模拟退火算法求解TSP问题Matlab源码
使用matlab实现模拟退火算法

使用matlab实现模拟退火算法标题:使用MATLAB实现模拟退火算法:优化问题的全局搜索方法引言:模拟退火算法(Simulated Annealing)是一种经典的全局优化算法,常用于解决各种实际问题,如组合优化、参数优化、图形分割等。
本文将详细介绍如何使用MATLAB实现模拟退火算法,并介绍其原理、步骤以及代码实现。
1. 模拟退火算法简介模拟退火算法借鉴了金属退火的物理过程,在解空间中进行随机搜索,用于找到全局最优解。
其核心思想是通过接受一定概率的劣解,避免陷入局部极小值,从而实现全局优化。
2. 模拟退火算法步骤2.1 初始参数设置在使用MATLAB实现模拟退火算法之前,我们需要配置一些初始参数,包括起始温度、终止温度、温度衰减系数等。
这些参数的合理设定对算法的效果至关重要。
2.2 初始解的生成在模拟退火算法中,我们需要随机生成一个初始解,作为搜索的起点。
这个初始解可以是随机生成的,也可以是根据问题本身的特性生成的。
2.3 判定条件模拟退火算法需要一个判定条件来决定是否接受新解。
通常我们使用目标函数值的差异来评估新解的优劣。
如果新解更优,则接受;否则,按照一定概率接受。
2.4 温度更新模拟退火算法中最重要的一步是对温度的更新。
温度越高,接受劣解的概率就越大,随着迭代的进行,温度逐渐降低,最终达到终止温度。
2.5 迭代过程在每次迭代中,我们通过随机生成邻近解,计算其目标函数值,并根据判定条件决定是否接受。
同时,根据温度更新的规则调整温度。
迭代过程中,不断更新当前的最优解。
3. MATLAB实现模拟退火算法在MATLAB中,我们可以通过编写函数或使用内置函数来实现模拟退火算法。
具体的实现方法取决于问题的复杂度和求解的要求。
我们需要确保代码的可读性和可复用性。
4. 示例案例:TSP问题求解为了演示模拟退火算法的实际应用,我们将以旅行商问题(Traveling Salesman Problem,TSP)为例进行求解。
matlab模拟退火法

模拟退火算法是一种基于物理中退火过程的优化算法,适用于解决全局优化问题。
以下是一个基本的MATLAB模拟退火算法实现示例:
matlab
function SA()
% 参数设置
T = 1000; % 初始温度
alpha = 0.95; % 降温系数
x = rand(1,10); % 初始解
f = @(x) sum(x.^2 - 10*cos(2*pi*x) + 10); % 目标函数
while T > 1e-5
% 随机生成新解
x_new = x + randn(1,10);
% 计算新解的函数值
f_new = f(x_new);
% 计算接受概率
p = exp(-(f_new - f(x))/T);
% 以概率p接受新解,否则拒绝
if rand() < p
x = x_new;
f = f_new;
end
% 降温
T = T*alpha;
end
% 输出最优解和最优值
fprintf('最优解:%f\n', x);
fprintf('最优值:%f\n', f);
end
这个示例中,我们定义了一个目标函数f,它是一个简单的多峰函数。
我们使用一个随机生成的初始解作为初始解x,然后在一个循环中不断生成新的解,并计算其函数值。
我们根据接受概率决定是否接受新解,如果新解更好,则接受;否则,我们以一定的概率接受新解。
在每次迭代中,我们都会降低温度T,直到达到预设的终止条件。
最后,我们输出最优解和最优值。
一些解决TSP问题的算法及源代码

模拟退火算法新解的产生和接受可分为如下四个步骤:
第一步是由一个产生函数从当前解产生一个位于解空间的新解;为便于后续的计算和接受,减少算法耗时,通常选择由当
前新解经过简单地变换即可产生新解的方法,如对构成新解的全部或部分元素进行置换、互换等,注意到产生新解的变换方法
决定了当前新解的邻域结构,因而对冷却进度表的选取有一定的影响。
(3)产生新解S′
(4)计算增量Δt′=C(S′)-C(S),其中C(S)为评价函数
(5)若Δt′<0则接受S′作为新的当前解,否则以概率exp(-Δt′/T)接受S′作为新的当前解.
(6)如果满足终止条件则输出当前解作为最优解,结束程序。
终止条件通常取为连续若干个新解都没有被接受时终止算法。
(7) T逐渐减少,且T->0,然后转第2步。
(wm, wm-1 ,…,w1 , wm+1 ,…,wk-1 ,wn , wn-1 ,…,wk).
上述变换方法可简单说成是“逆转中间或者逆转两端”。
也可以采用其他的变换方法,有些变换有独特的优越性,有时也将它们交替使用,得到一种更好方法。
代价函数差设将(w1, w2 ,……,wn)变换为(u1, u2 ,……,un),则代价函数差为:
第二步是计算与新解所对应的目标函数差。因为目标函数差仅由变换部分产生,所以目标函数差的计算最好按增量计算。
事实表明,对大多数应用而言,这是计算目标函数差的最快方法。
第三步是判断新解是否被接受,判断的依据是一个接受准则,最常用的接受准则是Metropo1is准则:若Δt′<0则接受S′作
为新的当前解S,否则以概率exp(-Δt′/T)接受S′作为新的当前解S。
% coordinates given by LOC, which is an M by 2 matrix and M is
TSP问题的求解

