相似三角形性质2-教师版

合集下载

北师大版数学九年级上册4.7相似三角形的性质(第二课时)教学设计

北师大版数学九年级上册4.7相似三角形的性质(第二课时)教学设计
3.自主学习反思应真实反映学生的学习情况,有助于提高学习效果。
(五)总结归纳
1.让学生回顾本节课所学的相似三角形的性质,总结性质的应用和证明方法。
2.引导学生将相似三角形的性质与全等三角形的性质进行对比,明确它们的联系与区别。
3.强调相似三角形在实际生活中的应用,激课后作业,要求学生在课后对所学知识进行巩固和拓展,为下一节课的学习做好铺垫。
北师大版数学九年级上册4.7相似三角形的性质(第二课时)教学设计
一、教学目标
(一)知识与技能
1.让学生掌握相似三角形的基本性质,如对应角相等、对应边成比例,并能运用这些性质解决实际问题。
2.使学生能够运用相似三角形的性质,进行几何图形的证明和计算,提高学生的逻辑思维能力和解题技巧。
3.培养学生运用相似三角形的性质,解决与生活实际相关的问题,如地图比例尺、摄影中的相似变换等。
1.学生对相似三角形定义的理解程度,是否能顺利过渡到性质的学习。
2.学生在几何证明方面的能力,是否能运用已知性质进行严密的逻辑推理。
3.学生在实际问题中运用相似三角形性质的能力,是否能够将理论知识与生活实际相结合。
针对以上情况,教师应采取生动形象的教学方法,如运用多媒体、实物模型等辅助教学,帮助学生形象地理解相似三角形的性质。同时,设计具有启发性的问题和例题,引导学生积极参与课堂讨论,提高他们的逻辑思维能力和解题技巧。在课后,关注学生的作业完成情况,及时发现并解决他们在学习过程中遇到的问题,确保学生对相似三角形性质的理解和应用。
(3)采用小组合作法,鼓励学生相互交流、讨论,共同解决几何证明和实际问题;
(4)实施启发式教学法,教师通过提问、引导学生思考,激发学生的思维潜能。
2.教学策略:
(1)逐步引导:从复习相似三角形的定义入手,逐步过渡到性质的学习,让学生在已有知识的基础上自然过渡;

相似三角形的性质(2)

相似三角形的性质(2)

ACBC'A'第6章第5节相似三角形的性质(2)【教学目标】1.了解相似三角形的性质定理:相似三角形对应线段的比等于相似比;了解性质定理的探索过程和证明方法.2.会运用图形的相似性质解决一些简单的实际问题;3.经历探索性质定理的形成过程,使学生体验从特殊到一般的认知规律,以及由观察—猜想—论证—归纳的数学思维过程.[设计意图]重视数学对象的逻辑关系和内部联系,引导学生积极体验数学结论的理和美的要求.【教学重难点】重点:探索得出相似三角形对应线段的比等于相似比;并会运用性质解决实际问题. 难点:由特例归纳出一般结论.[设计意图]教师通过对重难点的把握,提高学生合作探究、解决问题的能力,让学生体会到由特殊到一般的数学研究方法,并能够运用到数学学习过程中.【教学过程】本节课的内容结构是:对应高(已有经验)---对应中线(特例1)---对应角平分线(特例2)---其他对应线段(通例)---位置对应线段(一般结论)---现实问题(应用)一、设置情境,引出问题远古的时候,有一位国王非常聪明,他把国家治理得井井有条,一片繁荣景象.他还酷爱数学,每日早朝之时,必先考考各位大臣的聪明才智.有一天,国王说:我有两块形状相同的三角形土地,一块是4亩,一块是16亩,现在我想把每块土地都分割成两块三角形形状,我只有一个要求就是-----分割线之比是1:2,各位大臣有多少种方法?办法高明者奖励黄金10两,白银10两.[设计意图]调动学生学习兴趣,激发其探究欲望.情境的设置既引导学生回顾已学的相似三角形性质,又引发学生要继续探索其他性质的需要.分析题意可以得到解决问题的办法就是:找到相似三角形中哪些线段的比等于相似比.二、合作探究,形成新知问题1:△ABC ∽△'''A B C ,相似比为k ,AD 和''A D 分别是△ABC 和△'''A B C 的中线,那么?''ADA D =问题2: △ABC ∽△'''A B C ,相似比为k ,AD 和''A D 分别是△ABC 和△'''A B C 的角平分线,那么?''ADA D =[设计意图]在探索相似三角形对应中线、对应角平分线性质时,迁移了相似三角形对应高的证明方法,对学生来讲,这两个结论证明并不难,因为有了上节课的经验.将典型特例作为引导性材料,让学生直观感知性质,形成性质的“模式直观”.问题3:角平分线、中线变为对应角的三等分线、四等分线、…n 等分线,对应边的三等分线、四等分线、…n 等分线,结论还成立吗?[设计意图]适度铺垫,让学生拾阶而上.有了前面探索的基础,学生完全有能力独立完成“变式问题”的探索,在探索过程中,发展学生类比探究的能力与独立解决问题的能力,培养学生全面思考的思维品质.问题4:如果△ABC ∽△'''A B C ,相似比为k ,点D 、'D 分别在BC 、''B C 上,且''BDk B D =, 那么结论还成立吗?问题5:如果△ABC ∽△'''A B C ,相似比为k ,点D 、'D 分别在BC 、''B C 上,且''(01)''BD B D m m BC B C ==<<,那么结论还成立吗? [设计意图]跟进追问,尝试延续知识探索.这一环节为学生对相似三角形性质的认识插上想象的翅膀,既有提炼总结与完善,也有脑洞大开之设想.基于以上探索.我们发现总结:相似三角形对应线段的比等于相似比.[设计意图]让学生感受数学结论的简洁美和统一美,让学生深入数学“理”的实质性思考,获得数学“美”的切身体验.三、巩固新知,解决问题例题分析:见课本例题.先自学2分钟,然后请一同学带着大家学习一下例题.[设计意图]先让学生独立思考,然后说说自己是如何想的,重在暴露思维过程.如果学生说的不到位,课堂上就可以采用思维策略与方法上的启发引导.变式1: 如图,△ABC 是一块锐角三角形的余料,边长BC =120mm ,高AD =80mm ,要把它加工成正方形零件,使正方形的一边在BC 上,其余两个顶点在AB 、AC 上,这个正方形的零件的边长为多少?BC变式2:有一块三角形铁片ABC ,BC =12 cm .高AH =8 cm ,按图(1)、(2)两种设计方案把它加工成一块矩形铁片DEFG ,且要求矩形的长是宽的2倍,为了减少浪费,加工成的矩形铁片的面积应尽量大些.请你通过计算判断(1)、(2)两种设计方案哪个更好.[设计意图]由情境问题的解决到自学例题,再经例题加以拓展延伸,进一步巩固新知,使学生体会图形之间的联系.在学生已经较好的掌握基础知识的前提下,安排适当的拓展题,锻炼学生思维的灵活性,提高学生灵活运用所学知识的能力.四、概括总结,激发思考通过本节课的学习,你对相似三角形的性质有了哪些新的认识?在本节的学习过程中,有无激发你新的思考?[设计意图]为了使学生对所学内容有一个完整而深刻的印象,引导学生进行小结.加深了学生对知识点的理解,同时也启发学生继续思考本节遗留问题.课后作业:(1)课本习题6.5第3、4题.(2)第二天,国王说:我想把它们都分割成一块三角形和一块四边形形状,请同学们继续探讨.【教学感悟】(1)(2)。

4.5《相似三角形的性质及其应用(2)》参考教案

4.5《相似三角形的性质及其应用(2)》参考教案

4.5 相似三角形的性质及其应用(2)
1、经历相似三角形性质“相似三角形对应高线、对应中线、对应角平分线之比等于相似比”“相似三角形的周长之比等于相似比”和“相似三角形的面积之比等于相似比的平方”的探究过程。

