2.3用公式法解一元二次方程说课稿
公式法解一元二次方程说课稿

《解一元二次方程—公式法》说课稿一、说教材1、教材的地位与作用《一元二次方程》是人教版《义务教育新课程标准实验教科书,数学·九年级(上册)》第22章第1节的内容,共两课时。
本节是第一课时,是一元二次方程的导入课,主要内容是介绍一元二次方程的概念和一般形式,它为进一步学习一元二次方程解法及应用起到了铺垫作用。
一元二次方程是中学数学的主要内容之一,在初中数学中占有重要地位。
通过一元二次方程的学习,可以对已学过的实数、一元一次方程、因式分解、二次根式等知识加以巩固,同时又是今后学习二次函数等知识的基础。
此外,学习一元二次方程对其它学科也有十分重要的作用。
2、教学目标根据本节课的地位、作用及其内容,结合学生实际和学生认知发展水平,确定如下教学目标:[知识目标] 理解一元二次方程求根公式的推导过程,了解公式法的概念,使学生熟练地应用求根公式解一元二次方程。
[能力目标]经历列方程解决实际问题的过程,体会一元二次方程是刻画现实世界的有效数学模型,增强学生分折问题和解决问题的能力及应用数学的意识;通过概念教学,培养学生的观察类比、归纳能力。
[情感目标]在探索活动中,培养学生合作交流的意识,体验成功喜悦,增强自信心。
3、教学重点与难点从以上分析可以看出:重点:一元二次方程的概念及一般形式难点:从实际问题中抽象出一元二次方程;正确识别一般式中的“项”及“系数”二、说教法与学法1、学情分析在此之前,学生已经了解和学习过一元一次方程的概念及一般形式,掌握了一些根据实际问题列方程的能力,再者,九年级学生的数学思维已有一定程度的发展,具有一定分析推理能力,同时,在讨论、探索、交流学习等方面有较为丰富的知识和经验,因此,除利用与生活实际有关的问题导出新知识外,应更多地应用探讨、合作交流等方法让学生去求得新知识,加深和扩展学生对数学的理解。
根据教材的特点和学情分析,为了突出重点、突破难点的目的,我采用以下教法与学法:2、教法本节课主要采用引探式教学方法,在活动中教师着眼于“引”尽力激发学生求知的欲望,引导他们解决问题并掌握解决问题的规律和方法,学生着眼于“探”通过探索活动发现规律,解决问题,发展探索能力和创造能力。
九年级上《解一元二次方程—公式法》说课稿

九年级上《解一元二次方程——公式法》说课稿一、教学目标•知识目标:掌握一元二次方程的基本概念和公式法解法的具体步骤。
•能力目标:培养学生运用公式法解一元二次方程的能力,培养学生运用解方程思维解决实际问题的能力。
•情感目标:激发学生学习数学的兴趣,培养学生的数学思维能力和逻辑推理能力,增强学生对数学的自信心。
二、教学内容本节课的教学内容是《解一元二次方程——公式法》。
- 了解一元二次方程的概念和基本形式。
- 掌握用公式法解一元二次方程的步骤。
- 运用公式法解决一元二次方程的实际问题。
三、教学重点•掌握一元二次方程的基本概念和公式法解法的步骤。
•运用公式法解决一元二次方程的实际问题。
四、教学难点•运用公式法解决一元二次方程的实际问题。
五、教学方法•教师讲授结合示范。
•学生合作探究。
•学生自主解决问题。
六、教学过程1. 导入与热身(5分钟)通过复习上节课的内容,引入本节课的新知识。
复习一元二次方程的基本概念,并提出公式法解一元二次方程的问题。
2. 新知呈现(15分钟)•引入公式法解一元二次方程的基本步骤:观察、计算、判断、解释。
•讲解一元二次方程的基本形式以及解一元二次方程的公式。
3. 教学示范(20分钟)•教师通过具体的例题,示范如何运用公式法解一元二次方程。
•教师指导学生观察方程中的系数,运用公式计算并判断方程是否有解。
