第二章函数单元检测题

合集下载

新课程北师大版高中数学必修1第二章《函数》单元测试题[含解答]

新课程北师大版高中数学必修1第二章《函数》单元测试题[含解答]

高中数学必修1第二章《函数》单元测试题一、选择题〔本大题共12小题,每小题5分,共60分 1.若()f x =则(3)f = 〔A 、2B 、4 C、 D 、10 2.对于函数()y f x =,以下说法正确的有 〔①y 是x 的函数;②对于不同的,x y 的值也不同;③()f a 表示当x a =时函数()f x 的值,是一个常量;④()f x 一定可以用一个具体的式子表示出来.A 、1个B 、2个C 、3个D 、4个 3.下列各组函数是同一函数的是 〔①()f x =()g x =()f x x =与()g x =③0()f x x =与1()g x x=;④2()21f x x x =--与2()21g t t t =--. A .①② B 、①③ C 、③④ D 、②④ 4.二次函数245y x mx =-+的对称轴为2x =-,则当1x =时,y 的值为 〔 A 、7- B 、1 C 、17 D 、25 5.函数y =的值域为 〔A 、[]0,2B 、[]0,4C 、(],4-∞D 、[)0,+∞ 6.下列四个图像中,是函数图像的是 〔A 、〔1B 、〔1、〔3、〔4C 、〔1、〔2、〔3D 、〔3、〔4 7.若:f A B →能构成映射,下列说法正确的有 〔〔1A 中的任一元素在B 中必须有像且唯一;〔2B 中的多个元素可以在A 中有相同的原像;〔3B 中的元素可以在A 中无原像;〔4像的集合就是集合B .A 、1个B 、2个C 、3个D 、4个xx〔1〔2〔3〔48.)(x f 是定义在R 上的奇函数,下列结论中,不正确...的是< > A 、()()0f x f x -+=B 、()()2()f x f x f x --=-C 、()()0f x f x -≤D 、()1()f x f x =-- 9.若函数2()2(1)2f x x a x =+-+在区间(],4-∞上是减少的,则实数a 的取值范围是〔A 、3a -≤B 、3a -≥C 、a ≤5D 、a ≥510.设函数x xxf =+-)11(,则)(x f 的表达式为〔 A .x x -+11B . 11-+x x C .x x +-11D .12+x x11.定义在R 上的函数()f x 对任意两个不等实数,a b 总有()()0f a f b a b->-成立,则必有〔A 、函数()f x 是先增加后减少B 、函数()f x 是先减少后增加C 、()f x 在R 上是增函数D 、()f x 在R 上是减函数 12.下列所给4个图像中,与所给3件事吻合最好的顺序为 〔〔1我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学; 〔2我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; 〔3我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速。

高中数学必修一第二章函数测试题及答案

高中数学必修一第二章函数测试题及答案

高中数学必修一第二章函数单元测试题一、选择题:1、若()f x =(3)f = ( )A 、2B 、4 C、、10 2、对于函数()y f x =,以下说法正确的有 ( )①y 是x 的函数;②对于不同的,x y 的值也不同;③()f a 表示当x a =时函数()f x 的值,是一个常量;④()f x 一定可以用一个具体的式子表示出来。

A 、1个B 、2个C 、3个D 、4个 3、下列各组函数是同一函数的是( )①()f x =与()g x =;②()f x x =与2()g x =;③0()f x x =与01()g x x =;④2()21f x x x =--与2()21g t t t =--。

A 、①②B 、①③C 、③④D 、①④4、二次函数245y x mx =-+的对称轴为2x =-,则当1x =时,y 的值为 ( ) A 、7- B 、1 C 、17 D 、25 5、函数y =的值域为 ( )A 、[]0,2B 、[]0,4C 、(],4-∞D 、[)0,+∞ 6、下列四个图像中,是函数图像的是 ( )A 、(1)B 、(1)、(3)、(4)C 、(1)、(2)、(3)D 、(3)、(4) 7、若:f A B →能构成映射,下列说法正确的有 ( )(1)A 中的任一元素在B 中必须有像且唯一;(2)B 中的多个元素可以在A 中有相同的原像;(3)B 中的元素可以在A 中无原像;(4)像的集合就是集合B 。

