弹力做功与弹性势能变化的关系
机械能守恒弹簧能量和连接体问题

(1)当B的速度最大时,弹簧的伸长量; (2)B的最大速度.
[解析] (1)通过受力分析可知:当B的速度最大时,其加速度为 0,细绳上的拉力大小为F=4mgsin30°=2mg,此时弹簧处于伸长 状态,弹簧的伸长量为xA,满足
k xA=F-mg 则xA=
(2)开始时弹簧压缩的长度为:xB=
【举例应用】
物体从A到C的过程,由机械能守恒定律得:
由以上两式解得: A处的弹性势能为:
二、举例应用
4、如图所示,在倾角为θ的固定的光滑斜面上有 两个用轻质弹簧相连接的物块A 、B .它们的质量都为
m,弹簧的劲度系数为k , C为一固定挡板。系统处于静
止状态,开始时各段绳都处于伸直状态。现在挂钩上挂 一物体P,并从静止状态释放,已知它恰好使物体B离开 固定档板C, 但不继续上升(设斜面足够长和足够高)。 求:物体P的质量多大?
(1)物体C下降到速度最大时,地 面对B的支持力多大? (2)物体C下降的最大速度?
解析(1)C物体下降过程中,当C物体的加速度为0时,下落速 度最大, 对C: F=2.5mg
对A、B和弹簧整体:N=(2m+3m)g-F 则地面对B物体的支持力:N=2.5mg
(2)未加C时,A处于静止状态,设弹簧压缩量为x1 则有: 2mg=kx1 得 x1 =
做功的特点:与路径无关,只取决于初末状态弹簧形变量的 大小。这一点对于计算弹力的功和弹性势能的改变是非常重 要的,必须引起重视。
二、举例应用
1、如图所示,一轻质弹簧竖直放置,下端固定在水平面上, 上端处于a位置,当一重球放在弹簧上端静止时,弹簧上端 被压缩到b位置.现将重球(视为质点)从高于a位置的c位置 沿弹簧中轴线自由下落,弹簧被重球压缩到最低位置d.以 下关于重球运动过程的正确说法应是( ).
探究弹性势能的表达式教案

探究弹性势能的表达式教案探究弹性势能的表达式教案1一、预习目标预习“探究弹性势能的表达式”,初步了解弹性势能特点及其决定因素,变力功的计算方法。
二、预习内容1.弹性势能的定义:________________________2.____________________________________叫重力势能。
重力势能的表达式是________,当物体的质量一定时,重力势能与_________成正比。
重力做功的特点_______________________________________________________ ________3.在弹性限度内,弹簧所受到的弹力跟_________成正比。
用公式表示则为F=__________4.弹力与重力的变化规律不同表现在哪方面?______________________5.教材中弹性势能与弹力的功有什么关系?与拉力的功呢?三、提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中疑惑点疑惑内容课内探究学案一、学习目标1.理解弹性势能的概念和物理意义。
2.学习计算变力做功的思想方法。
3.理解弹力的功与弹性势能变化的关系。
4.知道弹性势能具有相对性二、学习重难点:解决弹簧拉力做功时如何想到用过的分割、求和、逼近的微积分方法。
三、学习过程探究一:弹性势能与哪些因素有关?1.我们学过的重力势能与哪些因素有关,什么关系?2.重力势能中的高度是如何确定的?3.你能不能给弹性势能下定义?定义:发生_______形变的物体的各部分之间,由于的相互作用,也具有势能,这种势能叫做弹性势能。
4.弹簧被拉长时的弹性势能的探究:弹性势能可能与哪几个物理量有关?阅读教材、小组商量进行猜测,可能与有关。
5.重力势能物体被举起的高度,弹性势能是不是与弹簧被拉伸的长度成正比?答: ____________________探究二:推导弹性势能的表达式1.我们怎样得到了重力势能的表达式?2.我们能否借鉴同样的思路,来分析弹力做功的情况呢?3.弹簧的弹性势能与弹力做功有什么关系?被压缩的弹簧弹出物体,弹簧对物体做功,物体的能增加,弹簧的减少4.怎样计算弹力做功?思路点拨:设计一个缓慢的拉伸过程,整个过程中拉力始终等于弹力,这样,就可以用拉力的功来替代弹力的功(替代法)。
第七章 第四节 探究弹性势能的表达式