2、掌握“相似三角形对应高线、对应中线、对应角平分线之比等于相似比”“相似三角形的周长之比等于相似比”和“相似三角形的面积之比等于相似比的平方”的两个性质。

3、会运用上述两个性质解决简单的几何问题。

1、教学的重点是关于相似三角形的周长和面积的两个性质及对应线段的性质。

2、“相似三角形的面积之比等于相似比的平方”这一性质的证明,涉及到相似三角形的判定及性质,过程比较复杂,证明思想的建构是本节教学的难点。

相似三角形的性质
1、相似三角形的对应角相等,对应边成比例。

2、相似三角形对应高线、对应中线、对应角平分线之比等于相似比。

3、相似三角形的周长比等于相似比;相似三角形的面积比等于相似比的平方。

根据本节课的教学内容和目标主要采用讲授法、讨论法、发现法。

北师大版九年级数学上册4.7相似三角形性质(课时2)教学设计

北师大版九年级数学上册4.7相似三角形性质(课时2)教学设计
-组织学生进行小组合作,共同完成一份关于相似三角形性质及其应用的小研究,提高学生的合作能力和研究能力。
4.反思与总结:
-要求学生完成一份学习反思,内容包括本节课学到的知识、遇到的问题、解决方法以及收获等,帮助学生建立自我评价和反思的习惯。
-教师在批改作业时,要及时给予评价和反馈,关注学生的进步,鼓励学生持续努力。
-新知探究:组织学生分组讨论,合作探究相似三角形的性质,教师适时引导和点拨。
-性质应用:设计不同层次的例题和练习,让学生在解决问题的过程中运用相似三角形的性质。
-总结提升:引导学生归纳相似三角形性质的关键点,总结解题策略和方法。
-课堂反馈:通过课堂练习和小结,了解学生的学习情况,及时调整教学策略。
3.教学评价:
-注重培养学生的几何直观和逻辑思维能力,通过逐步引导,帮助学生建立知识体系。
四、教学内容与过程
(一)导入新课
在导入新课阶段,我将以生活实例为基础,引导学生从实际问题中发现相似三角形的性质。首先,我会向学生展示一组图片,包括放大镜下的三角形、不同尺寸的国旗图案等,让学生观察并思考这些图形之间是否存在某种关系。通过学生的回答,我会引导他们回顾全等三角形和相似三角形的定义,为新课的学习做好铺垫。
接着,我会提出一个具有挑战性的问题:“如果我们在一个三角形中,知道两边和它们夹角的比例关系,我们能否求出第三边的长度?”这个问题将激发学生的好奇心,促使他们积极思考。在此基础上,导入相似三角形的性质,为接下来的新知学习奠定基础。
(二)讲授新知
在讲授新知阶段,我会采用讲解、示范、引导相结合的方式,让学生逐步理解并掌握相似三角形的性质。
3.引导学生通过观察、实践、探索,发现相似三角形在生活中的应用,提高学生将数学知识应用于实际问题的能力。

(完整版)相似三角形最全讲义(教师版)

(完整版)相似三角形最全讲义(教师版)

相似三角形基本知识知识点一:放缩与相似形1.图形的放大或缩小,称为图形的放缩运动。

2.把形状相同的两个图形说成是相似的图形,或者就说是相似性。

注意:⑴相似图形强调图形形状相同,与它们的位置、颜色、大小无关。

⑵相似图形不仅仅指平面图形,也包括立体图形相似的情况。

⑶我们可以这样理解相似形:两个图形相似,其中一个图形可以看作是由另一个图形放大或缩小得到的.⑷若两个图形形状与大小都相同,这时是相似图形的一种特例——全等形.3.相似多边形的性质:如果两个多边形是相似形,那么这两个多边形的对应角相等,对应边的长度成比例。

注意:当两个相似的多边形是全等形时,他们的对应边的长度的比值是1.知识点二:比例线段有关概念及性质 (1)有关概念1、比:选用同一长度单位量得两条线段。

a 、b 的长度分别是m 、n ,那么就说这两条线段的比是a :b =m :n (或n m b a =) 2、比的前项,比的后项:两条线段的比a :b 中。

a 叫做比的前项,b 叫做比的后项。

说明:求两条线段的比时,对这两条线段要用同一单位长度。

3、比例:两个比相等的式子叫做比例,如d cb a =4、比例外项:在比例dcb a =(或a :b =c :d )中a 、d 叫做比例外项。

5、比例内项:在比例d c b a =(或a :b =c :d )中b 、c 叫做比例内项。

6、第四比例项:在比例d c b a =(或a :b =c :d )中,d 叫a 、b 、c 的第四比例项。

7、比例中项:如果比例中两个比例内项相等,即比例为a b b a =(或a:b =b:c 时,我们把b 叫做a 和d 的比例中项。

8.比例线段:对于四条线段a 、b 、c 、d ,如果其中两条线段的长度的比与另两条线段的长度的比相等,即dcb a =(或a :b=c :d ),那么,这四条线段叫做成比例线段,简称比例线段。

(注意:在求线段比时,线段单位要统一,单位不统一应先化成同一单位)(2)比例性质1.基本性质: bc ad d cb a =⇔= (两外项的积等于两内项积) 2.反比性质:c da b dc b a =⇒= (把比的前项、后项交换) 3.更比性质(交换比例的内项或外项):()()()a bc d a c d c b d b a d bc a ⎧=⎪⎪⎪=⇒=⎨⎪⎪=⎪⎩,交换内项,交换外项.同时交换内外项4.合比性质:ddc b b ad c b a ±=±⇒=(分子加(减)分母,分母不变) .注意:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间发生同样和差变化比例仍成立.如:⎪⎪⎩⎪⎪⎨⎧+-=+--=-⇒=dc dc b a b a c cd a a b d c b a .5.等比性质:(分子分母分别相加,比值不变.) 如果)0(≠++++====n f d b nmf e d c b a ΛΛ,那么b a n f d b m ec a =++++++++ΛΛ. 注意:(1)此性质的证明运用了“设k 法” ,这种方法是有关比例计算,变形中一种常用方法.(2)应用等比性质时,要考虑到分母是否为零.(3)可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.知识点三:黄金分割1)定义:在线段AB 上,点C 把线段AB 分成两条线段AC 和BC (AC >BC ),如果ACBCAB AC =,即AC 2=AB×BC ,那么称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比。

两个三角形相似的判定(教师版)

两个三角形相似的判定(教师版)

