程之所以必须“徐徐”进行,是为了使系统在每一温度下都达到平衡态,最终达到固体的基态(图1-1)。

基于模拟退火算法的TSP问题研究报告附MATLAB程序

基于模拟退火算法的TSP问题研究报告附MATLAB程序

minL(T ) dtiti1
i 1
• 解的邻域:随机产生2个位置,让序列T上对应的 两个位置上的城市顺序对换。
max{ dij | j i, j 1, n} min{dij | j i, j 1, n}
i 1 i 1 n n
4.模拟退火算法求TSP问题
岗位职责三工作总结项目运维项目实施银青高速视频监控东毛隧道停车场项目全面实施ip设置贵州独平高速项目全面实施监控室机柜布线四心得体会在这段时间的学习过程中我对部门很多产品从零学起刚到公司的时候感觉压力很大经过这些时间的认真学习和实际操作调整心态现已完全能融入公司的各项岗位职责和管理制度中
TSP问题的模拟退火算法
3. 参数选取

t0
优。
tk+1=α*tk maxstep=maxstep+a
t0太大,计算时间增加;t0太小,会过早陷入局部最
4.模拟退火算法求TSP问题
• 解的表示:用一个访问序列T=(t1,t2,t3…,tn,t1)来表示 经过n个城市的顺序。 • 距离矩阵:D=(dij)是由城市i和城市j之间的距离所 组成的距离矩阵。 n • 数学模型:
如需程序,点击上传者,见“我的文档”。
1. 模拟退火简介
1.1 问题讨论
2. 模拟退火算法步骤 3. 参数选取 4. 模拟退火算法求解TSP问题
1模拟退火简介
• 物理解释:材料中的原子原来会停留在使内能 有局部最小值的位置,加热使能量变大,原子 会离开原来位置,而随机在其他位置中移动。 退火冷却时速度较慢,使得原子有较多可能可 以找到内能比原先更低的位置。 • 统计学解释:我们将热力学的理论套用到统计 学上,将搜寻空间内每一点想像成空气内的分 子;搜寻空间内的每一点,也像空气分子一样 带有“动能”,以表示该点对命题的合适程度。 算法先以搜寻空间内一个任意点作起始:每一 步先选择一个“邻居”,然后再计算从现有位 置到达“邻居”的概率。

模拟退火算法(MATLAB实现)

模拟退火算法(MATLAB实现)

实验用例:用模拟退火算法解决如下10个城市的TSP 问题,该问题最优解为691.2 opt f 。

表1 10个城市的坐标城市 X 坐标 Y 坐标 城市 X 坐标 Y 坐标3 0.4000 0.4439 8 0.8732 0.6536编程实现用MATLAB 实现模拟退火算法时,共编制了5个m 文件,分别如下 1、swap.mfunction [ newpath , position ] = swap( oldpath , number ) % 对 oldpath 进 行 互 换 操 作% number 为 产 生 的 新 路 径 的 个 数 % position 为 对 应 newpath 互 换 的 位 置 m = length( oldpath ) ; % 城 市 的 个 数 newpath = zeros( number , m ) ;position = sort( randi( m , number , 2 ) , 2 ); % 随 机 产 生 交 换 的 位 置 for i = 1 : numbernewpath( i , : ) = oldpath ;% 交 换 路 径 中 选 中 的 城 市newpath( i , position( i , 1 ) ) = oldpath( position( i , 2 ) ) ;newpath( i , position( i , 2 ) ) = oldpath( position( i , 1 ) ) ; end2、pathfare.mfunction [ objval ] = pathfare( fare , path ) % 计 算 路 径 path 的 代 价 objval% path 为 1 到 n 的 排 列 ,代 表 城 市 的 访 问 顺 序 ; % fare 为 代 价 矩 阵 , 且 为 方 阵 。