5 探究弹性势能的表达式一、弹性势能1.定义:发生弹性形变的物体的各部分之间,由于有弹力的相互作用而具有的势能. 2.弹簧的弹性势能:弹簧的长度为原长时,弹性势能为0,弹簧被拉长或被压缩后,就具有了弹性势能.二、探究弹性势能的表达式 1.猜想(1)弹性势能与弹簧被拉伸的长度有关,同一个弹簧,拉伸的长度越大,弹簧的弹性势能也越大.(2)弹性势能与弹簧的劲度系数有关,在拉伸长度l 相同时,劲度系数k 越大,弹性势能越大. 2.探究思想:研究弹力做功与弹性势能变化的关系.3.“化变为恒”求拉力做功:W 总=F 1Δl 1+F 2Δl 2+…+F n Δl n . 4.“F -l ”图象面积的意义:表示F 做功的值.判断下列说法的正误.(1)不同弹簧发生相同的形变时,弹力做功相同.(×) (2)同一弹簧长度不同时,弹性势能一定不同.(×)(3)发生弹性形变的物体都具有弹性势能.(√)(4)弹性势能与弹簧的形变量和劲度系数有关.(√)(5)弹簧被压缩时,弹性势能为负;弹簧被拉伸时,弹性势能为正.(×)(6)弹力做正功,弹性势能就增大;弹力做负功,弹性势能就减小.(×)一、探究弹性势能的表达式1.如图所示,在光滑水平面上用物块向左压缩弹簧一定距离后,把物块静止释放,我们多做几次实验发现,同一根弹簧,压缩的长度越大,物体被弹开的速度越大.不同弹簧,在压缩量相同时,劲度系数越大,物体被弹开的速度越大.(1)由此我们猜测,弹簧的弹性势能可能与哪些因素有关?(2)我们在研究重力势能的时候,是从分析重力做功入手的,由此你得到什么启发?答案(1)与劲度系数和形变量有关(2)可以通过探究弹力做功来研究弹性势能.2.如图所示,弹簧处于原长时,其右端位于A点.现将弹簧由A点缓慢拉到B点,使其伸长Δl(仍处于弹性限度内):(1)在从A拉到B的过程中弹簧的弹性势能如何变化?弹性势能与拉力做的功有什么关系?(2)拉力F是恒力吗?怎样计算拉力的功?(3)作出F-Δl图象并类比v-t图象中面积的含义,思考F-Δl图象中“面积”有何物理意义?当Δl=x时,其表达式是怎样的?答案(1)弹簧的弹性势能变大.拉力做的功越多,弹簧储存的弹性势能越大且拉力做的功等于弹簧的弹性势能.(2)拉力F不是恒力,故不能用W=FΔl计算拉力的功.若将从A到B的过程分成很多小段Δl1、Δl2、Δl3…,在各个小段上拉力可近似认为是不变的.各小段上拉力做的功分别是F1Δl1、F2Δl2、F 3Δl 3…,拉力在整个过程中做的功W =F 1Δl 1+F 2Δl 2+F 3Δl 3+….(3)根据胡克定律,F -Δl 图象是一条过原点的倾斜直线,如图.阴影部分面积代表拉力做的功即弹性势能,当Δl =x 时,E p =12kx 2,k 为弹簧的劲度系数,x 为弹簧的形变量.1.对弹性势能的理解(1)弹性势能的产生原因⎩⎪⎨⎪⎧①物体发生了弹性形变②各部分间的弹力作用(2)弹性势能的影响因素⎩⎪⎨⎪⎧①弹簧的形变量l②弹簧的劲度系数k(3)系统性:弹性势能是发生弹性形变的物体上所有质点因相对位置改变而具有的能量,因此弹性势能具有系统性.(4)相对性:弹性势能的大小与选定的零势能位置有关,对于弹簧,一般规定弹簧处于原长时的势能为零势能. 2.弹性势能表达式的推导根据胡克定律F =kx ,作出弹力F 与弹簧形变量x 关系的F -x 图线,根据W =Fx 知,图线与横轴所围的面积应等于F 所做的功,即W =kx ·x 2=12kx 2,所以E p =12kx 2. 例1 关于弹性势能,下列说法中正确的是( )A .只有弹簧发生弹性形变时才具有弹性势能,其他物体发生弹性形变时是不会有弹性势能的B .弹簧伸长时有弹性势能,压缩时没有弹性势能C .在弹性限度范围内,同一个弹簧形变量越大,弹性势能就越大D .火车车厢底下的弹簧比自行车车座底下的弹簧硬,则将它们压缩相同的长度时,火车车厢底下的弹簧具有的弹性势能小 答案 C解析 所有发生弹性形变的物体都具有弹性势能,A 错;弹簧伸长和压缩时都具有弹性势能,B错;在弹性限度范围内,同一个弹簧形变量越大,弹性势能就越大,C对;火车车厢底下的弹簧比自行车车座底下的弹簧劲度系数大,所以压缩相同长度时火车车厢底下的弹簧具有的弹性势能大,D错.