抗剪强度
抗剪强度计算公式文

抗剪强度计算公式文抗剪强度计算公式。
在工程力学中,抗剪强度是指材料抵抗剪切力的能力。
在工程设计和施工中,抗剪强度的计算是非常重要的,可以帮助工程师确定材料的可靠性和安全性。
本文将介绍抗剪强度的计算公式和相关知识。
抗剪强度的定义。
抗剪强度是指材料在受到剪切力作用时所能承受的最大剪切应力。
在工程设计中,抗剪强度是材料的一个重要参数,可以帮助工程师确定材料在实际使用中的承载能力和安全性。
抗剪强度的计算公式。
在工程力学中,抗剪强度的计算通常采用以下公式:τ = F/A。
其中,τ表示材料的剪切应力,F表示受到的剪切力,A表示受力面积。
根据这个公式,可以计算出材料在受到剪切力作用时所产生的剪切应力,从而确定材料的抗剪强度。
抗剪强度的影响因素。
抗剪强度受到多种因素的影响,包括材料的性质、受力状态、温度等。
其中,材料的性质是影响抗剪强度的关键因素之一。
不同材料的抗剪强度不同,例如金属材料的抗剪强度通常比较高,而混凝土材料的抗剪强度相对较低。
另外,受力状态也会影响材料的抗剪强度。
在实际工程中,材料可能同时受到多种力的作用,这时需要考虑材料的综合受力状态,从而确定其抗剪强度。
此外,温度也会对材料的抗剪强度产生影响。
在高温环境下,材料的抗剪强度通常会下降,因此在设计和施工中需要考虑材料在不同温度条件下的抗剪强度。
抗剪强度的应用。
抗剪强度的计算在工程设计和施工中有着广泛的应用。
在建筑结构设计中,工程师需要根据材料的抗剪强度确定结构的承载能力,从而保证结构的安全性。
在机械制造中,抗剪强度的计算可以帮助工程师确定零部件的可靠性和耐久性。
此外,抗剪强度的计算还可以应用于材料的选择和优化。
通过对不同材料的抗剪强度进行比较和分析,工程师可以选择最适合的材料,从而提高工程的性能和可靠性。
总结。
抗剪强度的计算是工程力学中的重要内容,可以帮助工程师确定材料的可靠性和安全性。
通过了解抗剪强度的定义、计算公式、影响因素和应用,工程师可以更好地应用抗剪强度的知识,从而保证工程的安全性和可靠性。
抗剪强度指标是

抗剪强度指标是
根据库伦定律土的抗剪强度指标有两个:
c,土的黏聚力,或称内聚力,单位kpa;
φ,土的内摩擦角,单位度。
土的抗剪强度指标归纳总结摩尔-库仑强度理论,三个要点:
剪切破裂面上,材料的抗剪强度是法向应力的单值函数τ=f(σ);
在一定应力范围内,抗剪强度可用线性函数近似
τf=c+σtanφ;
土单元中,任何一个面上的剪应力大于该面上土体的抗剪强度,土单元体即发生剪切破坏,用摩尔-库伦理论的破坏准则表示。
土的组分影响土的抗剪强度:
土的组分包括有颗粒级配、颗粒棱角、矿物类别等。
土的原始密度越大,土粒间的咬合作用力越强,受剪时首先须克服咬合作用,才能产生相对滑动。
此外,土的密度大也意味着土粒间的孔隙小,接触紧密,原始内聚力较大。
所以土的原始密度越高,其抗剪强度越大。
土的初始孔隙比越小,颗粒越紧密,咬合摩擦力越大,受剪破坏时所需要的能量也越大。
土的含水量对抗剪强度的影响也不容忽视。
当含水量增加时,水分在较大土粒表面形成润滑剂,使摩阻力减小;对细小的黏土粒,使其结合水膜变厚,从而降低土的黏聚力。
抗剪强度名词解释

抗剪强度名词解释抗剪强度名词解释:抗剪强度是指材料或结构受拉(压)破坏时的最大抵抗力,是一个材料的极限强度。
