模拟退火算法算法的简介及程序

合集下载

模拟退火算法解决优化问题

模拟退火算法解决优化问题

模拟退火算法解决优化问题模拟退火算法(Simulated Annealing,SA)是一种基于模拟固体退火过程的全局优化算法,被广泛应用于解决各种优化问题。

它的基本思想源于固体退火过程中的原子热运动,通过模拟原子在退火过程中的状态变化,寻找全局最优解。

本文将介绍模拟退火算法的基本原理、算法流程以及在解决优化问题中的应用。

一、模拟退火算法的基本原理模拟退火算法的基本原理来自于固体物理学中的固体退火过程。

在固体退火过程中,固体在高温下加热后逐渐冷却,原子会随着温度的降低而逐渐趋于稳定状态。

类比到优化问题中,算法在搜索过程中允许一定概率接受比当前解更差的解,以避免陷入局部最优解,最终达到全局最优解。

二、模拟退火算法的基本步骤1. 初始化:随机生成初始解,并设定初始温度和终止条件。

2. 选择邻域解:根据当前解生成邻域解。

3. 接受准则:根据一定概率接受邻域解,更新当前解。

4. 降温策略:根据降温策略逐渐降低温度。

5. 终止条件:达到终止条件时停止搜索,输出最优解。

三、模拟退火算法的应用模拟退火算法在解决各种优化问题中都有广泛的应用,包括组合优化、函数优化、图像处理等领域。

下面以组合优化问题为例,介绍模拟退火算法的具体应用。

1. 旅行商问题(TSP):旅行商问题是一个经典的组合优化问题,目标是找到一条最短路径经过所有城市并回到起点。

模拟退火算法可以通过不断调整路径来寻找最优解。

2. 排课问题:在学校排课过程中,需要合理安排老师和班级的上课时间,避免冲突和空闲时间过长。

模拟退火算法可以优化排课方案,使得课程安排更加合理。

3. 装箱问题:在物流领域中,需要将不同大小的物品合理装箱,使得装箱空间利用率最大化。

模拟退火算法可以帮助优化装箱方案,减少空间浪费。

四、总结模拟退火算法作为一种全局优化算法,具有较好的全局搜索能力和收敛性。

通过模拟退火算法,可以有效解决各种优化问题,得到较优的解决方案。

在实际应用中,可以根据具体问题的特点调整算法参数和策略,进一步提高算法的效率和准确性。

模拟退火算法应用实例

模拟退火算法应用实例

模拟退火算法应用实例一、什么是模拟退火算法模拟退火算法是一种优化算法,用于在搜索空间中寻找全局最优解。

它的基本思想是通过随机游走的方式,从一个初始解开始,在搜索过程中逐渐降低温度,使得概率性的接受更优解的能力逐渐减弱,最终达到全局最优解。

二、应用实例1. 旅行商问题旅行商问题是指给定一组城市和每对城市之间的距离,求解访问每个城市恰好一次并回到起始城市的最短路径。

这个问题是NP-hard问题,因此需要使用启发式算法来求解。

模拟退火算法可以用来求解旅行商问题。

首先随机生成一个初始路径,然后不断地进行交换两个节点位置,并计算新路径长度。

如果新路径比原路径短,则接受新路径;否则以一定概率接受新路径。

随着时间推移,温度逐渐降低,接受新路径的概率也逐渐降低。

最终得到全局最优解。

2. 图像处理模拟退火算法可以用于图像处理中的图像分割和图像匹配等问题。

例如,在图像分割中,我们可以将图像分成多个区域,使得同一区域内的像素具有相似的特征,不同区域之间的像素特征差异较大。

首先随机生成一个初始分割方案,然后不断地进行移动像素点到其他区域,并计算新分割方案的代价函数。

如果新方案比原方案更优,则接受新方案;否则以一定概率接受新方案。

随着时间推移,温度逐渐降低,接受新方案的概率也逐渐降低。

最终得到全局最优解。

3. 机器学习模拟退火算法可以用于机器学习中的参数优化问题。

例如,在神经网络中,我们需要找到最优的权重和偏置值来最小化损失函数。

首先随机生成一个初始权重和偏置值,然后不断地进行微小调整,并计算新损失函数值。

如果新损失函数比原损失函数更小,则接受新权重和偏置值;否则以一定概率接受新权重和偏置值。

随着时间推移,温度逐渐降低,接受新权重和偏置值的概率也逐渐降低。

最终得到全局最优解。