4. 学生合作探究(15分钟)•学生分组合作,完成一组习题,互相讨论,解答问题。
•学生互相提问并解答疑惑,加深对公式法解一元二次方程的理解。
5. 实际问题解决(20分钟)•学生通过解决实际问题,应用公式法解决一元二次方程。
•学生分析问题,提取信息,建立方程,并解答问题。
6. 拓展与小结(10分钟)•教师提供拓展问题,引导学生运用公式法解决更复杂的问题。
•小结本节课的重点内容,梳理解题步骤并巩固学生对公式法解一元二次方程的掌握程度。
七、教学反思本节课采用了导入与热身、新知呈现、教学示范、学生合作探究、实际问题解决、拓展与小结的教学过程,为学生提供了多种角度的学习方式。
2.3 用公式法求解一元二次方程教案

二、教学任务分析 公式法实际上是配方法的一般化和程式化, 然后再利用总结出来的用公式法 解一元二次方程的步骤能更加便利地求解一元二次方程。 所以本节课首先要对上 节课配方法的运算熟练, 在此基础上再进行一般规律性的探求——推导求根公式, 最后,用公式法解一元二次方程。
三、教学目标: 1.引导学生能够正确的推导出一元二次方程的求根公式,总结用公式法解一 元二次方程的步骤,并在探求过程中培养学生的数学建模意识和合情推理能力。 2. 通过正确、熟练的使用求根公式解一元二次方程,并能够根据方程的系 数,判断出方程的根的情况,培养学生观察和总结的能力,提高学生的综合运算 能力。 3.通过在探求公式和总结过程中进一步发展学生合作交流的意识和数学语 言表达能力。
b b 2 4ac a 2ab bLeabharlann 2 4ac x a 2a3
x
b b 2 4ac 2a
问题 4:如果 b2-4ac<0 时,会出现什么问题?(方程无解) 问题 5:如果 b2-4ac=0 呢?(方程有两个相等的实数根)
板书重要结论 1: 对于一元二次方程 ax2+bx+c=0(a≠0),当 b2-4ac≥0 时,它的根是:
∴
即:x1=9,
x2=-2
x
40 1 2 4 2
1
即:x1=x2=2 (3)x2-2x+3=0 解:a=1,b=-2,c=3 ∵b2-4ac=(-2)2-4×1×3=-8﹤0 ∴方程无解
4
3.提出问题: b2-4ac 的值对方程根的情况有什么影响呢? 当 b2-4ac﹥0 时, 方程的根的情况又如何呢? (方程有两个不相等的实数根) 当 b2-4ac=0 时,方程的根的情况如何呢?(方程有两个相等的实数根) 当 b2-4ac﹤0 时,方程的根的情况又如何呢? (方程没有实数根) 因为一元二次方程 ax2+bx+c=0(a≠0)的根的情况由 b2-4ac 的值决定着, 所以 我们将 b2-4ac 叫做一元二次方程的根的判别式 板书重要结论 2: 对于一元二次方程 ax2+bx+c=0(a≠0) 当 b2-4ac﹥0 时,方程有两个不相等的实数根 当 b2-4ac=0 时,方程有两个相等的实数根 当 b2-4ac﹤0 时,方程没有实数根 由此可知,一元二次方程 ax2+bx+c=0(a≠0)的根的情况可由 b2-4ac 来判定, 我们把 b2-4ac 叫做一元二次方程 x2+bx+c=0(a≠0)的根的判别式,通常用希腊字 母“△”来表示。 活动目的: 由学生亲身经历公式的推导过程,只有学生经历了这一过程,他们才能发现 问题、汲取教训、总结经验,形成自己的认识.在集体交流的时候,才能有感而 发。
2.3公式法求解一元二次方程(教案)

今天在教授2.3节“公式法求解一元二次方程”时,我注意到了几个关键点。首先,我发现学生们对于一元二次方程的基本概念掌握得还算不错,但在具体运用求根公式时,部分学生出现了混淆和错误。这让我意识到,在讲解公式运用时,需要更加细致地解释每一步的计算过程,特别是对于判别式的理解和计算。