对于塑性材料,它与其屈服强度是互相联系的,屈服强度愈高,则抗剪强度愈低;对于脆性材料,由于其抵抗拉、压破坏的能力较弱,因此当外力达到抗拉强度后,往往还要发生破坏。
抗剪强度按破坏形式可分为抗拉强度和抗压强度两类,按试样厚度可分为厚板、薄板和箔材等试样。
抗剪强度是指材料或结构受拉(压)破坏时的最大抵抗力,是一个材料的极限强度。
对于塑性材料,它与其屈服强度是互相联系的,屈服强度愈高,则抗剪强度愈低;对于脆性材料,由于其抵抗拉、压破坏的能力较弱,因此当外力达到抗拉强度后,往往还要发生破坏。
2、高强度结构件在正常使用状态下应具有足够的强度和刚度,并应满足以下条件:(1)构件正常使用条件下的长期应力(工作应力)应不超过材料的许用应力;(2)在一般情况下,结构在偶然事故(如动荷载作用、地震、爆炸、冲击等)作用下,必须保持整体稳定而不致发生倒塌,或保证某些重要构件在事故中不致严重损坏;(3)结构具有良好的延性和韧性,能承受一定的动力荷载和冲击载荷。
设计高强度结构件时,除了需要考虑构件强度及其所受荷载两方面的要求外,还要特别注意构件的局部稳定性、适用性和施工要求。
3、混凝土抗拉强度( MPa):它是指混凝土在标准养护条件下,从零龄期到抗拉强度被完全抑制这段时间内所能承受的最大拉应力值。
4、钢材抗拉强度( MPa):它是指钢材从零龄期到开始失效这段时间内所能承受的最大拉应力值。
5、锚栓抗剪强度( MPa):它是指锚栓从被破坏到失去预紧力这段时间内所能承受的最大剪力值。
6、锚栓屈服强度( MPa):它是指锚栓材料经过较小的变形能达到的较大极限抗拉强度值。
7、焊缝抗剪强度( MPa):它是指母材在给定的最大抗拉应力和保持一定变形条件下被剪切破坏这段时间内所能承受的最大剪力值。
8、焊缝疲劳强度( MPa):它是指母材在给定的最大拉应力和保持一定变形条件下被剪切破坏这段时间内所能承受的最大剪力值。
材料抗剪强度与抗拉强度关系

材料抗剪强度与抗拉强度关系
材料的抗剪强度与抗拉强度之间存在着一定的关系。
一般来说,材料的抗剪强度通常小于抗拉强度。
抗拉强度是指材料在拉伸过程中能够承受的最大拉力。
对于均质材料来说,抗拉强度一般比抗剪强度高,这是因为拉伸过程中本质上需要克服的是材料的原子间的键合,并且拉伸过程中应变主要集中在材料的横向方向上,因此抗拉强度较高。
而抗剪强度是指材料在剪切过程中能够承受的最大剪切力。
在剪切过程中,材料的应变主要集中在剪切平面内,相对于拉伸过程来说,应变更为均匀,同时需要克服材料原子之间的切割作用力,因此抗剪强度一般小于抗拉强度。
需要注意的是,材料的抗剪强度和抗拉强度也与材料的结构和组成有关。
有些特殊材料,如纤维增强复合材料,其抗剪强度可能会超过抗拉强度。
此外,材料的强度也与材料的处理和制备工艺有关,通过合适的工艺控制,可以调整材料的抗剪强度和抗拉强度。
土的抗剪强度的概念_概述说明以及解释

土的抗剪强度的概念概述说明以及解释1. 引言1.1 概述土的抗剪强度是土体工程中非常重要的一个概念。
它指的是在土体内部存在切变作用时,土体能够抵抗该切变作用并保持形状稳定的能力。
抗剪强度是评估土的力学性质、承载能力和稳定性的重要指标之一。
1.2 定义土的抗剪强度可以分为两个方面来理解:首先,从宏观角度来看,抗剪强度是指应变固结下产生切线应力所需达到最大值。
在一定条件下,当施加沿某一平面方向的剪切应变时,通过实验可以测得该平面上允许达到的最大应力值。