A 、4个B 、3个C 、2个D 、1个 8、)(x f 是定义在R 上的奇函数,下列结论中,不正确...的是( ) A 、()()0f x f x -+= B 、()()2()f x f x f x --=- C 、()()0f x f x -g ≤ D 、()1()f x f x =--(1)(2)(3)(4)9、如果函数2()2(1)2f x x a x =+-+在区间(],4-∞上是减少的,那么实数a 的取值范围是( ) A 、3a -≤ B 、3a -≥ C 、a ≤5 D 、a ≥5 10、设函数()(21)f x a x b =-+是R 上的减函数,则有 ( )A 、12a >B 、12a < C 、12a ≥ D 、12a ≤11、定义在R 上的函数()f x 对任意两个不相等实数,a b ,总有()()0f a f b a b ->-成立,则必有( ) A 、函数()f x 是先增加后减少 B 、函数()f x 是先减少后增加 C 、()f x 在R 上是增函数 D 、()f x 在R 上是减函数12、下列所给4个图象中,与所给3件事吻合最好的顺序为 ( )(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学; (2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速。

(必考题)高中数学必修一第二单元《函数》检测题(包含答案解析)

(必考题)高中数学必修一第二单元《函数》检测题(包含答案解析)

一、选择题1.下列各函数中,表示相等函数的是( ) A .lg y x =与21lg 2y x =B .211x y x -=-与1y x =+C.1y =与1y x =-D .y x =与log xa y a =(0a >且1a ≠)2.若函数()22(3)8,1,1x a x x f x ax x ⎧-+--≤=⎨>⎩在R 上是增函数,则实数a 的取值范围是( )A.4,⎡-⎣B.⎤⎦C .[]3,4-D.⎡⎣3.函数()()1ln 24f x x x =-+-的定义域是( ) A .[)2,4B .()2,+∞C .()()2,44,⋃+∞D .[)()2,44,+∞4.设函数()y f x =的定义域D ,若对任意的1x D ∈,总存在2x D ∈,使得()()121f x f x ⋅=,则称函数()y f x =具有性质M .下列结论:①函数3x y =具有性质M ; ②函数3y x x =-具有性质M ;③若函数8log (2)y x =+,[]0,x t ∈具有性质M ,则510t =. 其中正确的个数是( ) A .0个B .1个C .2个D .3个5.下列函数中,在其定义域内既是奇函数又是减函数的是( ) A .1y x=B.y =C .2x y = D .||y x x =-6.已知函数2()(3)1f x mx m x =--+,()g x mx =,若对于任意实数x ,()f x 与()g x 的值至少有一个为正数,则实数m 的取值范围是( ) A .(1,9)B .(3,+)∞C .(,9)-∞D .(0,9)7.若函数22,2()13,22x ax x f x a x x⎧-≤⎪=⎨->⎪⎩是R 上的单调减函数,则实数a 的取值范围为( )A .115,24⎡⎤⎢⎥⎣⎦B .4,215⎡⎤⎢⎥⎣⎦C .41,152⎡⎤⎢⎥⎣⎦D .152,4⎡⎤⎢⎥⎣⎦8.已知的2()(1)()f x x x x ax b =+++图象关于直线1x =对称,则()f x 的值域为( ) A .[]4,-+∞B .9,4⎡⎫-+∞⎪⎢⎣⎭C .9,44⎡⎤-⎢⎥⎣⎦D .[]0,49.符号[]x 表示不超过x 的最大整数,如[]3π=,[]1.082-=-,定义函数{}[]x x x =-.给出下列结论:①函数{}x 的定义域是R ,值域为0,1;②方程{}12x =有无数个解;③函数{}x 是增函数;④函数{}x 为奇函数,其中正确结论的个数是( )A .0B .1C .2D .310.已知函数()()1,12,1xmx x f x n x +<⎧⎪=⎨-≥⎪⎩,在R 上单调递增,则mn 的最大值为( ) A .2B .1C .94D .1411.若函数2()34f x x x =--的定义域为[]0m ,,值域为2544⎡⎤--⎢⎥⎣⎦,,则m 的取值范围是( ) A .3,42⎡⎤⎢⎥⎣⎦B .3,32⎡⎤⎢⎥⎣⎦C .(]0,4D .3,2⎡⎫+∞⎪⎢⎣⎭12.已知函数()f x 是R 上的单调函数,且对任意实数x ,都有()21213xf f x ⎡⎤+=⎢⎥+⎣⎦成立,则()2020f 的值是( ) A .202021- B .202021+C .202020202121+-D .202020202121-+二、填空题13.