三、模拟退火算法的优点和缺点1. 优点(1)全局最优解:模拟退火算法可以找到全局最优解,而不是局部最优解。

(2)适用性广:模拟退火算法可以应用于各种问题,并且具有较好的鲁棒性。

模拟退火算法简单易懂的例子

模拟退火算法简单易懂的例子

模拟退火算法简单易懂的例子
模拟退火算法是一种基于概率的算法,来源于固体退火原理。

下面以一个简单的例子来说明模拟退火算法:
想象一个有十个元素的数组,代表一个能量状态,每个元素都有一个能量值。

开始时,所有元素都处于最高能量状态。

我们的目标是找到最低能量的状态,即最优解。

模拟退火算法的工作原理如下:
1. 从最高温度开始,逐渐降低温度。

在每个温度下,算法会尝试各种元素的组合方式,并计算其能量。

2. 在温度较高时,算法会尝试各种组合,并接受能量增加的“移动”,因为这些增加的能量对应于更高的温度,所以被接受的概率更大。

3. 随着温度的降低,算法开始更多地考虑能量的减少。

如果一个状态比前一个状态的能量更低,那么它一定会被接受。

但如果一个状态的能量比前一个状态的能量高,那么它会被以一定概率接受。

这个概率随着温度的降低而减小。

4. 重复上述过程,直到达到终止温度。

这时,算法已经找到了最低能量的状态。

模拟退火算法可以找到全局最优解,而不是局部最优解。

这是因为算法在搜索过程中会接受一些次优解(即能量增加的“移动”),以便跳出局部最优解,探索更广阔的解空间。

以上内容仅供参考,如果需要更多信息,建议查阅相关文献或咨询专业人士。

模拟退火算法python

模拟退火算法python

模拟退火算法python一、简介模拟退火算法(Simulated Annealing,SA)是一种全局优化算法,可以用于求解各种优化问题。

模拟退火算法最初由Kirkpatrick等人于1983年提出,其灵感来源于固体物理中的“退火”过程。

模拟退火算法通过随机搜索的方式,在搜索空间中寻找全局最优解。

二、算法流程1.初始化参数模拟退火算法需要设置初始温度T0,终止温度Tend,降温速率a以及每个温度下的迭代次数L。

其中初始温度T0应该足够高,以便跳出局部最优解;终止温度Tend应该足够低,以便保证找到全局最优解;降温速率a应该足够慢,以便保证能够在合理的时间内找到最优解;每个温度下的迭代次数L应该足够大,以便在当前温度下充分搜索。

2.生成初始解随机生成一个初始解x0。

3.进行迭代搜索对于当前温度T和当前解x,在邻域内随机生成一个新解y,并计算新旧两个解之间的能量差ΔE=E(y)-E(x)。

如果ΔE<0,则接受新解y;如果ΔE>0,则以概率exp(-ΔE/T)接受新解y。

通过这种方式,可以在搜索空间中跳出局部最优解,并逐渐趋向全局最优解。

4.降温每个温度下的迭代次数L结束后,降低温度T=a*T,直到T<Tend为止。

5.终止条件当达到终止温度Tend时,停止迭代搜索,并输出最优解。

三、Python实现以下是一个简单的Python实现:```pythonimport randomimport math# 目标函数def f(x):return x**2# 初始温度T0 = 1000# 终止温度Tend = 1e-8# 降温速率a = 0.99# 每个温度下的迭代次数L = 100# 随机生成初始解x = random.uniform(-10, 10)best_x = xwhile T0 > Tend:for i in range(L):# 在邻域内随机生成新解y = x + random.uniform(-1, 1)# 计算能量差delta_E = f(y) - f(x)if delta_E < 0:# 接受新解x = yif f(x) < f(best_x):best_x = xelse:# 以概率接受新解p = math.exp(-delta_E / T0)if random.uniform(0, 1) < p:x = y# 降温T0 *= aprint("最优解:", best_x)print("最优值:", f(best_x))```四、总结模拟退火算法是一种全局优化算法,在求解各种优化问题时具有广泛的应用。