[ m , n ] = size( path ) ; objval = zeros( 1 , m ) ; for i = 1 : mfor j = 2 : nobjval( i ) = objval( i ) + fare( path( i , j - 1 ) , path( i , j ) ) ; endobjval( i ) = objval( i ) + fare( path( i , n ) , path( i , 1 ) ) ; end3、distance.mfunction [ fare ] = distance( coord )% 根据各城市的距离坐标求相互之间的距离% fare 为各城市的距离,coord 为各城市的坐标[ ~ , m ] = size( coord ) ; % m 为城市的个数fare = zeros( m ) ;for i = 1 : m % 外层为行for j = i : m % 内层为列fare( i , j ) = ...( sum( ( coord( : , i ) - coord( : , j ) ) .^ 2 ) ) ^ 0.5 ;fare( j , i ) = fare( i , j ) ; % 距离矩阵对称endend4、myplot.mfunction [ ] = myplot( path , coord , pathfar )% 做出路径的图形% path 为要做图的路径,coord 为各个城市的坐标% pathfar 为路径path 对应的费用len = length( path ) ;clf ;hold on ;title( [ '近似最短路径如下,费用为' , num2str( pathfar ) ] ) ;plot( coord( 1 , : ) , coord( 2 , : ) , 'ok');pause( 0.4 ) ;for ii = 2 : lenplot( coord( 1 , path( [ ii - 1 , ii ] ) ) , coord( 2 , path( [ ii - 1 , ii ] ) ) , '-b');x = sum( coord( 1 , path( [ ii - 1 , ii ] ) ) ) / 2 ;y = sum( coord( 2 , path( [ ii - 1 , ii ] ) ) ) / 2 ;text( x , y , [ '(' , num2str( ii - 1 ) , ')' ] ) ;pause( 0.4 ) ;endplot( coord( 1 , path( [ 1 , len ] ) ) , coord( 2 , path( [ 1 , len ] ) ) , '-b' ) ;x = sum( coord( 1 , path( [ 1 , len ] ) ) ) / 2 ;y = sum( coord( 2 , path( [ 1 , len ] ) ) ) / 2 ;text( x , y , [ '(' , num2str( len ) , ')' ] ) ;pause( 0.4 ) ;hold off ;5、mySAA.m% 模拟退火算法( Simulated Annealing Algorithm ) MATLAB 程序% 程序参数设定Coord = ... % 城市的坐标Coordinates[ 0.6683 0.6195 0.4 0.2439 0.1707 0.2293 0.5171 0.8732 0.6878 0.8488 ; ...0.2536 0.2634 0.4439 0.1463 0.2293 0.761 0.9414 0.6536 0.5219 0.3609 ] ;t0 = 1 ; % 初温t0iLk = 20 ; % 内循环最大迭代次数iLkoLk = 50 ; % 外循环最大迭代次数oLklam = 0.95 ; % λ lambdaistd = 0.001 ; % 若内循环函数值方差小于istd 则停止ostd = 0.001 ; % 若外循环函数值方差小于ostd 则停止ilen = 5 ; % 内循环保存的目标函数值个数olen = 5 ; % 外循环保存的目标函数值个数% 程序主体m = length( Coord ) ; % 城市的个数mfare = distance( Coord ) ; % 路径费用farepath = 1 : m ; % 初始路径pathpathfar = pathfare( fare , path ) ; % 路径费用path fareores = zeros( 1 , olen ) ; % 外循环保存的目标函数值e0 = pathfar ; % 能量初值e0t = t0 ; % 温度tfor out = 1 : oLk % 外循环模拟退火过程ires = zeros( 1 , ilen ) ; % 内循环保存的目标函数值for in = 1 : iLk % 内循环模拟热平衡过程[ newpath , ~ ] = swap( path , 1 ) ; % 产生新状态e1 = pathfare( fare , newpath ) ; % 新状态能量% Metropolis 抽样稳定准则r = min( 1 , exp( - ( e1 - e0 ) / t ) ) ;if rand < rpath = newpath ; % 更新最佳状态e0 = e1 ;endires = [ ires( 2 : end ) e0 ] ; % 保存新状态能量% 内循环终止准则:连续ilen 个状态能量波动小于istd if std( ires , 1 ) < istdbreak ;endendores = [ ores( 2 : end ) e0 ] ; % 保存新状态能量% 外循环终止准则:连续olen 个状态能量波动小于ostd if std( ores , 1 ) < ostdbreak ;endt = lam * t ;pathfar = e0 ;% 输 入 结 果fprintf( '近似最优路径为:\n ' )%disp( char( [ path , path(1) ] + 64 ) ) ; disp(path)fprintf( '近似最优路径费用\tpathfare=' ) ; disp( pathfar ) ;myplot( path , Coord , pathfar ) ;一次运行结果如下:0.10.20.30.40.50.60.70.80.90.10.20.30.40.50.60.70.80.91近似最短路径如下,费用为2.6907我试着运行了几次(只是改变了一下初温,也可以更改一下其他参数),发现初始温度t0=1时程序的最后结果与最优解差距小的概率比较大。