其次,从微观角度来看,抗剪强度是由于岩石或土壤颗粒之间产生摩擦造成接触邻近颗粒受到相互作用而形成的。
1.3 目的本文旨在全面介绍关于土的抗剪强度概念,并说明其重要性和应用。
通过详细解释土壤抗剪强度的定义和影响因素,以及传统试验方法和先进试验方法的介绍,读者可以深入了解土壤抗剪强度与土体工程应用之间的关系。
在展示几个土体加固和处理技术的工程实践案例后,我们还将讨论抗剪强度在土体设计中的重要作用。
通过这篇文章,读者将能够更好地理解土的抗剪强度的概念及其在土体工程中的意义,并对未来研究方向提出展望。
2. 土的抗剪强度概念2.1 概述土的抗剪强度是指土体在受到剪切力作用时能够抵抗变形破坏的能力。
它是土体力学中一个重要的参数,对于工程设计、施工和地质灾害预测等具有重要意义。
2.2 抗剪强度的定义土的抗剪强度可以分为有效应力状态下的抗剪强度和总应力状态下的抗剪强度。
在有效应力状态下,土体颗粒之间由于摩擦及内聚力的作用而形成一种阻止相对滑动或破坏的抵抗力。
该抵抗力即为土体的有效应力抗剪强度。
有效应力状态下,如果施加额外水平力,就会导致不可逆性变形,并可能引发失稳。
在总应力状态下,考虑了地下水对土体孔隙水压造成的影响。
总应力状态下的土壤承受着来自地表荷载及孔隙水压带来的综合作用,在这种情况下衡量土壤较为复杂。
当存在地下水流动时,因渗流带来部分应力的释放,土壤受到的总应力也会相应减小。
焊缝抗剪强度计算

焊缝抗剪强度计算
一、焊缝抗剪强度
焊缝抗剪强度是指沿轴向方向上,将焊缝施加梁顶端的端头载荷,焊缝所承受的最大拉拔应力强度,是衡量焊接结构的剪切强度的重要参数。
焊缝的抗剪强度取决于焊缝的尺寸、形状、材料种类和焊接工艺等。
考虑焊缝的承载力,即焊缝头部弯曲和弯起;焊缝的抗剪强度主要取决于焊接材料的强度,焊缝形状,焊接缝宽和焊道宽度。
(1)焊接接头的抗剪强度为:
σts=K1·K2·K3·σb·[1+(h/2b)·(M/σb–1)]
其中:σts,焊接接头的抗剪强度;K1、K2、K3,焊接接头的规格系数;σb,焊接接头材料单位块的抗拉应力;h,焊接接头的宽度(也称焊道宽度);b,焊接接头焊缝缝口的宽度;M,焊接接头厚度。
(2)焊接接头的规格系数的计算:
K1=0.6+0.4·(2h/b)
K2=1+0.03·[(h-1)/b]
K3=1-0.01·[(M-2h)/b]
(1)当焊缝头部弯起高度h≤20mm时,焊缝的抗剪强度σts为:σts=K1·K2·K3·σb·[1+(h/2b)·(M/σb–0.6)]
(2)当焊缝头部弯起高度h≥20mm时。
抗拉强度与抗剪强度

抗拉强度与抗剪强度
抗拉强度和抗剪强度都是材料力学性质的指标,用于描述材料在受力时的表现。
但它们所描述的受力方式和测试条件有所不同。
抗拉强度是指材料在受拉力作用下的最大承载能力。
一般来说,抗拉强度是指材料在受拉载荷下发生断裂前所能承受的最大拉伸应力。
抗拉强度常用于描述材料在拉伸加载下的性能。
它可以用来衡量材料的韧性和延展性。
抗剪强度是指材料在受剪力作用下的最大承载能力。
一般来说,抗剪强度是指材料在受剪载荷下发生断裂前所能承受的最大剪应力。
抗剪强度常用于描述材料在剪切加载下的性能。
它可以用来评估材料的抗剪能力和剪切刚度。
在某些材料中,抗拉强度和抗剪强度可能具有相似的数值,但一般来说,抗剪强度会小于抗拉强度,因为在具有规则结构的材料中,分子或原子间的结合力一般在拉伸加载下比在剪切加载下更容易破裂。