【考点】弹性势能的理解【题点】弹性势能的理解二、弹力做功与弹性势能变化的关系如图所示,物体与弹簧相连,物体在O点时弹簧处于原长,把物体向右拉到A处静止释放,物体会由A向A′运动,则:(1)物体由A向O运动的过程中,弹力做什么功?弹性势能如何变化?(2)物体由O向A′运动的过程中,弹力做什么功?弹性势能如何变化?答案(1)正功减少(2)负功增加1.弹力做功与弹性势能变化的关系(1)关系:弹力做正功时,弹性势能减少,弹力做负功时,弹性势能增加,并且弹力做多少功,弹性势能就减少多少.(2)表达式:W弹=-ΔE p=E p1-E p2.2.使用范围:在弹簧的弹性限度内.注意:弹力做功和重力做功一样,也和路径无关,弹性势能的变化只与弹力做功有关.例2如图1所示,处于自然长度的轻质弹簧一端与墙接触,另一端与置于光滑地面上的物体接触,现在物体上施加一水平推力F,使物体缓慢压缩弹簧,当推力F做功100 J时,弹簧的弹力做功________J,以弹簧处于自然长度时的弹性势能为零,则此时弹簧的弹性势能为________J.图1答案-100100解析在物体缓慢压缩弹簧的过程中,推力F始终与弹簧弹力等大反向,所以推力F做的功等于克服弹簧弹力所做的功,即W弹=-W F=-100 J.由弹力做功与弹性势能的变化关系知,弹性势能增加了100 J.【考点】弹力做功与弹性势能的关系【题点】弹力做功与弹性势能关系的应用针对训练如图2所示,轻弹簧下端系一重物,O点为其平衡位置(即重力和弹簧弹力大小相等的位置),今用手向下拉重物,第一次把它直接拉到A点,弹力做功为W1,第二次把它拉到B点后再让其回到A点,弹力做功为W2,则这两次弹力做功的关系为()图2A.W1<W2B.W1=2W2C.W2=2W1D.W1=W2答案 D解析弹力做功与路径无关,只与初、末位置有关,两次初、末位置相同,故W1=W2,D 正确.【考点】弹力做功与弹性势能的关系【题点】弹力做功与弹性势能关系的应用1.(对弹性势能的理解)(2017·余姚中学高一第二学期期中考试)关于弹簧的弹性势能,下列说法中正确的是()A.当弹簧变长时,它的弹性势能一定增大B.当弹簧变短时,它的弹性势能一定减小C.弹性限度内,长度相同且劲度系数也相同的弹簧的弹簧势能相等D.弹性限度内,弹簧被拉伸的长度相同时,劲度系数越大的弹簧,它的弹性势能越大答案 D解析当弹簧变长时,它的弹性势能不一定增大,若弹簧处于压缩状态变长的过程中,弹簧的弹性势能减小,故A错误.若处于压缩状态时,弹簧变短时,弹簧的弹性势能增大,故B 错误.弹性势能与劲度系数k及形变量有关.拉伸长度相同,且劲度系数也相同的弹簧弹性势能相等,而不是长度相等,形变一定时,k越大的弹簧,它的弹性势能越大,故C错误,D正确.2.(重力势能、弹性势能的变化分析)(多选)如图3所示是蹦床运动员在空中表演的情景.在运动员从最低点开始反弹至即将与蹦床分离的过程中,蹦床的弹性势能和运动员的重力势能变化情况分别是()图3A.弹性势能减少,重力势能增加B.弹性势能减少,重力势能减少C.弹性势能增加,重力势能增加D.弹性势能增加,重力势能减少答案 A解析根据功能关系知,重力做负功,重力势能增加,蹦床弹力对运动员做正功,弹性势能减少,故A项正确.3.(多选)(重力势能、弹性势能的变化分析)(2018·浙江省9+1高中联盟第二学期期中考试)如图4所示,跳跳球多用橡胶等弹性材料制成.游戏者用脚夹住球,让球和人一起上下跳动.某次人保持直立和球一起下落过程中,下列说法正确的是()图4A .当球刚碰到地面时,球与人一起立即做减速运动B .当球与人速度最大时,球与人的加速度为零C .从球刚碰地到最低点过程中,球的重力势能一直增大D .从球刚碰地到最低点过程中,球的弹性势能一直增大 答案 BD解析 从球刚碰地到重力与弹力相等的过程中,球与人做加速运动,之后做减速运动,直到最低点,A 错误,B 正确;从球刚碰地到最低点的过程中,球的重力势能一直减小;同时由于球的形变量增大,球的弹性势能一直增大,C 错误,D 正确.4.(弹力做功、弹性势能的变化)如图5甲所示,一滑块沿光滑的水平面向左运动,与轻弹簧接触后将弹簧压缩到最短,然后反向弹回,弹簧始终处在弹性限度以内,图乙为测得的弹簧的弹力与弹簧压缩量之间的关系图象,则弹簧的压缩量由8 cm 变为4 cm 时,弹簧所做的功以及弹性势能的变化量分别为( )图5A .3.6 J 、-3.6 JB .