(1)优点:算法稳定,易得标准值 (2)缺点:针对 TSP 问题,需要先计算出第 i 个城市到其余城市的距离, 当城市数目较多时计算复杂。
关键词:TSP 问题 模拟退火算法 线性规划 遗传算法
一、问题重述
1.1 引言 TSP 是典型的组合优化问题, 并且是一个 NP-hard 问题,TSP 简单描述为:
一名商人欲到 n 个不同的城市去推销商品, 每 2 个城市 i 和 j 之间的距离为 d ij , 如何选择一条路径使得商人每个城市走一遍后回到起点, 所走的路径最短。用数 学符号表示为:设 n 维向量 s =(c1 , c2 , …, cn )表示一条路经, 目标函数为:min
小可以不断变化。在该题中,取温度的衰减系数α=0.9,其中固定温度下最大迭 代次数为:100 次,固定温度下目标函数值允许的最大连续未改进次数为 5 次, 即当算法搜索到的最优值连续若干步保持不变时停止迭代。
④最短路径的确定
借助 Matlab 通过模拟退火算法得出最短路径为:27—26—25—24—15— 14—8—7—11—10—21—20—19—18—9—3—2—1—6—5—4—13—12—30—23 —22—17—16—29—28—27,最短路径图如下图 1
图1 最短距离为:423.7406
(2)法二:遗传算法 优化过程如下图 2 所示:
图2 初始种群中的一个随机值(初始路径):
22—6—3—16—11—30—7—28—17—14—8—5—29—21—25—27—26—19 —15—1—23—2—4—18—24—13—9—20—10—12—22
模拟退火算法求解TSP问题

计算机进行搜索 ,Ⅳ= 7时,需要 O0005s . 2 ;N 0 l 时 需要 18h 5 . ;N=2 0时猛 增 到 30a 5 ;N:5 0
=
时则需要 5 0 年 !显然 ,如此求 TP问题 的方 ×l4 8 S
法是 不可行 的 。
如何选择路线可使他所走过的路程最短。TP问题 S 表面看 很简 单 ,其实不 然 。当 T P问题 的规 模 为 N S
个 城市 时 ,可行 解 集 中 的路 径 数 为 ( 一1 !/, N ) 2 要从 ( N一1 !/ 个 可 行 解 中找 出哪 条 路 径最 短 , ) 2
约束 函数没有任何要求。利用 M tpl 算法并适 eoos r i 当地控制温度下降过程 , 在优化问题中具有很强的 竞争 力 ,因此研 究 s A算 法 在优 化 中 的应 用显 得 尤 为重 要 。本 文就应 用 s A解决 T P问题 。】 S l
说 明模 拟退 火 算 法 的优 缺 点 。
关键词 :模拟退 火;组合优化 ;T P问题 S 中图分类号 :T 23 1 F7. 文献标识码 :A 文章编号 :10 —05 (08 1 09 —0 0 1 0X 20 )0 — 04 3 s ln s rbe o iga pP ol v m U ig i lt n el Agr h F n a , u Q N i esFr t n e i ,H t s Smua dA n a n e  ̄ l i m/egJ n Y e i( o hat oe r i rt a- ot i t syU v sy
( 北 林业 大学 哈 尔滨 东 104 ) 500
摘
要 :模拟退 火算 法在处理全局 优化、 离散 变量优化等 困难 问题 中,具有传统优化 算法无可 比拟 的优 势。
模拟退火算法