模拟退火算法流程

模拟退火算法流程

模拟退火算法流程模拟退火算法是一种用于求解优化问题的随机搜索算法。

其灵感来源于固体退火过程,通过模拟金属在高温下冷却过程中的晶体结构调整,从而找到全局最优解。

模拟退火算法的基本思想是通过接受一定概率的劣解,以克服局部最优解陷阱,从而达到全局最优解。

它的流程主要包括初始化、状态更新和判断终止条件三个步骤。

首先,算法需要初始化一组解,即随机生成初始解。

这些解可看作在问题解空间中的一个点,表示问题的一个可行解。

通过这些初始解,算法可以开始搜索过程。

其次,算法根据一定的策略对当前解进行变换,即状态更新。

变换的方式可以是随机选择邻近解,也可以是按照一定规则变换解的组成部分。

这样,算法可以在解空间中进行搜索,逐步接近全局最优解。

状态更新后,算法需要判断是否接受新解。

这一步是模拟退火算法中的核心步骤。

决定是否接受新解的概率与新解的质量差异以及当前的温度有关。

一开始时,算法接受概率较高,随着搜索的进行,温度逐渐下降,接受概率逐渐降低。

这样可以在搜索过程中同时进行广度和深度的搜索。

最后,算法设置终止条件。

终止条件可以是达到一定迭代次数、温度降至某个阈值或找到满足问题约束条件的最优解等。

当满足终止条件时,算法停止搜索,将当前的最优解作为输出结果。

总的来说,模拟退火算法通过不断更新解的状态和接受概率来搜索全局最优解。

它克服了传统优化算法容易陷入局部最优解的缺点,对于复杂、非线性的问题有较好的效果。

然而,模拟退火算法在实际应用中也存在一定的局限性,比如收敛速度较慢、参数设置较为困难等。

总之,模拟退火算法是一种有效的求解优化问题的算法。

通过合理的状态更新和接受策略,它可以找到全局最优解,为解决现实生活中的复杂问题提供了一种有效的思路和工具。

模拟退火算法详解

模拟退火算法详解

车间调度问题求解
总结词
模拟退火算法在车间调度问题求解中具有较好的应用 效果,能够提高生产效率。
详细描述
车间调度问题是一个复杂的优化问题,旨在合理安排生 产任务和资源分配,以提高生产效率。模拟退火算法通 过随机搜索和接受不良解的概率,能够找到较为满意的 调度方案。在车间调度问题中,模拟退火算法可以与其 他启发式方法结合使用,以获得更好的性能。此外,模 拟退火算法还可以应用于其他生产调度问题,如作业车 间调度、装配线平衡等。
旅行商问题求解
总结词
模拟退火算法在旅行商问题求解中具有较好的性能, 能够找到高质量的解。
详细描述
旅行商问题是一个NP难问题,旨在寻找一条旅行路线 ,使得一个旅行商能够访问一系列城市并返回到起始 城市,且总旅行距离最短,同时满足每个城市恰好经 过一次。模拟退火算法通过随机搜索和接受不良解的 概率,能够探索更广阔的解空间,从而找到高质量的 解。在旅行商问题中,模拟退火算法可以与其他启发 式方法结合使用,以获得更好的性能。
迭代更新
重复产生新解、计算能量差和降低温度的 过程,直到满足终止条件。
终止条件
达到最大迭代次数
当达到预设的最大迭代次数时,算法终止。
温度低于阈值
当温度低于一个预设的阈值时,算法终止。
解的质量满足要求
当当前解的质量满足预设的要求或与最优解 的差距在可接受范围内时,算法终止。
03
模拟退火算法参数设置
温度衰减率
总结词
温度衰减率是模拟退火算法中温度变化的速率,它决定了算法的收敛速度和全局搜索能 力。
详细描述
温度衰减率决定了算法在迭代过程中温度下降的速度。较小的衰减率可以使算法在迭代 过程中有更多的时间来探索解空间,但可能会导致算法收敛速度较慢;而较大的衰减率 则可以使算法更快地收敛到最优解,但可能会牺牲一些全局搜索能力。因此,选择合适

模拟退火算法

模拟退火算法

模拟退火算法模拟退火算法(Simulated Annealing)是一种经典的优化算法,常用于解决复杂的优化问题。

它的灵感来自于金属退火的过程,通过降温使金属内部的不稳定原子重新排列,从而获得更优的结构。

在算法中,通过接受一定概率的差解,模拟退火算法能够逃离局部最优,并最终找到全局最优解。

在MATLAB中,我们可以使用以下步骤来实现模拟退火算法:1.初始化参数:设定初始温度T0、终止温度Tf、温度下降速率α、算法运行的迭代次数等参数,并设定当前温度为T0。