第21课 两个三角形相似的判定学习目标1.掌握三角形相似判定的预备定理:平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似.2.掌握三角形相似的3个判定定理3.会运用上述定理判定两个三角形相似.知识点01 相似三角形的判定1.三角形相似判定的预备定理:平行于三角形一-边的直线和其他两边相交,所构成的三角形与原三角形相似.2.三角形相似的判定定理:(1)有两个角对应相等的两个三角形相似,并能运用这个定理证明两个三角形相似.(2)三边对应成比例的两个三角形相似.(3)两边对应成比例,且夹角相等的两个三角形相似.考点01 相似三角形的判定【典例1】如图,在△ABC 中,AB =AC ,AD 为BC 边上的中线,DE ⊥AB 于点E .(1)求证:△BDE ∽△CAD ;(2)若AB =26,BC =20,求线段DE 的长.【思路点拨】(1)由等腰三角形的性质可得∠B =∠C ,∠DEB =∠ADC =90°,即可解决问题;能力拓展(2)利用面积法:•AD•BD=•AB•DE求解即可.【解析】(1)证明:∵AB=AC,BD=CD,∴AD⊥BC,∠B=∠C,∵DE⊥AB,∴∠DEB=∠ADC,∴△BDE∽△CAD;(2)解:∵AB=AC=26,CB=20,∴AD⊥BC,BD=BC=10,∴AD==24,∵•AD•BD=•AB•DE,∴DE==.【点睛】本题考查相似三角形的判定和性质、等腰三角形的性质等知识,解题的关键是熟练掌握基本知识,学会利用面积法确定线段的长.【即学即练1】如图,M为线段AB中点,AE与BD交于点C,∠DME=∠A=∠B=45°,且DM交AC于点F,ME交BC于点G.(1)求证:△AMF∽△BGM;(2)连接FG,若AB=4,AF=3,求FG的长;【思路点拨】(1)利用三角形外角可得∠AFM=∠DME+∠E=∠A+∠E=∠BMG,进而证得△AMF∽△BGM;(2)在(1)的基础上,再由∠A=∠B=45°,可得出△ABC是等腰直角三角形,根据M为线段AB的中点,可得AM=BM=AB=×4=2,运用相似三角形性质和勾股定理即可求得答案;【解析】(1)证明∵∠AFM=∠DME+∠E(外角定理),∠DME=∠A=∠B(已知),∴∠AFM=∠DME+∠E=∠A+∠E=∠BMG,∠A=∠B,∴△AMF ∽△BGM ;(2)解:∵∠DME =∠A =∠B =45°,∴AC =BC ,∠ACB =90°,∴AC ⊥BC ,∵M 为线段AB 的中点,∴AM =BM =AB =×4=2,∵△AMF ∽△BGM ,∴=,∴BG ===,又∵AC =BC =4,∴CG =BC ﹣BG =4﹣=,CF =AC ﹣AF =4﹣3=1,在Rt △FCG 中,由勾股定理得:FG ===;【点睛】本题主要考查相似三角形的判定和性质、解直角三角形、等腰三角形的性质,解题的关键找到相似的三角形,根据其性质求出BG 、FG 的长度以及根据面积法求出MH 的长度.题组A 基础过关练1.如图,△ABC 中,∠A =76°,AB =8,AC =6.将△ABC 沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是( )A .B .C .D .【思路点拨】根据相似三角形的判定定理对各选项进行逐一判定即可.【解析】解:A、阴影三角形与原三角形有两个角相等,故两三角形相似,分层提分故本选项不符合题意;B、阴影三角形与原三角形有两个角相等,故两三角形相似,故本选项不符合题意;C、两三角形的对应边不成比例,故两三角形不相似,故本选项符合题意;D、阴影三角形中,∠A的两边分别为6﹣2=4,8﹣5=3,则两三角形对应边成比例且夹角相等,故两三角形相似,故本选项不符合题意.故选:C.【点睛】本题考查的是相似三角形的判定,熟知相似三角形的判定定理是解答此题的关键.2.如图,每个小方格的边长都是1,则下列图中三角形(阴影部分)与△ABC相似的是( )A.B.C.D.【思路点拨】根据勾股定理求出AB,AC,BC的长,求出三边之比,利用三边对应成比例的两三角形相似判断即可.【解析】解:由勾股定理得:AB==,BC=1,AC==,∴BC:AC:AB=1::,A、三边之比为1:5:2,图中的三角形(阴影部分)与△ABC不相似,不符合题意;B、三边之比:::3,图中的三角形(阴影部分)与△ABC不相似,不符合题意;C、三边之比为:2:=1::,图中的三角形(阴影部分)与△ABC相似,符合题意;D、三边之比为2::,图中的三角形(阴影部分)与△ABC不相似,不符合题意.故选:C.【点睛】此题考查了相似三角形的判定,熟练掌握相似三角形的判定方法是解本题的关键.3.如图,在△ABC中,点D在AC边上,连接BD,若∠ABC=∠ADB,AD=2,AC=6,则AB的长为( )A.3B.4C.D.2【思路点拨】由∠ABC=∠ADB,∠A=∠A,根据“两角分别相等的两个三角形相似”证明△ABC∽△ADB,则=,其中AD=2,AC=6,即可求得AB=2.【解析】解:∵∠ABC=∠ADB,∠A=∠A,∴△ABC∽△ADB,∴=,∴AB2=AD•AC,∵AD=2,AC=6,∴AB2=2×6=12,∴AB=2,∴AB的长为2,故选:D.【点睛】此题重点考查相似三角形的判定与性质,正确地找到相似三角形的对应边和对应角并且证明△ABC∽△ADB是解题的关键.4. 如图所示,添加一个条件 ∠ABD=∠ACB(∠ADB=∠ABC或) ,使△ADB∽△ABC.【思路点拨】根据相似三角形的判定方法解决问题即可.【解析】解:在△ADB和△ABC中,∵∠A=∠A,∴只要满足∠ABD=∠ACB(∠ADB=∠ABC或),△ADB∽△ABC.故答案为:∠ABD=∠ACB(∠ADB=∠ABC或).【点睛】本题考查相似三角形的判定和性质,解题的关键是掌握相似三角形的判定方法,属于中考常考题型.5.如图,在△ABC和△ADE中,,∠CAE=40°,则∠BAD的度数为 40° .【思路点拨】由在△ABC和△ADE中,==,可证得△ABC∽△ADE,然后由相似三角形的对应角相等,求得答案.【解析】解:∵==,∴△ABC∽△ADE,∴∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,∵∠CAE=40°,∴∠BAD=40°.故答案为:40°.【点睛】此题考查了相似三角形的判定与性质.能够正确证得△ABC∽△ADE是解题的关键.6.如图,在Rt△ABC中,∠ACB=90°,点D是边AB上的一点,CD⊥AB于点D,AD=3,BD=5,则边AC的长为 2 .【思路点拨】证明△ACD∽△ABC,根据相似三角形的性质列出比例式,把已知数据代入计算即可.【解析】解:∵∠CAD=∠BAC,∠ADC=∠ACB=90°,∴△ACD∽△ABC,∴=,∴AC2=AD•AB=3×8=24,解得:AC=2,故答案为:2.【点睛】本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理是解题的关键.7.如图,在△ABC中,点D在AB边上,∠B=∠ACD,且∠A=90°.(1)求证:△ABC∽△ACD;(2)若AD=2,AB=6.求CD的长.【思路点拨】(1)根据相似三角形的判定即可证得结论;(2)根据相似三角形的性质求出AC,在Rt△ADC中,根据勾股定理即可求出CD.【解析】(1)证明:∵∠A=∠A,∠B=∠ACD,∴△ABC∽△ACD;(2)解:∵△ABC∽△ACD,∴==,∴AC2=AD•AB=2×6=12,∴AC=2,在Rt△ADC中,CD===4.【点睛】本题考查相似三角形的判定和性质,勾股定理等知识,解题的关键是准确寻找相似三角形解决问题,属于中考常考题型.8.如图,AB为⊙O的直径,D为弧BC中点,DE⊥AB于点E,BC交DE于点F,交AD于点G.(1)求证:GF=DF;(2)求证:BE•AB=AD•DG.【思路点拨】(1))由圆周角定理得出∠DAB=∠CBD,∠ADB=90°,得出∠CBD+∠DGF=90°,由DE⊥AB,得出∠DAB+∠GDF=90°,进而得出∠DGF=∠GDF,即可证明GF=DF;(2)证明△ADB∽△DEB,得出,得出BD2=BE•AB,证明△GDB∽△BDA,得出,得出BD2=AD•GD,即可证明BE•AB=AD•DG.【解析】证明:(1)∵D为弧BC中点,∴,∴∠DAB=∠CBD,∵AB是⊙O的直径,∴∠ADB=90°,∴∠CBD+∠DGF=90°,∵DE⊥AB,∴∠DAB+∠GDF=90°,∴∠DGF=∠GDF,∴GF=DF;(2)∵∠ADB=90°,DE⊥AB,∴∠DEB=∠ADB=90°,∵∠DBE=∠ABD,∴△ADB∽△DEB,∴,∴BD2=BE•AB,∵∠DAB=∠CBD,∠GDB=∠BDA,∴△GDB∽△BDA,∴,∴BD2=AD•GD,∴BE•AB=AD•DG.【点睛】本题考查了相似三角形的判定与性质,圆周角定理,掌握圆周角定理,等腰三角形的判定,相似三角形的判断与性质是解决问题的关键题组B 能力提升练9.如图,在△ABC中,点D、E分别在边AB、AC上,则在下列五个条件中:①∠AED=∠B;②DE∥BC;③=;④AD•BC=DE•AC;⑤∠ADE=∠C,能满足△ADE∽△ACB的条件有( )A.1个B.2个C.3个D.4个【思路点拨】根据相似三角形的判定定理对各条件进行逐一判断即可.【解析】解:①∠B=∠AED,∠A=∠A,则可判断△ADE∽△ACB,故①符合题意;②DE∥BC,则△ADE∽△ABC,故②不符合题意,③,且夹角∠A=∠A,能确定△ADE∽△ACB,故③符合题意;④由AD•BC=DE•AC可得,此时不确定∠ADE=∠ACB,故不能确定△ADE∽△ACB;故④不符合题意,⑤∠ADE=∠C,∠A=∠A,则可判断△ADE∽△ACB,故⑤符合题意;故选:C.【点睛】本题考查的是相似三角形的判定,熟知相似三角形的判定定理是解答此题的关键.10.如图,在正方形网格中有5个格点三角形,分别是:①△ABC,②△ACD,③△ADE,④△AEF,⑤△AGH,其中与⑤相似的三角形是( )A.①③B.①④C.②④D.①③④【思路点拨】根据相似三角形的旋转可知,相似三角形的对应角相等即可判断.【解析】解:由图形知,⑤中∠AHG=135°,而①②③④中,只有①∠BAC=135°和③∠ADE=135°,再根据两边成比例可判断,与⑤相似的三角形是①③,故选:A.【点睛】本题主要考查了相似三角形的判定,熟练掌握两个相似三角形的判定定理是解题的关键.11.