总的来说,抗拉强度和抗剪强度是用于描述材料在不同受力条件下承受能力的指标,它们在工程设计和材料选择过程中都非常重要。
抗剪强度名词解释

抗剪强度名词解释抗剪强度抗剪强度是指在剪切作用下所表现出的抵抗能力。
当钢筋混凝土构件的承载能力达到一定极限值时,应发生断裂或变形,但未超过钢筋混凝土的弹性极限,即认为该混凝土满足抗剪强度设计要求。
抗剪强度的设计值为拉伸时破坏的抗剪强度设计值乘以与其相应的强度设计标准值。
我国混凝土结构设计规范(gb50010-2002)规定:钢筋混凝土构件的抗剪强度设计值不小于抗压强度标准值的1.25倍,不大于4.0MPa,也可采用实际单轴抗压强度标准值乘以折减系数。
一般情况下,抗剪强度的高低与结构物的重要性有关,它与承载力无关。
为此我国国家建筑标准设计图集《混凝土结构设计规范》(03g210)提供了按双轴受弯构件抗剪强度验算时采用的统一公式:各种材料的抗剪强度标准值:混凝土C30: 1.8MPa;普通钢筋C40: 4.0MPa;预应力钢筋C200: 6.0MPa。
抗剪强度试验就是测定混凝土材料和构件受到外力而产生破坏的最大能量值,它反映结构物抵抗能力。
抗剪强度试验分为两类: 1、直接法:将结构构件(主要是梁、板)进行简化处理,使之成为上部受拉为拉应力,下部受压为压应力,然后对其施加外力进行直接测定。
2、间接法:先测得某些构件的抗拉强度,然后再测其他构件的抗压强度,利用它们的抗压强度之比来确定结构的抗剪强度。
因为梁、板等均属二维受力体系,如果将上部受拉区简化为上边缘剪切,而下部受压区则取为下边缘压应力。
1、有一定粘聚性的泥砂浆或胶结料,能胶结某些松散颗粒料及整体料; 2、已浇筑的混凝土或砖块; 3、已制成模壳或其他模拟件;4、可移动的装配式部件;5、材料试验机,包括一组在其上部能够施加均布荷载的加荷平台,具有一个或多个螺旋输送器,用于将水泥等试样沿螺旋输送器运送至加荷平台上。
第3条根据需要,加荷平台上可设置若干个上、下两层导轨,以适应加荷平台各方向的尺寸。
所述试验机还包括水平运输机构,其沿纵向位于加荷平台和试验机之间,所述水平运输机构可采用卷扬机或伺服电机带动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-
-
+
-
22
抗剪强度的构成因素
库伦公式
f c tg
主要来源于黏聚力
粘性土抗剪强度构成 其次内摩擦力 无粘性土抗剪强度: 来源于土的内摩擦力 颗粒之间表面摩擦力; 内摩擦力 颗粒之间的相互嵌入和互锁作用产生的咬合力。
23
①土颗粒的矿物成分、形状、粒径及表面粗糙程度
②原始密度 土度 的影 抗响 剪因 强素 ③天然含水量 ④土的结构扰动情况 ⑤有效应力大小 ⑥试验条件 ⑦应力历史
4
二、工程中土体的破坏类型 1. 挡土结构物的破坏
美国某桥头挡土墙破坏(2003年9月10日)
5
二、工程中土体的破坏类型 1. 挡土结构物的破坏
广州京光广场基坑塌方
使基坑旁办公室、民
工宿舍和仓库倒塌,
死3人,伤17人。
6
二、工程中土体的破坏类型 1. 挡土结构物的破坏
7
二、工程中土体的破坏类型 1. 挡土结构物的破坏
粘土地基上的某谷仓地基破坏
13
二、工程中土体的破坏类型 3. 地基的破坏
p
滑裂面
地基
14
二、工程中土体的破坏类型