在讲授过程中,我尝试通过生动的案例和实际问题来引导学生理解一元二次方程的应用,效果似乎不错。学生们在分组讨论时表现得相当积极,能够将理论知识与实际问题联系起来。然而,我也观察到有些小组在讨论时偏离了主题,这可能是因为我对讨论主题的引导不够明确,今后的教学中我需要更加注意这一点。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了一元二次方程的基本概念、求根公式及其在实际中的应用。同时,我们也通过实践活动和小组讨论加深了对一元二次方程的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.重点难点解析:在讲授过程中,我会特别强调求根公式和判别式这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解如何计算并分析根的情况。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一元二次方程相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示一元二次方程在实际中的应用和求解过程。
-解决实际问题时,如何将问题转化为标准的一元二次方程,并应用求根公式。
举例解释:
-对于判别式Δ的计算,学生可能会在计算过程中忘记负号,导致错误判断根的情况。
初中数学《用公式法解一元二次方程》说课稿说课稿及说课稿模板

初中数学《用公式法解一元二次方程》说课稿说课稿及说课稿模板一. 教材分析《用公式法解一元二次方程》是人教版初中数学九年级上册的教学内容。
这部分内容是整个初中数学的重要部分,也是学生首次接触公式法解方程。
在学习这部分内容之前,学生已经学习了代数运算和方程的解法,但对一元二次方程的解法还不太熟悉。
因此,本节课的教学目标是让学生掌握一元二次方程的公式法解法,并能够灵活运用。
二. 学情分析根据我对学生的了解,他们在学习代数运算和方程的解法时,对于概念的理解和运算的熟练程度参差不齐。
因此,在教学过程中,我需要关注那些基础薄弱的学生,确保他们能够跟上教学进度。
同时,我也会引导那些基础较好的学生进行深入思考,提高他们的解题能力。
三. 说教学目标根据教材内容和学情分析,我制定了以下教学目标:1.让学生掌握一元二次方程的公式法解法;2.培养学生运用公式法解一元二次方程的能力;3.引导学生理解公式法解方程的原理,提高他们的数学思维能力。
四. 说教学重难点本节课的教学重难点是让学生掌握一元二次方程的公式法解法,并能够灵活运用。
其中,公式法解法的步骤和原理是教学的重点,而如何将实际问题转化为方程是教学的难点。
五. 说教学方法与手段为了达到教学目标,我将以讲授法为主,结合问答法、讨论法和练习法进行教学。
在教学过程中,我会利用多媒体课件和教学道具,帮助学生直观地理解公式法解方程的原理和步骤。
六. 说教学过程1.导入:通过一个实际问题,引导学生思考如何解决这类问题,从而引出一元二次方程的公式法解法。
2.讲解:讲解一元二次方程的公式法解法,包括公式推导、解题步骤和注意事项。
3.互动:邀请学生上台演示解题过程,其他学生进行评价和讨论,巩固所学知识。
4.练习:布置一些典型题目,让学生独立完成,检验他们对公式法解法的掌握程度。
5.总结:对本节课的内容进行总结,强调公式法解方程的步骤和原理。