如图,在△ABC中,AD⊥BC,点D为垂足,为了证明∠BAC=90°,以下添加的等积式中,正确的有( )①AD2=BD•CD ②AB•CD=AC•AD ③AC2=BC•CD ④AB2=AC•BDA.1个B.2个C.3个D.4个【思路点拨】①由题意得出,证明△ADC∽△BDA,可得出∠DAC=∠ABD,则可证出结论;②能证明△ABC与△ADC相似,得出不符合题意;证出△ACD∽△BCA,由相似三角形的性质得出∠ADC =∠BAC=90°,可得出③符合题意;根据AB2=AC•BD不能证明△ABC与△ABD相似,则可得出结论.【解析】解:①∵AD⊥BC,∴∠ADC=∠ADB=90°,∵AD2=BD•CD,∴,∴△ADC∽△BDA,∴∠DAC=∠ABD,∴∠ABD+∠BAD=∠DAC+∠BAD=90°,即∠BAC=90°,故①符合题意;②∵AB•CD=AC•AD,∴,∵∠ADB=∠ADC=90°,∴△ABD∽△CAD,∴∠ABD=∠CAD,∴∠BAD+∠CAD=90°,∴∠BAC=90°,故②符合题意;③∵AC2=BC•CD,∴,∵∠ACD=∠BCA,∴△ACD∽△BCA,∴∠ADC=∠BAC=90°,故③符合题意;④由AB2=AC•BD不能证明△ABC与△ABD相似,故④不符合题意;故选:C.【点睛】本题考查了直角三角形的判定与性质,相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题的关键.12.如图,已知D,E,F分别为△ABC的边BC,CA,AB上的点,AB=AC,BD=2,CD=3,CE=4,AE=,∠FDE=∠B,则AF的长为( )A.3.5B.4C.4.5D.5【思路点拨】由AE和CE的长可求出AC的长,因为△ABC是等腰三角形,所以AB=AC,若要求AF 的长,可求出BF的长即可.而通过证明△DBF∽△DCE即可求出BF的长,可求出答案.【解析】解:∵AB=AC,∴∠B=∠C,∵∠BFD=180°﹣∠B﹣∠FDB,∠EDC=180°﹣∠FDE﹣∠FDB,又∵∠FDE=∠B,∴∠BFD=∠EDC,∴△DBF∽△DCE,∴BD:CE=BF:CD,∵BD=2,CD=3,CE=4,∴2:4=BF:3,∴BF=1.5,∵AC=AE+CE=+4=5.5,∴AB=5.5,∴AF=AB﹣BF=5.5﹣1.5=4,故选:B.【点睛】本题考查了等腰三角形的性质、相似三角形的判定和性质以及三角形内角和定理,解题的关键是求AF的长,转化为求BF的长13.如图,把△ABC绕点A旋转得到△ADE,当点D刚好落在BC上时,连接CE,设AC、DE相交于点F,则图中不全等的相似三角形共有 3 对.【思路点拨】根据旋转的性质得到△ABC≌△ADE,∠2=∠1,利用三角形内角和得到∠3=∠4,则可判断△AFE∽△DFC;根据相似的性质得AF:DF=EF:FC,而∠AFD=∠EFC,则可判断△AFD∽△EFC;由于∠BAC=∠DAE,AB=AD,AC=AE,所以∠3=∠5,于是可判断△ABD∽△AEC.【解析】解:∵把△ABC绕点A旋转得到△ADE(D与E重合),∴△ABC≌△ADE,∠2=∠1,∴∠3=∠4,∴△AFE∽△DFC;∴AF:DF=EF:FC,而∠AFD=∠EFC,∴△AFD∽△EFC;∵把△ABC绕点A旋转得到△ADE(D与E重合),∴∠BAC=∠DAE,AB=AD,AC=AE,∴∠3=∠5,∴△ABD∽△AEC.∴图中不全等的相似三角形共有3对,故答案为:3.【点睛】本题考查了相似三角形的判掌握相似三角形的判定方法是解题的关键.14.如图,线段AB=9,AC⊥AB于点A,BD⊥AB于点B,AC=2,BD=4,点P为线段AB上一动点,且以A、C、P为顶点的三角形与以B、D、P为顶点的三角形相似,则AP的长为 1或3或8. .【思路点拨】分两种情形构建方程求解即可.【解析】解:设AP=x.∵以A、C、P为顶点的三角形与以B、D、P为顶点的三角形相似,①当时,,解得x=3.②当时,,解得x=1或8,∴当以A、C、P为顶点的三角形与以B、D、P为顶点的三角形相似时,AP的长为1或3或8,故答案为1或3或8.【点睛】本题考查了相似三角形的判定,利用分类讨论思想解决问题是本题的关键.15.如图,半圆O以AB为直径,四边形ABCD是半圆O的内接四边形,延长BC,AD交于点E,DC=BC=4,AD=14,求AB的长 16 .【思路点拨】连接AC,由DC=BC,得出∠EAC=∠BAC,根据圆周角定理得出∠ACE=∠ACB=90°,再利用ASA证明△ACE≌△ACB,得出BC=EC,利用两个角相等证明△ECD∽△EAB,根据相似三角形的性质计算即可求解.【解析】解:连接AC,∵DC=BC,∴,∴∠EAC=∠BAC,∵AB是直径,∴∠ACE=∠ACB=90°,在△ACE与△ACB中,,∴△ACE≌△ACB(ASA),∴BC=EC,AB=AE,∵四边形ABCD内接于半圆O,∴∠ABC+∠ADC=180°,∵∠ADC+∠CDE=180°,∴∠ABC=∠CDE,∴△ECD∽△EAB,∴,设AB=x,则AB=AE=x,∵DC=BC=4,AD=14,∴BC=CD=CE=4,即BE=8,DE=x﹣14,∴,整理得:x2﹣14x﹣32=0,解得:x=16或﹣2(不符合题意,舍去),∴AB的长为16,故答案为:16.【点睛】本题考查了圆周角定理,圆心角、弧、弦的关系,相似三角形的判定与性质,全等三角形的判定与性质等,掌握相似三角形的判定与性质是解题的关键.16.如图1,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒3cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒2cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)若△BPQ与△ABC相似,求t的值;(2)(如图2)连接AQ,CP,若AQ⊥CP,求t的值.【思路点拨】(1)根据勾股定理求出AB,分△BPQ∽△BAC、△BPQ∽△BCA两种情况,根据相似三角形的性质列出比例式,计算即可;(2)过P作PM⊥BC于点M,AQ,CP交于点N,则有PB=5t,PM=3t,BQ=8﹣4t,根据△ACQ∽△CMP,得出AC:CM=CQ:MP,代入计算即可.【解析】解:(1)①当△BPQ∽△BAC时,∵,BP=3t,QC=2t,AB=10cm,BC=8cm,∴,∴,②当△BPQ∽△BCA时,∵,∴,∴;∴或时,△BPQ与△ABC相似;(2)如图所示,过P作PM⊥BC于点M,AQ,CP交于点N,则有PB=3t,,,,∵∠NAC+∠NCA=90°,∠PCM+∠NCA=90°,∴∠NAC=∠PCM且∠ACQ=∠PMC=90°,∴△ACQ∽△CMP,∴,∴解得:.【点睛】此题是相似形综合题,主要考查了相似三角形的判定与性质,勾股定理,直角三角形的性质,等腰三角形的性质,由三角形相似得出对应边成比例是解题的关键17.如图,AB是⊙O的直径,线CD⊥AB于点E,G是弧AC上任意一点,延长AG,与DC的延长线交于点F,连接AD,GD,CG.(1)求证:∠AGD=∠FGC;(2)求证:△CAG∽△FAC;(3)若AG•AF=48,CD=4,求⊙O的半径.【思路点拨】(1)根据垂径定理得到EC=ED,根据等腰三角形的性质得到∠3=∠ADC,推出∠1=∠ADC,等量代换即可得到结论;(2)连接AC,BC,推出∠FCG=∠DAG,得到∠ADG=∠F,推出∠ACG=∠F,由于∠CAG=∠CAF,于是得到结论,(3)根据相似三角形的性质得到=,得到AC2=AG•AF=48,求得AC=4,根据勾股定理得到AE==6,根据相似三角形的性质即可得到结论.【解析】(1)证明:连接AC,BC,∵AB⊥CD,∴EC=ED,∴AC=AD,∴∠3=∠ADC,∵∠1+∠AGC=180°,∠AGC+∠ADC=180°,∴∠1=∠ADC,∵∠2=∠3,∴∠1=∠2,即:∠AGD=∠FGC;(2)解:∵∠FCG+∠DCG=180°,∠DCG+∠DAG=180°,∴∠FCG=∠DAG,∵∠1=∠2,∴∠ADG=∠F,∵∠ADG=∠ACG,∴∠ACG=∠F,∵∠CAG=∠CAF,∴△CAG∽△FAC,(3)解:∵△CAG∽△FAC,∴=,∴AC2=AG•AF=48,∴AC=4,在Rt△ACE中,∵∠AEC=90°,AC=4,CE=2,∴AE==6,易知△ACE∽△ABC,∴AC2=AE•AB,∴AB=8,∴⊙O的半径为4.【点睛】此题考查圆周角定理、垂径定理、勾股定理、相似三角形的判定和性质、圆内接四边形的性质等知识,教育的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考常考题型.题组C 培优拔尖练18.如图,分别以下列选项作为一个已知条件,不一定能得到△AOB与△COD相似的是( )A.B.C.D.∠BAC=∠BDC【思路点拨】根据相似三角形的判定方法对各选项进行判断即可得出答案.【解析】解:A、若,因为只知道∠AOB=∠COD,不符合两边及其夹角的判定,不一定能得到△AOB∽△DOC,故本选项符合题意;B、若,结合∠AOB=∠COD,可得△AOB∽△COD,故本选项不符合题意;C、若,结合∠AOB=∠COD,根据两边及其夹角的方法可得△AOB∽△DOC,故本选项不符合题意.D、若∠BAC=∠BDC,结合∠AOB=∠COD,可得△AOB∽△DOC,故本选项不符合题意;故选:A.【点睛】本题考查了相似三角形的判定,解答本题的关键是熟练掌握相似三角形判定的三种方法.19.如图,四边形ABCD内接于半径为4的⊙O,BD=4,连AC交BD于E,若E为AC的中点,且AB=AD,则四边形ABCD的面积是( )A.6B.8C.9D.18【思路点拨】先证△AOB是等边三角形,可得AB=BO=AO,AF=FO=2,由相似三角形的性质可得AF=CH=2,由面积关系可求解.【解析】解:如图,连接AO,交BD于F,连接BO,DO过点C作CH⊥BD,交BD的延长线于H,∵AB=AD,OB=OD,∴AO垂直平分BD,∴BF=DF=2,∴∠AOB=60°,∵AO=BO,∴△AOB是等边三角形,∴AB=BO=AO,∵BF⊥AO,∴AF=FO=2,∵E 为AC 的中点,∴AE =EC ,∵AF ⊥BD ,CH ⊥BD ,∴AF ∥CH ,∴△AFE ∽△CHE ,∴=1,∴AF =CH =2,∴四边形ABCD 的面积=S △ABD +S △BDC =×BD ×AF +×BD ×CH =4×2=8,故选:B .【点睛】本题考查了相似三角形的判定和性质,锐角三角函数,等边三角形的判定和性质,垂径定理等知识,灵活运用这些性质解决问题是解题的关键.20.