土压力 边坡稳定 地基承载力
挡土结构物破坏 各种类型的滑坡
地基的破坏
核心 强度理论
15
§5.2 土的抗剪强度理论
16
土的强度机理
1、库伦公式及抗剪强度指标(库仑 1776)
24
5.3 土中一点的应力极限平衡条件
1. 应力状态与莫尔圆 2. 极限平衡应力状态
3. 莫尔-库仑强度理论
4. 破坏判断方法 5. 滑裂面的位置
25
P
A
库仑公式
S
T
f c tan
固定滑裂面
一般应力状态,如何判断是否破坏? 借助于莫尔圆
26
1. 应力状态与莫尔圆
三维应力状态
2
1 3
2
f c tan
c O
3
1
c ctg
1 3
2
35
4. 破坏判断方法
3= 常数:
判别对象:土体微小单元(一点) 已知条件:一般应力状态、抗剪强度指标
1,3
x z
2
z 2 x xz 2
O 3 3f
c
3
3 f 1 tan 2 45 2c tan 45 2 2
37
5. 滑裂面的位置
45°+/2
1f
与大主应力面夹角: α=45 + /2
3
破裂面
f c tan
2
2 90
极限平衡应力状态: 有剪切面上的应力状态达到 = f
土的强度包线:
所有达到极限平衡状态的莫尔圆的公切线。
f
30
2. 极限平衡应力状态
•强度包线以内:任何一个面
f
上的一对应力与 都没有达
到破坏包线,不破坏; •与破坏包线相切:该面上的
应力达到破坏状态;
•与破坏包线相交:有一些平 面上的应力超过强度;不可能
粘聚强度
库仑公式
f c tan
c: 粘聚力 :内摩擦角
c O
抗剪强度指标
一、 直剪试验 试验目的
直接剪切试验是测定土的抗剪强度的一种常用方法。通常采用4 个试样,分别在不同的垂直压力p下,施加水平剪切力进行剪切, 测得剪切破坏时的剪应力τ。然后根据库仑定律确定土的抗剪强 度指标:内摩擦角φ和粘聚力c。
z
二维应力状态
zx
y yz
zx
z x
xy
x
xz
x xz ij = zx z
27
x xy xz ij = yx y yz zx zy z
莫尔圆应力分析符号规定
zx
材料力学
z +
正应力
剪应力
-
xz zx
一、 直剪试验
4.进行剪切:施加垂直压力后,立即拔出固定销钉,开动秒表,以每分钟
6转的均匀速率旋转手轮。使试样在3-5分钟内剪破。如测力计中的量表指 针不再前进,或有显著后退,表示试样已经被剪破。手轮每转一圈,同时
测记测力计量表读数,直到试样剪破为止。
5.拆卸试样:剪切结束后,倒转手轮,尽快移去垂直压力、框架、上盖板, 取出试样。
试样的环刀平口向下,对准剪切盒,再放上透水石,将试样徐徐推入剪切盒 内,移去环刀。
3.施加垂直压力:转动手轮,使上盒前端钢珠刚好与测力计接触,调整测力
计中的量表读数为零。顺次加上盖板、钢珠压力框架。每组四个试样,分别 在四种不同的垂直压力下进行剪切。在教学上,可取四个垂直压力分别为 100、200、300、400kPa。
试验方法 施加 σ(=P/A) 施加 S
P
σ = 300KPa σ = 200KPa σ = 100KPa
量测 (=T/A)
S
上盒
A
S
下盒
T
17
1. 直剪试验
试验结果
ቤተ መጻሕፍቲ ባይዱ
σ = 300KPa σ = 200KPa σ = 100KPa
f :
土的抗剪强度
tan:
摩擦强度-与正应力成正比 c:
2
根据应力状态计算出 大小主应力σ1、σ3