-3.6 J 、3.6 JC .1.8 J 、-1.8 JD .-1.8 J 、1.8 J答案 C解析 F -x 围成的面积表示弹力做的功.W =12×0.08×60 J -12×0.04×30 J =1.8 J ,根据W=-ΔE p 知,弹性势能减少1.8 J ,C 正确.【考点】弹力做功与弹性势能的关系【题点】图象法或平均值法求弹力做功一、选择题考点一弹性势能的理解1.如图1所示的几个运动过程中,物体的弹性势能增加的是()图1A.如图甲,撑杆跳高的运动员上升的过程中,杆的弹性势能B.如图乙,人拉长弹簧的过程中,弹簧的弹性势能C.如图丙,模型飞机用橡皮筋发射出去的过程中,橡皮筋的弹性势能D.如图丁,小球被弹簧向上弹起的过程中,弹簧的弹性势能答案 B解析选项A、C、D中物体的形变量均减小,所以弹性势能均减少,B中物体的形变量增大,所以弹性势能增加,故B正确.2.如图2所示,将弹簧拉力器用力拉开的过程中,弹簧的弹力和弹性势能的变化情况是()图2A.弹力变大,弹性势能变小B.弹力变小,弹性势能变大C.弹力和弹性势能都变小D.弹力和弹性势能都变大答案 D解析将弹簧拉力器用力拉开的过程中,弹簧的伸长量变大,弹簧的弹力变大,弹性势能变大,故A、B、C错误,D正确.3.某同学在桌面上用一个小钢球和一个弹簧来探究弹簧的弹性势能.弹簧一端固定(如图3所示),另一端用钢球压缩弹簧后释放,钢球被弹出后落地.当他发现弹簧压缩得越多,钢球被弹出得越远,由此能得出的结论应是()图3A.弹性势能与形变量有关,形变量越大,弹性势能越大B.弹性势能与形变量有关,形变量越大,弹性势能越小C.弹性势能与劲度系数有关,劲度系数越大,弹性势能越大D.弹性势能与劲度系数有关,劲度系数越大,弹性势能越小答案 A4.如图4所示,轻质弹簧下悬挂一个小球,手掌托小球使之缓慢上移,弹簧恢复原长时迅速撤去手掌使小球开始下落.不计空气阻力,取弹簧处于原长时的弹性势能为零.撤去手掌后,下列说法正确的是()图4A.刚撤去手掌瞬间,弹簧弹力等于小球重力B.小球速度最大时,弹簧的弹性势能为零C.弹簧的弹性势能最大时,小球速度为零D.小球运动到最高点时,弹簧的弹性势能最大答案 C解析刚撤去手掌时,小球处于运动最高点,弹簧处于原长,弹力为零,弹性势能为零,所以A、D错误;当小球速度最大时,加速度等于零,即弹力等于重力,弹簧弹性势能不为零,所以B错误;当下落到最低点时弹性势能最大,小球速度为零,故C正确.5.一竖直弹簧下端固定于水平地面上,小球从弹簧的正上方高为h的地方自由下落到弹簧上端,如图5所示,经几次反弹以后小球最终在弹簧上静止于某一点A处,则()图5A.h越大,弹簧在A点的压缩量越大B.弹簧在A点的压缩量与h无关C.h越大,最终小球静止在A点时弹簧的弹性势能越大D.小球第一次到达A点时弹簧的弹性势能比最终小球静止在A点时弹簧的弹性势能大答案 B解析最终小球静止在A点时,通过受力分析,小球受自身重力mg与弹簧的弹力kx大小相等,由mg=kx得,弹簧在A点的压缩量x与h无关,弹簧在A点的弹性势能与h无关.6.如图6所示,质量相等的两木块中间连有一弹簧,今用力F缓慢向上提A,直到B恰好离开地面.开始时物体A静止在弹簧上面.设开始时弹簧的弹性势能为E p1,B刚要离开地面时,弹簧的弹性势能为E p2,则关于E p1、E p2的大小关系及弹性势能的变化ΔE p,下列说法中正确的是()图6A.E p1=E p2B.E p1>E p2C.ΔE p>0 D.ΔE p<0答案 A解析开始时弹簧形变量为x1,有kx1=mg.设B刚要离开地面时弹簧形变量为x2,有kx2=mg,则x1=x2,所以E p1=E p2,ΔE p=0,A对.7.如图7所示,质量不计的弹簧一端固定在地面上,弹簧竖直放置,将一小球从距弹簧自由端高度分别为h1、h2的地方先后由静止释放,h1>h2,小球接触到弹簧后向下运动压缩弹簧,从开始释放小球到获得最大速度的过程中,小球重力势能的减少量ΔE1、ΔE2的关系及弹簧弹性势能的增加量ΔE p1、ΔE p2的关系中,正确的一组是()图7A.ΔE1=ΔE2,ΔE p1=ΔE p2B.ΔE1>ΔE2,ΔE p1=ΔE p2C.ΔE1=ΔE2,ΔE p1>ΔE p2D.