2.生成初始解:根据问题的要求,生成一个初始解x。

3. 迭代优化:在每个温度下,进行多次迭代。

每次迭代,随机生成一个新的解x_new,计算新解的目标函数值f_new。

4. 判断是否接受新解:根据Metropolis准则,判断是否接受新解。

如果新解比当前解更优,则直接接受;否则,以概率exp((f_current - f_new) / T)接受新解。

5.更新解和温度:根据前一步的判断结果,更新当前解和温度。

如果接受了新解,则将新解作为当前解;否则,保持当前解不变。

同时,根据设定的温度下降速率,更新当前温度为T=α*T。

6.重复步骤3-5,直到当前温度小于终止温度Tf。

7.返回最优解:记录整个迭代过程中的最优解,并返回最优解作为结果。

以下是一个简单的示例,演示如何使用MATLAB实现模拟退火算法解决旅行商问题(TSP)。

```matlabfunction [bestPath, bestDistance] =simulatedAnnealingTSP(cityCoordinates, T0, Tf, alpha, numIterations)numCities = size(cityCoordinates, 1);currentPath = randperm(numCities);bestPath = currentPath;currentDistance = calculateDistance(cityCoordinates, currentPath);bestDistance = currentDistance;T=T0;for iter = 1:numIterationsfor i = 1:numCitiesnextPath = getNextPath(currentPath);nextDistance = calculateDistance(cityCoordinates, nextPath);if nextDistance < currentDistancecurrentPath = nextPath;currentDistance = nextDistance;if nextDistance < bestDistancebestPath = nextPath;bestDistance = nextDistance;endelseacceptanceProb = exp((currentDistance - nextDistance) / T); if rand( < acceptanceProbcurrentPath = nextPath;currentDistance = nextDistance;endendendT = alpha * T;endendfunction nextPath = getNextPath(currentPath)numCities = length(currentPath);i = randi(numCities);j = randi(numCities);while i == jj = randi(numCities);endnextPath = currentPath;nextPath([i j]) = nextPath([j i]);endfunction distance = calculateDistance(cityCoordinates, path) numCities = length(path);distance = 0;for i = 1:numCities-1distance = distance + norm(cityCoordinates(path(i),:) - cityCoordinates(path(i+1),:));enddistance = distance + norm(cityCoordinates(path(numCities),:) - cityCoordinates(path(1),:)); % 加上回到起点的距离end```以上示例代码实现了使用模拟退火算法解决旅行商问题(TSP)。

模拟退火算法公式

模拟退火算法公式

模拟退火算法公式模拟退火算法是一种基于物理退火过程的优化算法,最早由美国物理学家,冯·诺依曼奖得主,以及诺贝尔物理学奖得主南部-安丘因于1953年提出。

它模拟了固体物质退火时的行为,通过对潜在解空间的搜索,寻找全局最优解。

在固体退火过程中,物质从高温到低温逐渐冷却,通过不断调控温度,使系统的能量逐渐减少。

模拟退火算法的核心思想正是基于这一过程,通过一系列接受概率较低的状态转移,来跳出局部最优解,最终找到全局最优解。

模拟退火算法具体流程如下:1. 随机初始化初始解,并设定初始温度和终止温度。

2. 在每个温度下,通过随机扰动当前解,产生一个新解。

3. 计算新解的函数值和当前解的函数值之差△E。

4. 如果△E ≤ 0,则接受新解作为当前解。

5. 如果△E > 0,则以一定概率接受新解。

该概率由Metropolis 准则决定,概率公式为 P = e^(-△E/T)。

6. 逐渐降低温度,根据设定的降温速率进行迭代搜索,直到达到终止温度。

值得注意的是,温度决定了接受不良解的概率,随着退火过程的进行,温度逐渐降低,接受不良解的概率减小,使得算法更加倾向于收敛到全局最优解。

模拟退火算法在全局优化问题中有着广泛的应用。