模拟退火算法原理及matlab源代码

模拟退火算法原理及matlab源代码

模拟退火算法模拟退火算法是一种通用的随机搜索算法,是局部搜索算法的扩展。

它的思想是再1953年由metropolis提出来的,到1983年由kirkpatrick等人成功地应用在组合优化问题中。

模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。

根据Metropolis准则,粒子在温度T时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann常数。

用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对当前解重复“产生新解→计算目标函数差→接受或舍弃”的迭代,并逐步衰减t值,算法终止时的当前解即为所得近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。

退火过程由冷却进度表(Cooling Schedule)控制,包括控制参数的初值t及其衰减因子Δt、每个t值时的迭代次数L和停止条件S。

模拟退火算法新解的产生和接受可分为如下四个步骤:第一步是由一个产生函数从当前解产生一个位于解空间的新解;为便于后续的计算和接受,减少算法耗时,通常选择由当前新解经过简单地变换即可产生新解的方法,如对构成新解的全部或部分元素进行置换、互换等,注意到产生新解的变换方法决定了当前新解的邻域结构,因而对冷却进度表的选取有一定的影响。

第二步是计算与新解所对应的目标函数差。

因为目标函数差仅由变换部分产生,所以目标函数差的计算最好按增量计算。

事实表明,对大多数应用而言,这是计算目标函数差的最快方法。

第三步是判断新解是否被接受,判断的依据是一个接受准则,最常用的接受准则是Metropo1is准则: 若Δt′<0则接受S′作为新的当前解S,否则以概率exp(-Δt′/T)接受S′作为新的当前解S。