ΔE1>ΔE2,ΔE p1>ΔE p2答案 B解析小球速度最大的条件是弹簧弹力等于小球重力,两种情况下,对应于同一位置,故ΔE p1=ΔE p2,由于h1>h2,所以ΔE1>ΔE2,B正确.考点二弹力做功弹性势能的变化8.如图8所示,一轻弹簧一端固定于O点,另一端系一重物,将重物从与悬点O在同一水平面且使弹簧保持原长的A点无初速度释放,让它自由摆下,不计空气阻力,在重物由A点摆向最低点B的过程中()图8A.重力做正功,弹力不做功B.重力做正功,弹力做负功,弹性势能减小C.若用与弹簧原长相等的不可伸长的细绳代替弹簧后,重力做正功,弹力不做功D.若用与弹簧原长相等的不可伸长的细绳代替弹簧后,重力做功不变,弹力不做功答案 C解析用不可伸长的细绳拴住重物向下摆动时,重力做正功,弹力不做功,C对;用弹簧拴住重物向下摆动时,弹簧要伸长,重物轨迹不是圆弧,弹力做负功,弹性势能增加,重力做正功,且做功多,所以A、B、D均错.9.如图9所示,小球自a点由静止自由下落,到b点与竖直放置的轻弹簧接触,到c点时弹簧被压缩到最短,不计空气阻力,则小球在a→b→c的运动过程中()图9A.小球的加速度在ab段不变,在bc段逐渐变小B.小球的速度在bc段逐渐减小C.小球的重力势能在a→b过程中不变,在b→c过程中不断减小D.弹簧的弹性势能在bc段不断增大答案 D解析小球在ab段做自由落体运动,a=g不变;在bc段小球受到的重力开始大于弹力,直至重力等于弹力大小,此过程中,小球受到的合外力向下,且不断减小,故小球做加速度减小、速度不断增大的变加速运动;过平衡点之后,小球继续压缩弹簧,受到的重力小于弹力,直至压缩弹簧最短到c点,此过程中,小球受到的合外力向上,且不断增大,故小球做加速度不断增大的减速运动,故A、B错误;小球在a→b→c的过程中,高度越来越低,重力做正功,重力势能不断减小,故C错误;小球在bc段,弹簧被压缩得越来越短,形变量增大,弹力对小球做负功,弹性势能不断增大,故D正确.10.一个小孩在蹦床上做游戏,他从高处落到蹦床上后又被弹起到原高度,小孩从高处开始下落到弹回的整个过程中,他运动的速度v随时间t变化的图象如图10所示,图中Oa段为直线,则根据该图象可知,蹦床的弹性势能增大的过程所对应的时间间隔为()图10A.仅在t1到t2的时间内B.仅在t2到t3的时间内C.在t1到t3的时间内D.在t1到t4的时间内答案 C解析小孩从高处落下,在0~t1时间内小孩只受重力作用;在t1~t2时间内加速度减小,说明小孩又受到了弹力作用,蹦床受到压力;t3时刻,小孩的速度为零,蹦床受到的压力最大,弹性势能也最大;t3时刻后小孩反弹,蹦床的弹性势能减小,故选项C正确.【考点】弹力做功与弹性势能的关系【题点】弹力做功与弹性势能关系的应用11.轻质弹簧右端固定在墙上,左端与一质量m=0.5 kg的物块相连,如图11甲所示.弹簧处于原长状态,物块静止且与水平面间的动摩擦因数μ=0.2.以物块所在处为原点,水平向右为正方向建立x轴.现对物块施加水平向右的外力F,F随x轴坐标变化的情况如图乙所示.物块运动至x=0.4 m处时速度为零.则此时弹簧的弹性势能为(取g=10 m/s2)()图11A.3.1 J B.3.5 JC.1.8 J D.2.0 J答案 A解析物块与水平面间的滑动摩擦力为F f=μmg=1 N.现对物块施加水平向右的外力F,由F-x图象面积表示功可知F做功W=3.5 J,克服摩擦力做功W f=F f x=0.4 J.外力所做的总功转化为弹簧的弹性势能,所以此时弹簧的弹性势能为E p=3.1 J,选项A正确.【考点】弹力做功与弹性势能的关系【题点】弹力做功与弹性势能关系的应用二、非选择题12.(探究影响弹性势能的因素)如图12所示,光滑水平轨道与光滑圆弧轨道相切,轻弹簧的一端固定在水平轨道的左端,OP是可绕O点转动的轻杆,且摆到某处就能停在该处,另有一小球,现在利用这些器材测定弹簧被压缩时的弹性势能.图12(1)还需要的器材是________、________.(2)以上测量实际上是把对弹性势能的测量转化为对________的测量,进而转化为对________和________的直接测量.(3)为了探究弹簧的弹性势能与劲度系数和形变量的关系,除以上器材外,还准备了三个轻弹簧,所有弹簧的劲度系数均不相同.试设计记录数据的表格.