例如,在旅行商问题中,通过模拟退火算法可以找到最优的旅行路径,从而使得旅行商的行程最短。

在网络设计中,模拟退火算法可以优化网络拓扑结构,提高数据传输效率。

在机器学习中,模拟退火算法可以用于参数调优,帮助优化模型的性能。

然而,模拟退火算法也存在着一定的局限性。

首先,算法的运行时间较长,需要大量的迭代次数和计算资源。

其次,在应对高维问题和非凸问题时,算法可能会陷入局部最优解,无法得到全局最优解。

因此,在实际应用中,我们需要根据问题的特点选择合适的算法,并结合其他优化方法来提高解的质量。

综上所述,模拟退火算法是一种具有指导意义的全局优化算法。

通过模拟退火过程,可以在搜索解空间时避免陷入局部最优解,并找到全局最优解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

模拟退火算法模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。

根据Metropolis准则,粒子在温度T时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann常数。

用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对当前解重复“产生新解→计算目标函数差→接受或舍弃”的迭代,并逐步衰减t值,算法终止时的当前解即为所得近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。

退火过程由冷却进度表(Cooling Schedule)控制,包括控制参数的初值t及其衰减因子Δt、每个t值时的迭代次数L和停止条件S。

模拟退火算法的模型模拟退火算法可以分解为解空间、目标函数和初始解三部分。

模拟退火的基本思想:(1)初始化:初始温度T(充分大),初始解状态S(是算法迭代的起点),每个T值的迭代次数L(2) 对k=1,……,L做第(3)至第6步:(3) 产生新解S′(4) 计算增量Δt′=C(S′)-C(S),其中C(S)为评价函数(5) 若Δt′<0则接受S′作为新的当前解,否则以概率exp(-Δt′/T)接受S′作为新的当前解.(6) 如果满足终止条件则输出当前解作为最优解,结束程序。

终止条件通常取为连续若干个新解都没有被接受时终止算法。

(7) T逐渐减少,且T->0,然后转第2步。

算法对应动态演示图:模拟退火算法新解的产生和接受可分为如下四个步骤:第一步是由一个产生函数从当前解产生一个位于解空间的新解;为便于后续的计算和接受,减少算法耗时,通常选择由当前新解经过简单地变换即可产生新解的方法,如对构成新解的全部或部分元素进行置换、互换等,注意到产生新解的变换方法决定了当前新解的邻域结构,因而对冷却进度表的选取有一定的影响。

第二步是计算与新解所对应的目标函数差。

因为目标函数差仅由变换部分产生,所以目标函数差的计算最好按增量计算。

事实表明,对大多数应用而言,这是计算目标函数差的最快方法。

第三步是判断新解是否被接受,判断的依据是一个接受准则,最常用的接受准则是Metropo1is准则:若Δt′<0则接受S′作为新的当前解S,否则以概率exp(-Δt′/T)接受S′作为新的当前解S。

第四步是当新解被确定接受时,用新解代替当前解,这只需将当前解中对应于产生新解时的变换部分予以实现,同时修正目标函数值即可。

此时,当前解实现了一次迭代。

可在此基础上开始下一轮试验。

而当新解被判定为舍弃时,则在原当前解的基础上继续下一轮试验。

模拟退火算法与初始值无关,算法求得的解与初始解状态S(是算法迭代的起点)无关;模拟退火算法具有渐近收敛性,已在理论上被证明是一种以概率l收敛于全局最优解的全局优化算法;模拟退火算法具有并行性。

模拟退火算法的简单应用作为模拟退火算法应用,讨论货郎担问题(Travelling Salesman Problem,简记为TSP):设有n个城市,用数码1,…,n代表。

城市i和城市j之间的距离为d(i,j)i, j=1,…,n.TSP问题是要找遍访每个域市恰好一次的一条回路,且其路径总长度为最短.。

求解TSP的模拟退火算法模型可描述如下:解空间解空间S是遍访每个城市恰好一次的所有回路,是{1,……,n}的所有循环排列的集合,S中的成员记为(w1,w2 ,……,wn),并记wn+1= w1。

初始解可选为(1,……,n)目标函数此时的目标函数即为访问所有城市的路径总长度或称为代价函数:我们要求此代价函数的最小值。

新解的产生随机产生1和n之间的两相异数k和m,若k<m,则将 (w1, w2 ,…,wk , wk+1 ,…,wm ,…,wn)变为:(w1, w2 ,…,wm , wm-1 ,…,wk+1 , wk ,…,wn).如果是k>m,则将(w1, w2 ,…,wk , wk+1 ,…,wm ,…,wn)变为: (wm, wm-1 ,…,w1 , wm+1 ,…,wk-1 ,wn , wn-1 ,…,wk).上述变换方法可简单说成是“逆转中间或者逆转两端”。

也可以采用其他的变换方法,有些变换有独特的优越性,有时也将它们交替使用,得到一种更好方法。