如图,在△ABC 中,AB =AC =9,BC =12,D ,E 分别是BC ,AB 上的动点(点D 与B ,C 不重合),且2∠ADE +∠BAC =180°,若BE =4,则CD 的长为 6 .【思路点拨】依据∠C =∠ADE ,∠BDE =∠CAD ,即可判定△BDE ∽△CAD ;再根据相似三角形的对应边成比例,即可得到=,即=,进而得出CD 的长.【解析】解:∵AB =AC ,∴∠C =∠B ,∴∠C +∠B +∠BAC =2∠C +∠BAC =180°,又∵2∠ADE +∠BAC =180°,∴∠C =∠ADE ,又∵∠BDE +∠ADC =180°﹣∠ADE ,∠CAD +∠ADC =180°﹣∠C ,∴∠BDE =∠CAD ,∴△BDE ∽△CAD ,∴=,即=,解得CD =6.故答案为:6.【点睛】本题主要考查了相似三角形的判定与性质以及等腰三角形的性质的运用,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用.21.如图,DA⊥AC,BC⊥AC,AB与CD相交于点E,过点E作EF⊥AC交AC于F,且BC=2,AD=3,则EF的长为 .【思路点拨】由于AD⊥AC,BC⊥AC,EF⊥AC,故AD∥EF∥BC,即可求得相似三角形,然后可知,.两式相加即可证得,进而解答.【解析】解:∵AD⊥AC,BC⊥AC,EF⊥AC,∴AD∥EF∥BC,∴△AEF∽△ABC,△CEF∽△CDA,△BCE∽△ADE.∴,.∴,∴,∵BC=2,AD=3,∴,∴EF=,故答案为:.【点睛】本题考查相似三角形的性质及判定,解题关键是两式相加去掉AF与CF.22.如图,四边形ABCD中,∠ABC=∠BCD=90°,AB=3,BC=4,点E在BC边上,若AE⊥AD,且∠AEB=∠DEA,则BE的长为 .【思路点拨】过D点作DF⊥AB交BA的延长线于点F,则四边形BCDF为矩形,进而可证明△FAD∽△BEA,列比例式可得,再证明△ABE∽△DAE列比例式可求解BE的长.【解析】解:过D点作DF⊥AB交BA的延长线于点F,∴∠F=90°,∴∠FAD+∠FDA=90°,∵∠ABC=∠BCD=90°,∴四边形BCDF为矩形,∴DF=BC=4,∵AE⊥AD,∴∠DAE=90°,∴∠FAD+∠BAE=90°,∴∠FAD=∠BAE,∵∠F=∠ABC=90°,∴△FAD∽△BEA,∴,∵∠B=∠AED=90°,∠AEB=∠DEA,∴△ABE∽△DAE,∴,即,∴,解得BE=.故答案为:.【点睛】本题主要考查相似三角形的判定与性质,证明△FAD∽△BEA,△ABE∽△DAE是解题的关键.23.如图,在正方形ABCD中,点E在BC边上,连接AE,∠DAE的平分线AG与CD边交于点G,与BC的延长线交于点F.设=λ(λ>0).(1)若AB=2,λ=1,求线段CF的长为 ﹣1 ;(2)连接EG,若EG⊥AF,则λ的值为 .【思路点拨】(1)根据AB=2,λ=1,可以得到BE、CE的长,然后根据正方形的性质,可以得到AE 的长,再根据平行线的性质和角平分线的性质,可以得到EF的长,从而可以得到线段CF的长;(2)然后根据题目中的条件,可以得到△ADG≌△FGC,△EGC∽△GFC,根据全等三角形的性质、相似三角形的性质可以得到CE和EB的比值,从而可以得到λ的值.【解析】解:(1)∵四边形ABCD是正方形,∴AD∥BC,∠B=90°,∴∠DAG=∠F,又∵AG平分∠DAE,∴∠DAG=∠EAG,∴∠EAG=∠F,∴EA=EF,∵=λ=1,∴点E为BC的中点,∵AB=2,∠B=90°,∴BE=EC=1,∴AE==,∴EF=,∴CF=EF﹣EC=﹣1,故答案为:﹣1;(2)∵EA=EF,EG⊥AF,∴AG=FG,∵四边形ABCD是正方形,∴∠D=∠BCD=90°,∴∠GCF=180°﹣90°=90°,在△ADG和△FCG中,,∴△ADG≌△FCG(AAS),∴DG=CG,CF=DA,设CD=2a,则CG=a,CF=DA=2a,∵EG⊥AF,∠GCF=90°,∴∠EGC+∠CGF=90°,∠F+∠CGF=90°,∠ECG=∠GCF=90°,∴∠EGC=∠F,∴△EGC∽△GFC,∴=,∵GC=a,CF=2a,∴=,∴=,∴EC=a,BE=BC﹣EC=2a﹣a=a,∴λ===,故答案为:.【点睛】本题考查正方形的性质、相似三角形的判定与性质、全等三角形的判定与性质、勾股定理,解答本题的关键是明确题意,利用数形结合的思想解答.24.如图,△ABC内接于半径为的半圆O中,AB为直径,点M是的中点,连结BM交AC于点E,AD平分∠CAB交BM于点D,∠ADB=135°且D为BM的中点,则DM的长为 2 ;BC的长为  .【思路点拨】连接AM,可得等腰直角三角形ADM,设AM=DM=BD=x,在Rt△ABM中,根据勾股定理列出方程,求出x值,进一步求得结果;在Rt△AEM中求得EM,进而求得BE,在Rt△ABE中,BC =3CE,BE=3,根据勾股定理列出方程,求得结果.【解析】解:如图,连接AM,∵AB是⊙O的直径,∴∠M=∠C=90°,∵∠ADB=135°,∴∠ADM=180°﹣∠ADB=45°,∴∠MAD=90°﹣∠ADM=45°,∴AM=MD,∵点D是BM的中点,∴MD=BD,设AM=x,则BM=2x,∵AM2+BM2=AB2,∴x2+(2x)2=(2)2,∴x=2,∴AM=DM=2,∵点M是的中点,∴=∴∠CBM=∠ABM,∴=,∴=,∵=,∴∠MAC=∠CBM,∴,∴EM=AM=1,∴BE=BM﹣EM=4﹣1=3,∵CE2+BC2=BE2,∴CE2+(2CE)2=32,∴CE=,∴BC=2CE=,故答案是:2,.【点睛】本题考查了圆周角定理及其推论,等腰三角形的判定和性质,解直角三角形等知识,解决问题的关键是找可解的直角三角形.25.如图,Rt△ABC中,∠BAC=90°,AB=AC=2,点D在BC上运动(不能经过B、C),过D作∠ADE=45°,DE交AC于E.(1)设BD=x,AE=y,求y与x的函数关系,并写出其定义域;(2)若三角形ADE恰为等腰三角形,求AE的长.【思路点拨】(1)先由∠BAC=90°,AB=AC=2,求得BC==2,∠C=∠B=45°,再证明△CDE∽△BAD,得=,所以=,整理成用含x的代数式表示y的形式并写出定义域即可;(2)分三种情况讨论,一是当DE=AD时,则===1,所以DC=AB=2,CE=BD=2﹣2,则AE=4﹣2;二是DE=AE时,则∠DAE=∠ADE=45°=∠C,此时AD=CD,且DE⊥AC,所以AE=CE=1;三是AD=AE,此时点D与点B重合,不符合题意.【解析】解:(1)∵∠BAC=90°,AB=AC=2,∴BC===2,∠C=∠B=45°,∴∠ADE=45°,∴∠BAD=180°﹣∠B﹣∠ADB=135°﹣∠ADB,∵∠CDE=180°﹣∠ADE﹣∠ADB=135°﹣∠ADB,∴∠CDE=∠BAD,∴△CDE∽△BAD,∴=,∴=,整理得y=x2﹣x+2(0<x<2).(2)当DE=AD时,如图1,∵===1,∴DC=AB=2,∴CE=BD=2﹣2,∴AE=2﹣(2﹣2)=4﹣2;当DE=AE时,如图2,∵∠DAE=∠ADE=45°=∠C,∴AD=CD,∠AED=90°,∴DE⊥AC,∴AE=CE=AC=1;若AD=AE,则∠AED=∠ADE=45°,∴∠DAE=90°=∠BAE,∴AD与AB重合,点D与点B重合,不符合题意,综上所述,AE的长为4﹣2或1.【点睛】此题重点考查等腰三角形的判定与性质、三角形内角和定理、勾股定理、相似三角形的判定与性质、数形结合与分类讨论数学思想的运用等知识与方法,此题难度较大,证明△CDE∽△BAD是解题的关键.26.从三角形(不是等腰三角形)的一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中,一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图①,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD为△ABC的完美分割线;(2)在△ABC中,∠A=48°,CD是△ABC的完美分割线,且△ACD为等腰三角形,求∠ACB的度数;(3)如图②,在△ABC中,AC=3,BC=,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求完美分割线CD的长.【思路点拨】(1)根据完美分割线的定义,先证明△ABC不是等腰三角形,再证明△ACD为等腰三角形,最后证明△BCD∽△BAC;(2)根据△ACD为等腰三角形,需要分三种情况讨论:①如图3所示,当AD=CD时,②如图4所示,当AD=AC,③如图5所示,当AC=CD,然后结合美分割线的定义可得△BDC∽△BCA,可以分别求出∠ACB的度数;(3)根据题意求出AD,再根据△BCD∽△BAC,求出BD,再根据△BCD∽△BAC,求出CD.【解析】(1)证明:∵∠A=40°,∠B=60°,∴∠ACB=180°﹣∠A﹣∠B=80°,∵∠A≠∠B≠∠ACB,∴△ABC不是等腰三角形.∵CD平分∠ACB,∴∠ACD=∠BCD=∠ACB=40°,∴∠ACD=∠A=40°,∴△ACD为等腰三角形.∴∠DCB=∠A=40°,∵∠CBD=∠ABC,∴△BCD∽△BAC,∴CD是△ABC的完美分割线.(2)解:①如图3所示,当AD=CD时,∠ACD=∠A=48°,根据完美分割线的定义,可得△BDC∽△BCA,∴∠BCD=∠A=48°,则∠ACB=∠ACD+∠BCD=96°.②如图4所示,当AD=AC时,∠ACD=∠ADC==66°,根据完美分割线的定义,可得△BDC∽△BCA,∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=114°.③如图5所示,当AC=CD时,∠ADC=∠A=48°.∵△BDC∽△BCA,∴∠BCD=∠A=48°,根据完美分割线的定义,可得△BDC∽△BCA,∴∠BCD=∠A=48°,∴这与∠ADC>∠BCD矛盾,所以图5的情况不符合题意.综上所述,∠ACB的度数为96°或114°;(3)解:∵△ACD是以CD为底边的等腰三角形,∴AC=AD,∵AC=3,∴AD=3,∵CD是△ABC的完美分割线,∴△BCD∽△BAC,∴=,∴BC2=BA•BD,设BD=x,则AB=AD+BD=2+x,∴()2=x(x+3),∴x=,∵x>0,∴x=,∴BD=,∵△BCD∽△BAC,∴=,即=,∴CD=.【点睛】本题是相似形综合题,考查了新定义、等腰三角形的判定和性质、相似三角形的判定和性质,灵活运用方程思想解决问题是解本题的关键.。