答案(1)天平刻度尺(2)重力势能小球质量小球上升的高度(3)设计的记录数据表格如下表所示小球的质量m=________kg13.(探究弹性势能的表达式)某同学利用自己设计的弹簧弹射器做“验证弹簧弹性势能E p =12kx 2(k 为弹簧的劲度系数,x 为弹簧的形变量)”的实验,装置如图13(a)所示.水平放置的弹射器将质量为m 的小球弹射出去,测出小球通过两个竖直放置的光电门的时间间隔为t ,用刻度尺测出弹簧的压缩量为x ,甲、乙光电门的间距为L ,忽略一切阻力.(已知动能的表达式E k =12m v 2)图13(1)小球被弹射出的速度大小v =________,求得弹簧弹性势能E p =________;(用题目中的字母表示)(2)该同学测出多组数据,计算并画出如图(b)所示E p 与x 2的关系图线,从而验证了它们之间的关系.根据图线求得弹簧的劲度系数k =________ N/m ;(3)由于重力作用,小球被弹出去后运动轨迹会向下有所偏转,这对实验结果________影响(选填“有”或“无”).答案 (1)L t mL 22t 2(2)200 (3)无解析 (1)由题图(a)可知,弹簧在小球进入光电门之前就已经恢复形变,且此时弹簧的弹性势能全部转化为小球的动能,故小球被弹射出的速度等于小球通过光电门时的水平速度,即v=L t ,E p =12m v 2=12m ⎝⎛⎭⎫L t 2=mL 22t2. (2)由题图(b)读出数据并代入公式E p =12kx 2,得0.01 J =12×k ×1×10-4 m 2,解得k =200 N/m.(3)由力作用的独立性可知,重力不影响水平方向的分运动,无论有没有重力做功,小球的水平速度都不会变化.【考点】影响弹性势能大小的因素 【题点】探究弹性势能的表达式。
重力势能、探究弹力做功与弹性势能

重力势能、探究弹力做功与弹性势能重力势能、探究弹力做功与弹性势能000一. 教学内容:第四节重力势能第五节探究弹力做功与弹性势能二. 知识要点:知道能量的概念,知道对应于物质不同的运动形式,具有不同的能量。
知道各种不同形式的能量可以互相转化,而且在转化过程中总能量守恒,理解做功过程就是能的转化的过程。
理解重力势能的概念,会用定义计算。
理解重力势能与重力做功的关系,知道重力做功与路径无关。
知道重力势能的相对性和重力势能变化的绝对性,了解弹性势能的概念。
知道弹力做功是变力做功,会计算弹力做功的数值。
知道弹性势能及其表达式。
三. 重点、难点解析:1. 重力做功和重力势能(1)重力做功特点:重力对物体所做的功只跟物体的初末位置的高度有关,跟物体运动的路径无关。
物体沿闭合的路径运动一周,重力做功为零,其实恒力(大小方向不变)做功都具有这一特点。
如物体由A位置运动到B位置,如图1所示,A、B两位置的高度分别为h1、h2,物体的质量为m,无论从A到B路径如何,重力做的功均为:WG=mgs×cosa=mg(h1-h2)=mghl-mgh2可见重力做功与路径无关。
图1(2)重力势能定义:物体的重力势能等于它所受重力与所处高度的乘积。
公式:Ep=mgh。
单位:焦(J)(3)重力势能的相对性与重力势能变化的绝对性重力势能是一个相对量。
它的数值与参考平面的选择相关。
在参考平面内,物体的重力势能为零;在参考平面上方的物体,重力势能为正值;在参考平面下方的物体,重力势能为负值。
重力势能变化的不变性(绝对性)尽管重力势能的大小与参考平面的选择有关,但重力势能的变化量都与参考平面的选择无关,这体现了它的不变性(绝对性)。
某种势能的减小量,等于其相应力所做的功。
重力势能的减小量,等于重力所做的功;弹簧弹性势能的减小量,等于弹簧弹力所做的功。
重力势能的计算公式Ep=mgh,只适用于地球表面及其附近处g值不变时的范围。
若g值变化时。
物理人教版必修2:第七章 5.探究弹性势能的表达式

1 2 可猜想出拉力做功与弹簧伸长量的关系为 W=2kl , 与弹性 势能的定性猜想不矛盾. (2)平均力求法: 拉力 F 与伸长量 l 是正比的关系,做功可通过平均力的方 F1+F2 法来求解. 弹簧从伸长量 l1 变为 l2 时, 力的平均值为 F = 2 1 1 2 2 =2k(l1+l2),所以拉力做的功为 W= F (l2-l1)=2k(l2-l1).