matlab中模拟退火算法 -回复

matlab中模拟退火算法 -回复

matlab中模拟退火算法-回复一、引言(150-250字)模拟退火算法是一种启发式优化算法,常用于求解复杂问题的全局最优解。

它借鉴了金属热处理中的退火过程,通过“短期升高- 长期降低”的策略,逐步降低系统能量,从而寻找全局最优解。

本文将详细介绍模拟退火算法的原理、步骤以及在MATLAB中的实现。

二、模拟退火算法的原理(300-500字)模拟退火算法的原理基于统计物理学中的退火过程。

在退火过程中,金属在高温下受热膨胀,然后逐渐冷却并固化,最终达到理想的稳定结构。

类比于优化问题,模拟退火算法通过引入一个控制参数T(温度),来模拟热力学系统的能量降低过程。

算法的核心思想是设置一个初始状态,并根据概率函数来决定是否采用新状态。

在较高的温度下,允许接受较差解,以跳出局部最优。

随着迭代的进行,温度逐渐降低,接受较差解的概率减小,最终收敛于全局最优解。

三、模拟退火算法的步骤(400-600字)1. 初始化首先,设置初始温度T0和初始解S0,并确定退火终止温度Tend和最大迭代数MaxIter。

此外,还需要设置相邻解产生的方式(如交换、变异或其他操作)以及目标函数。

2. 迭代循环在每次迭代中,根据当前温度和当前解生成一个相邻解。

然后,计算目标函数得分,并与当前解的得分进行比较。

3. 判断是否接受新解根据Metropolis准则,计算接受新解的概率p。

如果新解的得分更好,则直接接受;否则,以概率p接受。

这个概率与新解得分较差的程度以及当前温度有关。

4. 降低温度在每次迭代之后,逐渐降低温度来降低概率p。

常用的温度更新函数有线性降温和指数降温。

5. 判断终止条件当满足一定的终止条件时,停止迭代。

终止条件可以是迭代次数达到上限,温度达到终止温度,或者收敛性达到一定程度。

四、MATLAB中模拟退火算法的实现(400-600字)在MATLAB中,可以使用以下步骤实现模拟退火算法:1. 初始化参数根据问题特点和需求,定义初始温度T0、终止温度Tend、最大迭代数MaxIter,选择合适的温度更新函数等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
else sol_new = sol_current;
end end
6.3 应用实例:背包问题的求解
一、0-1背包问题
例:
假设有12件物品,质量分别为2磅、5磅、18磅、3磅、2磅、5磅、 10磅、4磅、11磅、7磅、14磅、6磅,价值分别为5元、10元、13元、 4元、3元、11元、13元、10元、8元、16元、7元、4元,包的最大允 许质量是46磅
一、算法设计步骤
while t>=tf
for r=1:Markov_length
if (rand < 0.5)
else
%随机产生0~1的数,若小于0.5,则二变换
ind1 = 0; ind2 = 0; while (ind1 == ind2)
ind1 = ceil(rand.*amount); ind2 = ceil(rand.*amount); end tmp1 = sol_new(ind1); sol_new(ind1) = sol_new(ind2); sol_new(ind2) = tmp1;
N 结束,输出当
Y
前解
扰动次数
Y
>10000
N
接受新解作为 当前解
N
Y 计算概率与[0,1)随机
数之间的差值
Y
差值大于0
N
扰动:
随机产生 0~1的数
数>0.5
Y
N
二变换法
三变换法
6.2 算法的MATLAB实现
一、算法设计步骤
6.2 算法的MATLAB实现
一、算法设计步骤
6.2 算法的MATLAB实现
tmplist1 = sol_new((ind1+1):(ind2-1)); %u、v之间的城市 sol_new((ind1+1):(ind1+ind3-ind2+1)) = ...
sol_new((ind2):(ind3)); %将v到w的城市移到u后面 sol_new((ind1+ind3-ind2+2):ind3) = ...
简单了解退火算法特点
爬山算法 如图所示:假设C点为当前解,爬山算法搜索
到A点这个局部最优解就会停止搜索,因为在A点无 论向那个方向小幅度移动都不能得到更优的解。
模拟退火算法 在搜索到局部最优解A后,会以一定的概率接受到E
的移动。也许经过几次这样的不是局部最优的移动后会 到达D点,于是就跳出了局部最大值A。
一、算法概述
模拟退火算法(SA)是一种通用概率算法。用来 在一个大的搜索空间内寻找问题的最优解。
1953年,Metropolis等提出了模拟退火的思想。 1983年,Kirkpatrick等将SA引入组合优化领域。
6.1 算法基本理论
二、基本思想
退火,俗称固体降温 先把固体加热至足够高温,使固体中所有粒子处 于无序的状态,然后将温度缓慢下降,粒子渐渐有序, 这样只要温度上升得足够高,冷却过程足够慢,则所 有粒子最终会处于最低能态。
虽然在低温时接受函数已经非常小了,但仍不排除有 接受更差解得可能,因此一般都会把退火过程中碰到的最 好的可行解(历史最优解)也记录下来,与终止算法前最 后被接受解一并输出。
6.1 算法基本理论
五、几点说明
1、新解的产生 要求尽可能地遍及解空间的各个区域,这样,在某一
恒定温度下,不断产生新解时,就可能跳出局部最优解。 2、收敛的一般条件:
模拟退火算法及其 MATLAB实现
谢谢大家!
知识回顾 Knowledge Review
放映结束 感谢各位的批评指导!
谢 谢!
让我们共同进步ຫໍສະໝຸດ Y前解Y N
接受新解作为 当前解