七. 说板书设计板书设计如下:一元二次方程的公式法解法1.公式推导ax^2 + bx + c = 0x = (-b ± √(b^2 - 4ac)) / (2a)2.解题步骤(1)确定a、b、c的值;(2)计算判别式Δ = b^2 - 4ac;(3)判断Δ的符号;(4)根据公式求解x的值。
用公式法解一元二次方程说课稿

2.3用公式法解一元二次方程说课稿今天我说课的内容是北师大版九年级数学上册第二章《2.3用公式法解一元二次方程》。
我主要从教材分析、教法分析、过程分析、板书设计四个方面对本节课作如下说明.一、教材分析(一)教材的地位和作用“一元二次方程的解法”是初中代数的方程中的一个重要内容之一,是在学完一元一次方程、因式分解、数的开方、以及前三种因式分解法、直接开方法、配方法解一元二次方程的基础上,掌握用求根公式解一元二次方程,是配方法和开平方两个知识的综合运用和升华。
通过本节课的教学使学生明确配方法是解方程的通法,同时会根据题目选择合适的方法解一元二次方程。
一元二次方程的解法也是今后学习二次函数和一元二次不等式的基础。
(二)教学目标知识技能方面:理解一元二次方程求根公式的推导过程,会用公式法解一元二次方程。
数学思考方面:通过求根公式的推导过程进一步使学生熟练掌握配方法,培养学生数学推理的严密性和逻辑性以及由特殊到一般的数学思想。
解决问题方面:结合用公式法解一元二次方程的练习,培养学生快速准确的运算能力和运用公式解决实际问题的能力。
情感态度方面:让学生体验到所有的方程都可以用公式法解决,感受到公式的对称美、简洁美,渗透分类的思想;公式的引入培养学生寻求简便方法的探索精神和创新意识。
(三)教学重、难点重点:掌握用公式法解一元二次方程的一般步骤;会熟练用公式法解一元二次方程。
难点:理解求根公式的推导过程和判别式二、教学法分析教法:本节课采用引导发现式的自主探究式与交流讨论结合的方法;在教学中由旧知识引导探究一般化问题的形式展开,利用学生已有的知识、多交流、主动参与到教学活动中来。
学法:让学生学会善于观察、分析讨论和分类归纳的方法,提出问题后,鼓励学生通过分析、探索、尝试解决问题的方法,铜锁亲自尝试,使学生的思维能力得到培养。
三、过程分析本节课的教学设计成以下六个环节:复习导入——呈现问题——例题讲解——巩固练习——课时小结——布置作业。
2.3用公式法求解一元二次方程

即
x1 = x2 = 1 .
2
知识讲解
例2 解方程:4x2-3x+2=0
解: a 4,b 3,c 2. b2 4ac (3)2 4 4 2 9 32 23 0.
因为在实数范围内负数不能开平方,所以方程无实数根.
知识讲解
公式法解方程的步骤 1.变形: 化已知方程为一般形式; 2.确定系数:用a,b,c写出各项系数; 3.计算: b2-4ac的值; 4.判断:若b2-4ac ≥0,则利用求根公式求出;
归纳这 这个公式说明方程的根是由方程的系数a、b、c所确定的,利用 这个公式,我们可以由一元二次方程中系数a、b、c的值,直接求得方 程的解.
知识讲解
二 用公式法解一元二次方程
典例精析
例1:解方程 (1)x2 - 7x –18 = 0.
解:这里 a =1 , b =-7 , c = -18.
∵ b2 - 4ac = (-7 )2 - 4×1×(-18 )=121 >0,
我们把 b2 - 4ac 叫做一元二次方程 ax2 + bx +c = 0(a≠0) 的根 的判别式,用希腊字母“Δ”来表示.
知识讲解
不解方程判断下列方程的根的情况.
(1)x2 - 6x + 1 = 0;
(2)2x2 – x + 2 = 0;
(3)9x2 + 12x + 4 = 0.
解:(1) Δ = (-6 )2 – 4×1×1= 32 > 0 , ∴有两个不相等的实数根.