4.7_相似三角形性质(课时2)(教案)

4.7_相似三角形性质(课时2)(教案)
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了相似三角形的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对相似三角形性质的理解。我希望大家能够掌握这些知识点,并在解决几何问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
最后,我会在课后收集学生的反馈,了解他们在学习过程中的困惑和需求,以便在接下来的教学中做出相应的调整。我相信,通过不断反思和改进,我们能更好地激发学生的学习兴趣,提高他们的几何学科素养。
五、教学反思
在今天的相似三角形性质教学中,我发现学生们对对应角和对应边成比例的概念掌握得还不错,但在具体的案例分析中,有些同学在辨识对应角和对应边时仍然感到困惑。这让我意识到,我们需要在接下来的课程中加强对这部分知识点的巩固。
课堂上,我尝试通过引入日常生活中的实例,让学生感受到相似三角形性质的实际应用,这样的教学方式似乎引起了学生的兴趣。不过,我也注意到,在理论介绍环节,部分学生显得有些吃力,可能是因为概念的理解需要更多的时间和练生在辨识相似三角形中的对应角和对应边时,容易混淆,需要教师通过具体示例和练习进行指导。
-性质证明的逻辑推理:学生在证明相似三角形性质时,可能会遇到推理不严密、逻辑混乱等问题,教师应引导学生梳理证明过程,强化逻辑推理能力。
举例:
(1)难点突破:教师展示多个相似三角形图形,让学生辨识对应角和对应边,并提供提示和指导,如“如何快速找到相似三角形中的对应角和对应边?”
(2)逻辑推理:针对性质证明的难点,教师可以设计梯度性练习题,从简单到复杂,让学生逐步掌握证明方法。例如,先证明“相似三角形中,对应角相等”,再证明“相似三角形中,对应边成比例”。