图 7-5-2
图 7-5-3
(2)如图 7-5-3 所示,作出弹力随形变量 l 的变化图线, 做功 图线与横轴所围的“面积”可表示弹力______的大小. 1 Ep=— kl2 (3)弹性势能的表达式:__________. 2
1.计算拉力做功:用拉力 F 缓慢拉动弹簧,由于受力平衡, 拉力等于弹力,即 F=kl,与伸长量 l 是正比关系,因此计算拉 力做功可类比计算匀加速直线运动中物体的位移. (1)与匀加速直线运动的位移跟时间的关系类比: 匀加速直线运动(a 是常量) 速度 v 与时 v=at 间 t 的关系→ 短时间内位移 Δs=vΔt 与速度的关系→ 位移 s 与时 1 2 s=— at 间 t 的表达式→ 2 拉力对弹簧做功(k 是常量) ←拉力 F 与伸长 F=kl 量 l 的关系 ←小伸长量内功 ΔW=FΔl 与力的关系 ←功 W 与伸长量 W=? l 的表达式
性势能. 2.(1)弹簧的弹性势能与弹簧被拉伸的长度 l 有关,并且拉 伸的长度越大,弹性势能_____,但不一定是_____关系. 越大 正比
(2)即使拉伸的长度 l 相同,劲度系数 k不同的弹簧的弹性
势能也不一样,并且拉伸的长度相同时,k越大,弹性势能____. 越大
3.设弹簧的劲度系数为 k,当弹簧被拉伸 l 时,把这一拉 伸过程分为很多小段,它们的长度分别是Δl1、Δl2、Δl3„,则
新课标人教版高一物理必修二 第七章 第5节 探究弹性势能的表达式

(
)
B.当弹簧变短时,它的弹性势能一定变小
C.当拉伸长度相同时,劲度系数越大的弹簧,弹性势能 越大 D.弹簧拉伸时的弹性势能一定大于压缩时的弹性势能
解析: 在初始状态不确定的情况下,弹簧变长 ( 或变短 ) 时,弹簧的形变量不一定增大(或变小),故其弹性势能不 1 2 一定变大(或变小),A、B 错误;Ep=2kl 中的 l 为弹簧拉 伸或压缩的长度,如果 k 一定,拉伸或压缩的长度相等, 则拉伸或压缩时的 Ep 就相等,如果 l 为定值,k 越大, 则 Ep 就越大,故 C 正确,D 错误。
答案:ABD
3.在水平面上竖直放置一轻质弹簧,有一物体在它的正上 方自由落下,当物体压缩弹簧速度达到最大时 A.重力与弹簧的弹力平衡 ( )
B.物体的重力势能最小
C.弹簧的弹性势能最大 D.弹簧的弹性势能最小 解析:当物体的速度最大时,重力与弹簧的弹力平衡, 之后物体继续下移,重力势能继续减小,弹簧的弹性势 能继续增大,故B、C、D均错误,A正确。 答案:A
力在整个过程中做的功。
(4)猜想结论: 弹性势能与弹簧的 劲度系数k 和 形变量l 有关。当形变 量l相同时,劲度系数k越大,弹性势能 越大 ;在劲度系数k 相同时,形变量l越大,弹性势能 越大 。
[试身手· 夯基础]
1.关于弹簧的弹性势能,下列说法中正确的是
A.当弹簧变长时,它的弹性势能一定增大
作用而具有势能。
2.探究弹性势能的表达式 (1)猜想依据: 弹性势能与重力势能同属势能。重力势能与物体被举起的 高度h 有关,故弹性势能可能与弹簧的 被拉伸的长度l 有关;
不同物体高度相同时,重力势能 不同 ,形变量相同但劲度系
数k不同的弹簧,弹性势能也 不同 ,因此弹性势能表达式中应 含有 l 和 k 。
重力势能-2022-2023学年高一物理下学期新教材同步分层训练(人教版2019必修第二册)

新教材同步分层训练第八章机械能守恒定律8.2重力势能基础知识知识点梳理:知识点1(重力势能概念)1、重力做功的特点(1)物体运动时,重力对它所做的功只跟它的起点和终点的位置有关,而跟物体的运动路径无关。
(2)重力做功的大小等于重力与初末位置高度差的乘积。
W G=mgℎ=mg(ℎ1−ℎ2)= mgℎ1−mgℎ2例如:图中物体经过三种不同路径从A→C过程中,重力做的功:W G=mgℎ即:重力做功与路径无关。
2、重力势能(1)定义:物体由于被举高而具有的能量。
(2)公式E P=mgℎ,其中h表示相对参考面的高度(相对零势能面的高度)。
(3)特点①重力势能是标量,只有大小没有方向,但有正负,正负表达大小例如:+5J重力势能>-5J重力势能(正>0>负)②重力势能具有相对性重力势能的数学表达式E P=mgℎ是参考平面的选择有关的,式中的h是物体重心到参考平面高度。
当物体在参考平面的上方时,重力势能为正值;当物体在参考平面下方时,重力势能为负值。