判断破坏可能性 σ1<σ1f 安全状态 σ1=σ1f 极限平衡状态 σ1>σ1f 不可能状态
1 f 3 tan 45 2c tan 45 2 2
2
由σ3计算σ1f 比较σ1与σ1f
c
强度问题 变形问题 渗透问题
土 强度特性 变形特性 渗透特性
土力学可以解决工程实践问题,这正是 土力学存在的价值以及我们学习土力学 的目的。
2
§5 土的抗剪强度
§5.1 概述 抗剪阻力:土体具有抵抗剪切的潜在能力。 定义:土体抵抗外荷载所产生的极限抗剪阻力。
3
一、土的强度特点
1. 碎散性:强度不是颗粒矿物本身的强度,而是颗粒间 相互作用—主要是抗剪强度(剪切破坏),颗粒间粘 聚力与摩擦力; 2. 三相体系:三相承受与传递荷载—有效应力原理; 3. 自然变异性:土的强度的结构性与复杂性。
32
摩尔—库仑强度理论 基本概念
最大剪应力理论 材料的剪切破坏主要是由于土中某 一截面上的剪应力达到极限值所致, 但材料达到破坏时的抗剪强度也与 该截面上的正应力有关。 当土中某点的剪应力小 于土的抗剪强度时,土 体不会发生剪切破坏。 当土中剪应力等于土的抗 剪强度时,土体式处于极 限平衡
土体的稳定状态
试验方法 快剪:在试样上施加垂直压力后立即快速施加水平剪应力。 固结快剪:在试样上施加垂直压力,待试样排水固结稳定后, 快速施加水平剪应力。 慢剪:在试样上施加垂直压力及水平剪应力的过程中,均使试 样排水固结。
一、 直剪试验 仪器设备
(1)应变控制式直剪仪:剪切盒、垂直加压框架、测力计、推动机构等; (2)位移计(百分表):量程5~10mm,分度值0.01mm;
1f
c
O
3
2
38
作业:P134 5-2 P134 5-4
本周五之前交作业!
39
§5.4 抗剪强度测定试验
三轴试验、直剪试验、无侧限抗压等 制样(重塑土)或现场取样 缺点:扰动 优点:应力条件清楚,易重复
室内试验
野外试验
十字板扭剪试验、旁压试验等 原位试验 缺点:应力条件不易掌握 优点:原状土的原位强度
极限平衡状态
破坏状态
当土中剪应力大于土的抗剪强度 33 时理论上属于破坏状态(实际上 这种应力状态根本不存在)
3. 莫尔—库仑强度理论
莫尔-库仑强度理论表达式-极限平衡条件
1 3
sin
1 3
2
2 c ctg
1 3 1 3 2c ctg
土力学包括哪些内容?
基础与主线
预 备
渗透特性 变形特性 强度特性
第一章土的物理性质和工程分类
第二章土的渗透性和渗流问题
第三章土体中的应力计算
第四章土的变形特性和地基沉降计算 第五章土的抗剪强度
土压力 边坡稳定 地基承载力 地基基础工程 高等土力学 土动力学与土工抗震工程 岩土灾害
具体 应用
1
土工结构物或地基
对于:砂土>粘性土; 高岭石>伊里石>蒙特石
• 颗粒的形状(颗粒的棱角与长宽比)
在其它条件相同时: 一般,对于粗粒土,颗粒的棱角提高了内摩擦角
21
3、粘聚强度
粘聚强度机理
静电引力(库仑力) 范德华力 颗粒间胶结 假粘聚力(毛细力等)
粘聚强度影响因素
地质历史 粘土颗粒矿物成分 密度 离子价与离子浓度
土力学
x
拉为正 压为负
顺时针为正 逆时针为负
z
+
xz
x
压为正 拉为负
逆时针为正 顺时针为负
28
+ zx
z
1
+zx
r 2
x
O -xz
3 x
z 1
xz
p 圆心: p ( x z ) / 2 半径: r
2 ( x z ) / 2 xz 2