北师大版数学九年级上册4.7《相似三角形的性质》第二课时优秀教学案例

北师大版数学九年级上册4.7《相似三角形的性质》第二课时优秀教学案例
3.小组合作学习:采用小组合作的学习方式,培养学生的合作能力和团队精神。学生分组讨论,分享观点和例子,互相交流和学习,共同解决问题。教师进行巡回指导,解答学生的问题,提供必要的帮助和引导。
4.总结归纳与知识应用:在总结归纳环节,让学生回顾学习内容,总结相似三角形的性质和判定方法,形成系统的知识体系。同时,强调相似三角形性质在几何证明和实际问题解决中的应用,提高学生的知识应用能力。
五、案例亮点
1.生活情境的引入:通过引入实际问题和生活情境,激发学生的学习兴趣和积极性。例如,计算建筑物面积或解决角度问题等,使学生感受到相似三角形性质在实际生活中的应用,提高学习的贴切性和实际意义。
2.问题导向与学生主动探究:以问题为导向,引导学生主动探究和发现相似三角形的性质。提出引导性问题激发学生思考,通过观察、操作和归纳等方法,发现和总结相似三角形的性质,培养学生的问题解决能力和科学探究精神。
二、教学目标
(一)知识与技能
1.学生能够理解相似三角形的性质,包括对应边成比例、对应角相等。
2.学生能够运用相似三角形的性质解决实际问题,如计算面积、解决角度问题等。
3.学生能够熟练运用相似三角形的判定方法,判断两个三角形是否相似。
4.学生能够掌握相似三角形的性质在几何证明中的应用,提高证明能力。
(二)过程与方法
5.作业小结与反馈指导:布置有关相似三角形性质的练习题,巩固所学知识。要求学生在作业中运用相似三角形的性质解决实际问题,培养学生的应用能力。在批改作业过程中,及时给予反馈和指导,帮助学生纠正错误和提高解题能力。
情境的方式,让学生思考和讨论实际问题。例如,展示一张图片,图片中有一个矩形和一个相似的平行四边形,让学生计算它们的面积。通过这个问题,引导学生思考相似形的性质,从而引出本节课的主题——相似三角形的性质。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相似三角形性质2知识精要一、相似三角形的性质1、(定义):相似三角形的对应角相等,对应边成比例。

2、性质定理1:相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比。

3、性质定理2:相似三角形的周长比等于相似比。

4、性质定理3:相似三角形的面积比等于相似比的平方。

二、相似三角形的应用热身练习一、填空题:1、两个相似三角形的面积之比为9:16,它们的对应高之比为3:4 。

2、地图比例尺为1:2000,一块多边形地区在地图上周长为50cm,面积为100cm2,实际周长为1000 m,实际面积为40000m2。

3、如果两个相似三角形最长边为35和14,它们的周长差为60,那么这两个三角形的周长分别为____100、40 __4、如图4,已知DE∥BC,AD:DB=2:3,那么S△ADE:S△ECB=4:15 。

5、两个相似三角形的相似比为1:3,则它们的周长比为1:3 ,面积比为1:9二、选择题:1、如图,在ABCD中,AC与DE交于点F,AE:EB=1:2,S △AEF=6cm2,则S△CDF的值为(D )A.12cm2B.15cm2C.24cm2D.54cm22、若菱形的周长为16cm,相邻两角的度数之比是1:2,则菱形的面积是(B )A.32B.32C.32D.3 23、东海大桥全长32.5千米,如果东海大桥在某张地图上的长为6.5厘米,那么该地图上距离与实际距离的比为(B )A.1:5000000 B.1:500000 C.1:50000 D.1:5000三、解答题:1、如图,已知梯形ABCD中,AD∥BC,AD:BC=3:5,求:(1)S△AOD:S△BOC的值;(2)S△AOB:S△AOD的值.参考答案:(1)9:25 (2)5:32、如图,已知:△ABC∽△A´B´C´,且AB:A´B´=3:2,若AD与A′D′分别是△ABC与△A´B´C´的对应中线。

(1)你发现还有哪些三角形相似?(2)若AD=9cm,则A'D'的长是多少?(3)若AD分别是这两个三角形的对应高、对应角平分线,则△ABD与△A´B´D´成立吗?故两个相似三角形的所有对应线段之比=______,面积之比=_____。

参考答案:(1)△ABD∽△A´B´D´, △ACD∽△A´C´D´;(2)A'D'为6cm;(3)成立3:2、9:4。

精解名题例1、已知梯形ABCD的周长为16厘米,上底CD=3厘米,下底AB=7厘米,分别延长AD和BC交于P,求△PCD的周长。

参考答案:∵AB∥CD ∴PD PAPC PB=设PD=3x ,PC=3y37PD PC CDPA PB AB===3x CDPA AB=PA=7x ,PB=7y AD+BC=4x+4y=6 PD+PC=92△PCD的周长为152例2.、在△ABC 中,DE//BC,DC 与BE交于点O ,若BCED S 四边形=8ADE S ,且1DOES=,求四边形BCED 的面积。

参考答案:19ADE ABCS S= ∴13DE OE BC OB == ∵13OE OB = ∴13ODE OBDS S= 3OBDS = 同理,3OECS= ∴19DOE OBCS S=∴9OBCS = 16BCED S =四边形例3、正方形ABCD 边长为4,M 、N 分别是BC 、CD 上的两个动点,当M 点在BC 上运动时,保持AM 和MN 垂直,(1)证明:Rt Rt ABM MCN △∽△;(2)设BM x =,梯形ABCN 的面积为y ,求y 与x 之间的函数关系式;当M 点运动到什么位置时,四边形ABCN 面积最大,并求出最大面积;(3)当M 点运动到什么位置时Rt Rt ABM AMN △∽△,求x 的值。

参考答案:(1)在正方形ABCD 中,490AB BC CD B C ===∠=∠=,°,AM MN ⊥,90AMN ∴∠=°, 90CMN AMB ∴∠+∠=°.在Rt ABM △中,90MAB AMB ∠+∠=°,CMN MAB ∴∠=∠,Rt Rt ABM MCN ∴△∽△.(2)Rt Rt ABM MCN △∽△,44AB BM x MC CN x CN ∴=∴=-,,244x xCN -+∴=,22214114428(2)102422ABCNx x y S x x x ⎛⎫-+∴==+=-++=--+ ⎪⎝⎭梯形, 当2x =时,y 取最大值,最大值为10. (3)90B AMN ∠=∠=°,∴要使ABM AMN △∽△,必须有AM ABMN BM=, 由(1)知AM AB MN MC=,BM MC ∴=, ∴当点M 运动到BC 的中点时,ABM AMN △∽△,此时2x =. 备选例题例1、在△ABC 中,90ACB ∠=︒,CD 是AB 上的高,如果AC:BC=4:3,求:ACDBCDSS值。