模拟退火算法模拟退火是一种通用概率算法,目的是在固定时间内在一个大的搜寻空间内寻求给定函数的全局最优解。
它通常被用于离散的搜索空间中,例如,旅行商问题。
特别地,对于确定的问题,模拟退火算法一般是优于穷举法。
这是由于我们一般只需得到一个可接受的最优解,而不是精确的最优解。
退火一词来源于冶金学。
退火(见图1)是将材料加热后再经特定速率冷却,目的是增大晶粒的体积,并且减少晶格中的缺陷。
材料中的原子原来会停留在使内能有局部最小值的位置,加热使能量变大,原子会离开原来位置,而随机在其他位置中移动。
退火冷却时速度较慢,使得原子有较多可能可以找到内能比原先更低的位置。
因此,我们将热力学的理论应用到统计学上,将搜寻空间内每一点想象成空气内的分子;分子的能量,就是它本身的动能;而搜寻空间内的每一点,也像空气分子一样带有“能量”,以表示该点对命题的合适程度。
而模拟退火算法先以搜寻空间内一个任意点作起始:每一步先选择一个“邻居”,然后再计算从现有位置到达“邻居”的概率。
模拟退火原理最早是 S. Kirkpatrick, C. D. Gelatt 和 M. P. Vecchi 在1983年所创造的。
而 V . Černý 在1985年也独立发明了此算法。
1. 问题描述数学上的最优化问题一般描述为如下形式:()()minimize()g 0,1,2,,subject to 0,1,2,,i i f x x i m h x i p≤=⎧⎪⎨==⎪⎩ 其中,():R n f x R →称作问题的目标函数,()g 0i x ≤称作问题的不等式约束条件,()0i h x =称作问题的等式约束条件。
寻求上述问题的最优解的过程就类似于从热动力系统的任意一个初始状态向内能最小的状态转移的过程,即退火过程。
2. 模拟退火算法基本思想模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有图1 物理退火原理图序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。
免疫模拟退火算法求解TSP

文 章 编 号 1 0 — 3 1 2 0 ) 8 0 3 — 2 文 献 标识 码 A 0 2 8 3 (0 6 2 — 0 8 0
I mm u e S m u a e n ai g Al o ih n i l t d An e l g rt m o P n f r TS
po oe o te a i f i ltd n el g lg r h rp s d n h b ss s o muae a n ai a o t m a d mmu e lo tm.y et g h d t o C n i n i n ag r h B tsi te aa f HN 4 n i n 1 a d 4
Ab t a t a r c :T e p p r i t d c s s me t e r s o mmu o o yA e i h a e nr u e o h o e f i o i n l g . n w mmu e smu ae n e l g ag r h fr T P i n i lt d a n a i lo i m o S s n t
P 0 2, e e p re c s s o h t t e ag rtm a o d p r r n e R1 0 t x e n e h w t a h lo h h s a g o e f ma c . h i i o Ke wo d y r s: t v l g ae ma p o lm ,i lt d n e l g l o t m , r ei s ls n r b e s a n mu ae a n a i a g r h i n i mmu e ag r h ,mmu e i ltd n e l g n lo t m i i n smu ae a n a i n ag r h lo tm i
用模拟退火算法解决TSP问题

用模拟退火算法解决TSP问题旅行商问题(Traveling Salesman Problem,TSP)是指一个旅行商要在不重复地经过全部的指定城市之后回到起点,所需要走的最短路径长度是多少。
由于TSP问题具有NP难度,因此传统的精确算法要花费大量的计算资源,得到的结果往往也只能是近似最优解。
而模拟退火算法是一种集合随机性和概率思想的启发式方法,可以快速地在解空间中搜索到一个较优的解。
一、模拟退火算法的原理及过程模拟退火算法是一种以概率为基础的全局优化算法,它的基本思想是利用随机性来逃离局部最优解,让搜索过程在解空间中跳跃,最终逐渐接近全局最优解。
模拟退火算法的过程可以分为三个阶段:初始化阶段、搜索阶段和收敛阶段。
初始化阶段:首先需要对问题进行建模,将问题转化为算法可处理的形式。
在TSP问题中,需要建立一个城市间距离矩阵。
然后随机生成一个初始解,通常是一个随机序列,表示旅行商经过城市的顺序。
搜索阶段:对生成的初始解进行扰动,得到一个新的解,并计算新解的目标函数值。
如果新解比原解更优,则直接接受该解。
如果新解比原解更劣,则有一定的概率接受该解,概率随着时间的推移逐渐降低。
收敛阶段:在搜索过程中,随着温度的不断下降,概率接受劣解的概率越来越小,这时算法逐渐收敛到一个局部最优解,也可能是全局最优解。
二、TSP问题的建模及求解TSP问题可以建立一张城市距离矩阵,然后用随机序列来表示旅行商经过城市的顺序。
目标函数可以定义为旅行商经过所有城市的总路径长度。
假设有n个城市,城市之间的距离矩阵为D,表示第i个城市和第j个城市之间的距离。
而旅行商经过城市的顺序可以用一个长度为n的序列{1,2,...,n}来表示,表示旅行商先经过第1个城市,然后是第2个城市,一直到第n个城市,然后再回到原点。
设目前的解序列为s={s1,s2,...,sn},则其总路径长度为:L(s) = ∑i=1n D(si,si+1) + D(sn,1)其中D(si,si+1)表示城市si和si+1之间的距离,D(sn,1)表示最后回到起点的距离。