注意物体重力势能的正负的物理意义是表示比零势能大还是小。
(物体在参考平面上时重力势能为零)③重力势能的参考平面的选取是任意的。
根据解题时的方便而定,一般可选择地面或物体运动时所达到的最低点为零势能参考点。
④重力势能具有系统性系统内物体间必须有相互作用力,则相对位置变化时,力会做功,地球与物体间有作用力,没有地球则没有重力。
重力势能是地球与物体组成的“系统”共有的。
⑤重力势能的变化是绝对的物体从一个位置到另一个位置的过程中,重力势能的变化与参考平面的选取无关,它的变化是绝对的。
知识点2(重力做功与重力势能)3、重力做的功与重力势能的关系(1)重力做功与重力势能的关系可以写为:W G=E P1−E P2,其中E P1=mgℎ1表示物体在初位置的重力势能,E P2=mgℎ2表示物体在末位置的重力势能。
当物体从高处向低处运动时,重力做正功,重力势能减小,也就是W G>0,E P1>E P2。
高中物理弹性势能知识点

高中物理弹性势能知识点(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!高中物理弹性势能知识点发生弹性形变的物体的各部分之间,由于有弹力的相互作用,也具有势能,这种势能叫做弹性势能,同一弹性物体在一定范围内形变越大,具有的弹性势能就越多,反之,则越小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、表达式
W弹 =-Ep
1 2
kx12
1 2
kx22
W弹=EP1-EP2
1.一物体以初速度v0冲向与竖起墙壁相连 的轻质弹簧,墙壁与物体间的弹簧被物体 压缩,在此过程中,下列说法正确的(BCD)
A、物体对弹簧做的功与弹簧的压缩量成 正比
B、物体向墙壁移动相同的距离,弹力做 的功不相等
C、弹力做正功,弹簧的弹性势能减小 D、弹力做负功,弹簧的弹性势能增加
体将向右运动,在物体向右运动过
程中,下列说法正确的是:
A、弹簧的弹性势能逐渐减小
F
B、弹簧的弹性势能逐渐增大
ห้องสมุดไป่ตู้
B
C、弹簧的弹性势能先增大再减小
D、弹簧的弹性势能先减小再增大
4、如下图所示,小球从高处下落到竖直放置 的轻弹簧 上,在将弹簧压缩到最短的整个过 程中,下列关于能量 的叙述中正确的是 (D ) (A)重力势能和动能之和总保持不变 (B)重力势能和弹性势能之和总保持不变 (C)动能和弹性势能之和总保持不变 (D)重力势能、弹性势能和动能 之和总保持不变
5、已知物体质量为m,用一劲度系数为k 的弹簧将其缓慢的拉离地面h高处,则拉力 做的功为多少?
x
h
W拉 Ep E弹
性势能越大
D、弹簧在拉伸时的弹性势能一定大于压缩时 的弹性势能
探究3.若从压缩量X1运动到压 缩量为X2的过程中,弹力做功是 多少?
F
V
X2 X1
探究4.若从伸长量X1拉到伸长量为 X2的过程中,弹力做功是多少?
o
x1
F
X2
二、弹簧弹力做功与弹性势能变化的关系 1、弹簧弹力做正功,弹性势能减少 弹簧弹力做负功,弹性势能增加
2.如图,在一次“蹦极”运 动中,人由高空跃下到最低 点的整个过程中,下列说法 正确的是: A.重力对人做正功
B.人的重力势能减小了 C.“蹦极”绳对人做负功 D.“蹦极”绳的弹性势能增加 了
3.如图所示,在光滑的水平面上有
一物体,它的左端连一弹簧,弹簧
的另一端固定在墙上,在力F作用下
物体处于静止状态。当撤去F后,物
3.单位:焦耳J
1 kx2 2
4.说明:1)弹性势能是相对系统而言。 发生形变的物体上所有质点因相对位置改 变而具有的能量。
2)弹性势能也是相对的,对弹簧,一般 规定零势能点在原长位置。
巩固练习:
1、关于弹簧的弹性势能,下列说法中正确( C ) A、当弹簧变长时,它的弹性势能一定增大 B、当弹簧变短时,它的弹性势能一定变小 C、在拉伸长度相同时,k越大的弹簧,它的弹
探究弹力做功与弹性 势能的变化关系
探究1:用外力将弹簧从原长缓慢拉 长X,弹簧的劲度系数为K.计算弹力 所做的功?
X
探究2.如图用力推小球,将弹 簧压缩x,弹簧的劲度系数为 K。释放后小球被弹出的过程 中,弹力做功多大?
F
V
X
一、弹性势能
1.定义:物体发生弹性形变时所具有的能
量叫弹性势能
2.表达式: E弹