参考答案:∵△ACD ∽△CBD ∴9162==⎪⎭⎫⎝⎛∆∆CBD ACD S S BC AC例2、如图 ,梯形ABCD 中,AB CD ∥,点F 在BC 上,连DF 与AB 的延长线交于点G . (1)求证:CDF BGF △∽△;(2)当点F 是BC 的中点时,过F 作EF CD ∥交AD 于点E ,若6cm 4cm AB EF ==,,求CD 的长.参考答案:(1)证明:∵梯形ABCD ,AB CD ∥,∴CDF FGB DCF GBF ∠=∠∠=∠,, ∴CDF BGF △∽△. (2) 由(1)CDF BGF △∽△,又F 是BC 的中点,BF FC = ∴CDF BGF △≌△, ∴DF FG CD BG ==,又∵EF CD ∥,AB CD ∥, ∴EF AG ∥,得2EF BG AB BG ==+. ∴22462BG EF AB =-=⨯-=,∴2cm CD BG ==D C FE ABG巩固练习一、填空题:1、如图1,(1)若OAOB=OCOD,则△OAC∽△OBD,∠A=∠B(2)若∠B=_∠A ,则△OAC∽△OBD,OA与OB或OC与OD或AC与DB是对应边(3)请你再写一个条件,___∠C=∠D或AC∥BD,使△OAC∽△OBD2、如图2,若∠BEF=∠CDF,则△FEB∽△FDC,△ABD∽△ACE3、如图3,已知A(3,0),B(0,6),且∠ACO=∠BAO,则点C的坐标为________,AC=_______(0,33)5 22AC=二、选择题:1、下列各组图形一定相似的是( C )A.有一个角相等的等腰三角形B.有一个角相等的直角三角形C.有一个角是100°的等腰三角形D.有一个角是对顶角的两个三角形2、如图2,AB=BC=CD=DE,∠B=90°,则∠1+∠2+∠3等于(D )A.45°B.60°C.75°D.90°∵AB=AC,∠B=90°,∴∠1=45°.设AB=BC=CD=DE=1,则AC=2,CE=2,∴2222CD ACAC CE===,∴△ACE∽△DCA,∴∠2=∠CAE.∵∠1=∠CAE+∠3=∠2+∠3,∴∠1+∠2+∠3=90°3、下列各组图形中不一定相似的有( B )①两个矩形②两个正方形③两个等腰三角形④两个等边三角形⑤两个直角三角形⑥两个等腰直角三角形A. 2个B. 3个C. 4个D.5个4、下列命题中错误的是(C)A.相似三角形的周长比等于对应中线的比B.相似三角形对应高的比等于相似比C.相似三角形的面积比等于相似比D.相似三角形对应角平分线的比等于相似比三、解答题:1、如图,在△ABC中,CD,AE是三角形的两条高,写出图中所有相似的三角形,简要说明理由.CEFD参考答案:△AFD∽△CFE △AEB∽△CDB △AFD∽△ABE,△CFE∽△CBD,△ADF∽△CDB,△CEF∽△AEB理由:有两个角对应相等的三角形相似2、如图,D,E是AB边上的三等分点,F,G是AC边上的三等分点,•写出图中的相似三角形,并求出对应的相似比.参考答案:△ADF∽△AEG∽△ABC△ADF∽△AEG,相似比为1:2;△AEG∽△ABC,相似比为2:3;△ADF∽△ABC,相似比为1:3.3、如图,在直角坐标系中,已知点A(2,0),B(0,4),在坐标轴上找到点C(1,0)•和点D,使△AOB与△DOC相似,求出D点的坐标,并说明理由.参考答案:(0,12)或(0,-12),(0,2),(0,-2)理由:若△AOB与△DOC相似:∠B=∠OCD,∴1,42OC OD ODOB OA==即,∴D(0,12),同理:D(0,-12).4、如图,△ABC和△DEF均为正三角形,D,E分别在AB,BC上,请找出一个与△DBE相似的三角形并证明.参考答案::△GAD或△ECH或△GFH,证△GAD∽△DBE.证明:∵△ABC,△DEF是等边三角形,∴∠A=∠B=∠FDE=60°,∴∠BDE+∠GDA=120°,又∵∠BDE+∠DEB=120°,∴∠ADG=∠DEB,∴△GAD∽△DBE.5、高明为了测量一大楼的高度,在地面上放一平面镜,镜子与楼的距离AE=27m,他与镜子的距离是2.1m时,刚好能从镜子中看到楼顶B,已知他的眼睛到地面的高度CD为1.6m,结果他很快计算出大楼的高度AB,你知道是什么吗?试加以说明参考答案:利用反射角等于入射角,可得∠BEA=∠DEC.又∵AB⊥AC,DC⊥AC,∴△ABE∽△CDE6、如图,四边形ABCD是平行四边形,点F在BA的延长线上,连接CF交AD于点E.(1)求证:△CDE∽△FAE.(2)当E是AD的中点且BC=2CD时,求证:∠F=∠BCF.参考答案:(1)ABCD中,CD∥AB,∴∠D=∠DAF.又∵∠DEC=∠AEF,∴△CDE∽△FAE.(2)当E是AD中点时,△DEC≌△AEF(SAS).∴CD=FA,BF=2CD.又∵BC=2CD,∴BF=BC,∴∠F=∠BCF.自我测试一、填空题:1、两个相似三角形的角平分线比是2,且大三角形的面积为3面积为 83平方厘米2、两个相似三角形对应中线之比为2又两个三角形面积之和是129平方厘米,则两个三角形的面积分别为 43平方厘米,86平方厘米3、已知ΔABC∽ΔDEF,且SΔABC:SΔDEF=16:9,两三角形周长的和为21厘米,则ΔABC的周长为 12厘米4、在ΔABC中D、E分别为边AB、AC上的点,且DE∥BC,AD:BD=2:3,则S四边形DBCE:SΔADE=21:45、在梯形ABCD中,AD∥BC,AD:BC=1:3,AC与BD相交于O,则SΔAOD:SΔCOD:SΔBOC=1:3:9二、解答题:1、已知:如图是一束光线射入室内的平面图,•上檐边缘射入的光线照在距窗户2.5m处,已知窗户AB高为2m,B点距地面高为1.2m,求下檐光线的落地点N•与窗户的距离NC.参考答案:∵AM ∥BN ,∴∠A=∠NBC ,∠C=∠C ,△NBC ∽△MAC ,,1.215,.3.2 2.516BC NCAC MCNC NC m ∴===即2、如图,等腰直角三角形ABC 中,顶点为C ,∠MCN=45°,试说明△BCM ∽△ANC .参考答案:∵△ACB 是等腰直角三角形,: ∴∠A=∠B=45°. 又∵∠MCN=45°, ∴∠ACM+∠NCB=45°,∠CNA=∠B+∠BCN=45°+∠BCN , ∠MCB=∠MCN+∠NCB=45°+∠BCN . ∴在△BCM 和△ANC 中,∠A=∠B . ∴∠CNA=∠MCB ,∴△BCM ∽△ANC .3、在ABCD 中,M ,N 为对角线BD 的三等分点,连接AM 交BC 于E ,连接EN 并延长交AD 于F .(1)试说明△AMD ∽△EMB ;(2)求FNNE的值.参考答案:(1)∵ABCD 是平行四边形,∴AD ∥BC ,∠ADB=∠DBC , ∠AMD=∠BME , ∴△AMD ∽△EMB . (2)∵四边形ABCD 是平行四边形, ∴AD ∥BC ,∴△FND ∽△ENB ,∴FN DN NE BN ==12。

相关文档
最新文档