N
Y 计算概率与[0,1)随机
数之间的差值
Y
差值大于0
N
6.1 算法基本理论
四、算法基本步骤
算法实质分为两层循环,在任一温度下随机扰动产生 新解,计算目标函数值的变化,决定是否接受。由于算法 初始温度比较高,这样使E增大的新解在初始时也可能被 接受,因此能跳出局部极小值,然后通过缓慢地降低温度, 算法可能收敛到全局最优解。
6.1 算法基本理论
一、算法概述
工程中许多实际优化问题的目标函数都是非凸的, 存在许多局部最优解。
求解全局优化问题的方法可分为两类: 确定性方法和随机性方法。 确定性算法适用于求解具有一些特殊特征的问题, 而梯度法和一般的随机搜索方法则沿着目标函数下降方 向搜索,因此常常陷入局部而非全局最优解。
6.1 算法基本理论
• 初始温度足够高; • 热平衡时间足够长; • 终止温度足够低; • 降温过程足够缓慢;
6.1 算法基本理论
五、几点说明
6.1 算法基本理论
六、 算法优缺点
优点:
计算过程简单,通用,鲁棒性强,适用于并行处理, 可用于求解复杂的非线性优化问题。
缺点:
收敛速度慢,执行时间长,算法性能与初始值有关 及参数敏感等缺点。
%否则,三变换
ind1 = 0; ind2 = 0; ind3 = 0; while (ind1 == ind2) || (ind1 == ind3) ...
|| (ind2 == ind3) || (abs(ind1-ind2) == 1) ind1 = ceil(rand.*amount); ind2 = ceil(rand.*amount); ind3 = ceil(rand.*amount); end tmp1 = ind1;tmp2 = ind2;tmp3 = ind3;
end
%从第一个城市到最后一个城市的距离
E_new = E_new + ... dist_matrix(sol_new(amount),sol_new(1));
6.2 算法的MATLAB实现
一、算法设计步骤
6.2 算法的MATLAB实现
一、算法设计步骤
if E_new < E_current E_current = E_new; sol_current = sol_new; if E_new < E_best
tmplist1; %u、v之间的城市移到w后面 end
6.2 算法的MATLAB实现
一、算法设计步骤
6.2 算法的MATLAB实现
一、算法设计步骤
% 计算目标函数即内能
E_new = 0; for i = 1 : (amount-1)
E_new = E_new + ... dist_matrix(sol_new(i),sol_new(i+1));
6.2 算法的MATLAB实现
一、算法设计步骤
if (ind1 < ind2) && (ind2 < ind3) elseif (ind1 < ind3) && (ind3 < ind2) ind2 = tmp3;ind3 = tmp2; elseif (ind2 < ind1) && (ind1 < ind3) ind1 = tmp2;ind2 = tmp1; elseif (ind2 < ind3) && (ind3 < ind1) ind1 = tmp2;ind2 = tmp3; ind3 = tmp1; elseif (ind3 < ind1) && (ind1 < ind2) ind1 = tmp3;ind2 = tmp1; ind3 = tmp2; elseif (ind3 < ind2) && (ind2 < ind1) ind1 = tmp3;ind2 = tmp2; ind3 = tmp1; end % ind1 < ind2 < ind3
随着温度降低,概率降低,较差解被接受的次数减少, 当前解逐渐停留到最优解周围。
温度达到终止温度前,概率足够低,使得只有最优解 被接受,较差解都不接受。最优解即为最后接受的当前解。
6.1 算法基本理论
三、算法其他参数的说明
6.1 算法基本理论
四、算法基本步骤
初始温度,随 机产生初始解。
N 结束,输出当
6.2 算法的MATLAB实现
旅行商问题
一名商人要到n 个不同的城市去推销商品, 每2 个城市I 和j 之间的距离为d,如何选择一条
路径使得商人每个城市走一遍后回到起点所走 的路径最短。
例: 有52座城市,已知每座城市的坐标,求每
个城市走一遍后回到起点,所走的路径最短。
初始温度(93),随 机产生初始解(1到 52的随机排列)。
模拟退火算法及其 MATLAB实现
第6章 模拟退火算法及其MATLAB实现
6.1 算法基本理论 6.2 算法的MATLAB实现 6.3 应用实例
简单了解退火算法特点
介绍模拟退火前,先介绍爬山算法。 爬山算法是一种简单的贪心搜索算法,该算法每次从 当前解的临近解空间中选择一个最优解作为当前解,直到 达到一个局部最优解。
6.1 算法基本理论
模拟退火算法的由来
模拟退火 解
最优解 目标函数f 控制参数
退火 粒子状态 能量最低的状态
内能 温度T
算法试图随着控制参数T的降低,使目标函 数值f(内能E)也逐渐降低,直至趋于全局最 小值(退火中低温时的最低能量状态),算法
工作过程就像固体退火过程一样。
6.1 算法基本理论
Metropolis准则
% 冷却过程中最好的解保存下来´
E_best = E_new; sol_best = sol_new; end else
% 若新解的目标函数大于当前解的, % 则以一定的概率接受新解
if rand < exp(-(E_new-E_current)./t) E_current = E_new; sol_current = sol_new;
相关文档
最新文档