代价函数差设将(w1, w2 ,……,wn)变换为(u1, u2 ,……,un), 则代价函数差为:根据上述分析,可写出用模拟退火算法求解TSP问题的伪程序:Procedure TSPSA:Begininit-of-T; { T为初始温度}S={1,……,n}; {S为初始值}termination=false;while termination=falsebeginfor i=1 to L dobegingenerate(S′form S); { 从当前回路S产生新回路S′}Δt:=f(S′))-f(S);{f(S)为路径总长}IF(Δt<0) OR (EXP(-Δt/T)>Random-of-[0,1])S=S′;IF the-halt-condition-is-TRUE THENtermination=true;End;T_lower;End;End模拟退火算法的应用很广泛,可以较高的效率求解最大截问题(Max Cut Problem)、0-1背包问题(Zero OneKnapsack Problem)、图着色问题(Graph Colouring Problem)、调度问题(SchedulingProblem)等等。

模拟退火算法的参数控制问题模拟退火算法的应用很广泛,可以求解NP完全问题,但其参数难以控制,其主要问题有以下三点:(1)温度T的初始值设置问题。

温度T的初始值设置是影响模拟退火算法全局搜索性能的重要因素之一、初始温度高,则搜索到全局最优解的可能性大,但因此要花费大量的计算时间;反之,则可节约计算时间,但全局搜索性能可能受到影响。

实际应用过程中,初始温度一般需要依据实验结果进行若干次调整。

(2)退火速度问题。

模拟退火算法的全局搜索性能也与退火速度密切相关。

一般来说,同一温度下的“充分”搜索(退火)是相当必要的,但这需要计算时间。

实际应用中,要针对具体问题的性质和特征设置合理的退火平衡条件。

(3)温度管理问题。

温度管理问题也是模拟退火算法难以处理的问题之一。

实际应用中,由于必须考虑计算复杂度的切实可行性等问题,常采用如下所示的降温方式:T(t+1)=k×T(t)式中k为正的略小于1.00的常数,t为降温的次数。

Matlab源代码:main.mzuobiao=[0.37 0.75 0.45 0.76 0.71 0.07 0.42 0.59 0.32 0.6 0.3 0.67 0.62 0.67 0.20 0.35 0.27 0.94 0.82 0.37 0.61 0.42 0.6 0.39 0.53 0.4 0.63 0.5 0.98 0.68;0.91 0.87 0.85 0.75 0.72 0.74 0.71 0.69 0.64 0.64 0.59 0.59 0.55 0.55 0.5 0.45 0.43 0.42 0.38 0.27 0.26 0.25 0.23 0.19 0.19 0.13 0.08 0.04 0.02 0.85];plot(zuobiao(1,:),zuobiao(2,:),'g*'),hold onplot(zuobiao(1,:),zuobiao(2,:))length=max(size(zuobiao));%求初始距离..zhixu=randperm(length) %随机生成一个路线经过点的顺序temp=zuobiao(1,:);newzuobiao(1,:)=temp(zhixu);temp=zuobiao(2,:);newzuobiao(2,:)=temp(zhixu);newzuobiaof=juli(newzuobiao)%参数定义区-------------------------------------- %初始温度为10000tmax=100;tmin=0.001;%温度下降速率down=0.95;%退火算法的函数..figuret=tmax;while t>tminfor n=1:500newzuobiao=newpath(zuobiao,length);newf=juli(newzuobiao);if newf<fzuobiao=newzuobiao;f=newf;elseif rand<exp(-(newf-f)/t)zuobiao=newzuobiao;f=newf;endendhuatu=[zuobiao,zuobiao(:,1)];plot(huatu(1,:),huatu(2,:)),hold onplot(huatu(1,:),huatu(2,:),'ro'),hold off pause(0.00001)t=t*downfendnewpath.mfunction zuobiao=newpath(zuobiao,length)%随机交换两个点的坐标..a=ceil(rand(1,2)*length);qian=a(1);hou=a(2);temp=zuobiao(:,qian);zuobiao(:,qian)=zuobiao(:,hou);zuobiao(:,hou)=temp;juli.mfunction lucheng=juli(zuobiao)length=max(size(zuobiao));s=0;for i=2:lengths=s+sqrt(sum((zuobiao(:,i)-zuobiao(:,i-1)).^2)); endif length~=2s=s+sqrt(sum((zuobiao(:,1)-zuobiao(:,length)).^2)); endlucheng=s;。

相关文档
最新文档