例3 若关于x的一元二次方程(k-1)x2+4x+1=0有两个不相等 的实数根,则k的取值范围是( B ) A. k<5 B.k<5且k≠1 C. k≤5且k≠1 D. k>5
(13)2.3用公式法求解一元二次方程(1)

北师大版九年级(上)数学科导学案(13)课题:2.3用公式法求解一元二次方程(1)(P41-43) 主备: 审核:初三备课组班级 姓名 学号 家长签名:【学习目标】: 1、通过推导求根公式,加强推理技能训练,进一步发展逻辑思维能力。
2、会用公式法解简单的数字系数的一元二次方程。
一、课前预习:预习评价: (师傅检查后填写)1、一元二次方程05322=--x x 中,二次项系数为____,一次项系数__________, 常数项为________;2、把方程1532=--))((x x 化为一般形式_______________;其中 a = ________,b = __________,c = ___________;3、用配方法解下列方程: 05322=--x x4、你能用配方法解方程)0(02≠=++a c bx ax 吗?解:两边都除以a ,得:2、通过上述的推导得到一元二次方程)0(02≠=++a c bx ax 的求根公式为: 当042≥-ac b 时,x =__________________________二.预习交流。
三、互助探究1、用公式法解下列方程:05322=--x x解:这里a= _______, b =________, c =________∵b 2-4ac = __________ = ___________ > 0∴x = ___________ = ____________即 1x = ___________, 2x = _______2、解方程: x 2-7x -18=0四、分层提高:1、用公式法解下列方程:(1)23210x x +-= (2)21683x x +=(3)29610x x ++= (4) 22350x x -+=能力提高:1、对于一元二次方程来说)0(02≠=++a c bx ax ,方程是否有解,由___________决定。
当b 2-4ac ________0,方程有___________个根,根是_____________________;当b 2-4ac ________0,方程有___________个根,根是_____________________;当b 2-4ac ________0,方程___________根。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.3用公式法解一元二次方程说课稿
今天我说课的内容是北师大版九年级数学上册第二章《2.3用公式法解一元二次方程》。
我主要从教材分析、教法分析、过程分析、板书设计四个方面对本节课作如下说明.
一、教材分析
(一)教材的地位和作用
“一元二次方程的解法”是初中代数的方程中的一个重要内容之一,是在学完一元一次方程、因式分解、数的开方、以及前三种因式分解法、直接开方法、配方法解一元二次方程的基础上,掌握用求根公式解一元二次方程,是配方法和开平方两个知识的综合运用和升华。
通过本节课的教学使学生明确配方法是解方程的通法,同时会根据题目选择合适的方法解一元二次方程。
一元二次方程的解法也是今后学习二次函数和一元二次不等式的基础。
(二)教学目标
知识技能方面:理解一元二次方程求根公式的推导过程,会用公式法解一元二次方程。
数学思考方面:通过求根公式的推导过程进一步使学生熟练掌握配方法,培养学生数学推理的严密性和逻辑性以及由特殊到一般的数学思想。
解决问题方面:结合用公式法解一元二次方程的练习,培养学生快速准确的运算能力和运用公式解决实际问题的能力。
情感态度方面:让学生体验到所有的方程都可以用公式法解决,感受到公式的对称美、简洁美,渗透分类的思想;公式的引入培养学生寻求简便方法的探索精神和创新意识。
(三)教学重、难点
重点:掌握用公式法解一元二次方程的一般步骤;会熟练用公式法解一元二次方程。
难点:理解求根公式的推导过程和判别式
二、教学法分析
教法:本节课采用引导发现式的自主探究式与交流讨论结合的方法;在教学中由旧知识引导探究一般化问题的形式展开,利用学生已有的知识、多交流、主动参与到教学活动中来。
学法:让学生学会善于观察、分析讨论和分类归纳的方法,提出问题后,鼓励学生通过分析、探索、尝试解决问题的方法,铜锁亲自尝试,使学生的思维能力得到培养。
三、过程分析
本节课的教学设计成以下六个环节:复习导入——呈现问题——例题讲解——巩固练习——课时小结——布置作业。
1、复习引入:
这节课,我首先从旧知问题(1)用配方法解方程22890x x --=的练习引入,问题(2)总结配方法的一般步骤(化一般方程——二次项系数为1——配方使左边为完全平方式——两边开方——求解)。
设计意图:让学生巩固昨天的知识,进一步熟练钥匙并为今天做学的内容解一般形式的一元二次方程做好铺垫,达到“温故而知新”。
2、问题呈现:
你能用配方法解一般形式的一元二次方程吗?2
0(0)ax bx c a ++=≠
此处由一个特殊的旧知引导学生推导出一般的结果,希望学生学会由特殊性到一般化的思想。
为降低推导的难度,化简、移项、配方、变形由我和学生一起探究完成,到2224()24b b ac x a a
-+=这步时,提出 问题:①此时可以直接开平方吗?
②等号右边的值需要满足什么条件?为什么?
③等号右边的值只跟哪个式子有关?
设计意图:师生共同完成前四步,这样与利于减轻学生的思维负担,便于将主要精力放在后边公式的推导上。
通过小组的讨论有利于发挥学生的互帮互助,借助小组的交流完善答案,关键让学生会对
24b ac -进行讨论,
掌握24b ac -与方程有无实数根的关系,这里分类思想也是今后常用的一种数学思想,应加以强化。
最终总结出:
当24b ac -<0时,原方程无实数解。
当24b ac -≥0时,原方程有实数解,
再进一步谈论:24b ac -=0与24b ac +>0时,两个解区别?
(24b ac -=0时,两个相等的实数解,24b ac +>0时,两个不等的实数解)
由此可知,方程有解还是无解是由24b ac -决定,即24b ac -是方程解的判别式。
同时,方程的解是可以将a 、b 、c 的值带入公式2b x a
-±=而得到,这个公式就称为“求根公式”,利用它解一元二次方程叫做公式法。
3、例题讲解
例4:用公式法解下列方程
22530x x -+= 2414x x +=- 2312042
x x --= 总结步骤:1、把方程公成一般形式,并写出a,b,c 的值。
2、求出24b ac -的值
3、代入求根公式:20,40)x a b ac =≠-≥
4、写出方程的解:x 1= ,x 2=
设计意图:规范解题格式,让学生体会数学课中的严谨的逻辑推理;体验并掌握公式法解一元二次方程的步骤,从中让学生领会到由特殊到一般,一般到特殊的辩证思想。
4、巩固练习
解下列一元二次方程:①260x x +-=
②2490x x --=
③2100x +=
设计意图:(1)熟悉公式法,强化解题格式,(2)及时发现错误及时解决。
例5:解方程:21(1)(2)2x x x -=-
化简得213402
x x -+= 强调:①当方程不是一般形式时,应先化成一般形式,再运用求根公式。
②你还能用其他方法解本例方程吗?
设计意图:明确一元二次方程解题方法的多样性,让学生在你观察分析题目后灵活合理的选择解题方法,培养学生的多样化思维,提高解题能力和解题的速度。
5、课时小结
(1)学生作知识总结:本节课通过配方法求解一般形式的一元二次方程的根,推出了一元二次方程的求根公式,并按照公式法的步骤解一元二次方程。
(2)我扩展:(方法归纳)求根公式是一元二次方程的专用公式,只有在确定方程是一元二次方程时才能使用,是常用而重要的一元二次方程的万能求根公式。
6、布置作业:面向全体学生,注重个体差异,加强作业的针对性,分层布置作业,适应新课标,让不同的学生各其所长,因材施教的要求,提高他们的学习的兴趣和自信心。
四、板书设计
教学评价
本节课内容较为单一,通过“层层设疑”、“复习回顾”等环节促进学生的思考和探究。
通过比较合理的问题设计巩固练习、小组讨论等形式给学生提供了充分的展示机会,强化了学生的运算能力,有利于学生掌握基本技能。