已知1()1x f x x +=-,则135199()()()()100100100100f f f f ++++=______________14.已知实数0a ≠,函数()2,12,1x a x f x x a x +<⎧=⎨-+≥⎩,若()()11f a f a -=+,则a 的取值范围是___________.15.若()f x 是定义在R 上的以3为周期的奇函数,且()20f =,则方程()0f x = 在区间()0,6内的解的个数的最小值是__________ .16.如果定义在区间[3+a ,5]上的函数f(x)为奇函数,那么a 的值为________. 17.若对任意02x ≤≤,恒有2x ax b c ++≤成立,则当c 取最小值时,函数()24f x x a x b x c =-+-+-的最小值为________.18.下列给出的命题中:①若()f x 的定义域为R ,则()()()g x f x f x =+-一定是偶函数;②若()f x 是定义域为R 的奇函数,对于任意的x ∈R 都有()(2)0f x f x +-=,则函数()f x 的图象关于直线1x =对称;③某一个函数可以既是奇函数,又是偶函数; ④若1()2ax f x x +=+在区间(2,)-+∞上是增函数,则12a >; 其中正确的命题序号是__________.19.已知函数()2()10f x x ax a =++>,若“()f x 的值域为[)0,+∞”为真命题,则()3f =________.20.设2(),0()1,0x a x f x x a x x ⎧-≤⎪=⎨++>⎪⎩,若(0)f 是()f x 的最小值,是a 的取值范围为________________.三、解答题21.已知定义在R 上的函数()f x 的单调递增函数,且对∀x ,y ∈R ,都有()()()1f x y f x f y +=++,f (2)=5.(1)求f (0),f (1)的值;(2)若对11,32x ⎡⎤∈⎢⎥⎣⎦∀,都有2()(21)1f kx f x +-<成立,求实数k 的取值范围. 22.已知函数()y f x =是[]1,1-上的奇函数,当10x ≤<时,()2112x f x x =-+. (1)判断并证明()y f x =在[)1,0-上的单调性; (2)求()y f x =的值域.23.已知函数()y f x =的定义域为D ,如果存在区间[],a b D ⊆,使得[]{}[]|(),,,=∈=y y f x x a b a b ,则称区间,a b 为函数()y f x =的一个和谐区间.(1)直接写出函数3()f x x =的所有和谐区间;(2)若区间[]0,m 是函数3()22=-f x x 的一个和谐区间,求实数m 的值; (3)若函数2()2()=-+∈f x x x m m R 存在和谐区间,求实数m 的取值范围.24.已知函数12()12x xa f x -⋅=+是R 上的奇函数(a 为常数),()22.g x x x m m R =-∈+, (1)求实数a 的值;(2)若对任意12[]1x -∈,,总存在2]3[0x ∈,,使得12()()f x g x =成立,求实数m 的取值范围.25.已知函数()()20f x ax x c a =++>满足:①函数14f x ⎛⎫-⎪⎝⎭是偶函数;②关于x 的不等式()0f x <的解集是()(),11m m <. (1)求函数()f x 的解析式;(2)求函数()()()()43g x f x k x k R =++∈在[]1,3上的最小值()h k .26.已知函数()f x = (1)求()f x 的定义域和值域; (2)设()h x =,若不等式231()42h x m am ≤-对于任意[1,1]x ∈-及任意[1,1]a ∈-都恒成立,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】本题可依次判断四个选项中函数的定义域、对应关系、值域是否相同,即可得出结果. 【详解】A 项:函数lg y x =定义域为()0,∞+,函数21lg 2y x =定义域为{}0x x ≠,A 错误; B 项:函数211x y x -=-定义域为{}1x x ≠,函数1y x =+定义域为R ,B 错误;C 项:函数1y =值域为[)1,-+∞,函数1y x =-值域为R ,C 错误;D 项:函数y x =与函数log xa y a =(0a >且1a ≠)定义域相同,对应关系相同,D 正确.故选:D 【点睛】方法点睛:判断两个函数是否相同,首先可以判断函数的定义域是否相同,然后判断两个函数的对应关系以及值域是否相同即可,考查函数定义域和值域的求法,是中档题.2.B解析:B 【分析】函数()f x 在R 上是增函数,则在两段上分别要单调递增,且在分界点处要满足2138a a -+--≤,从而得到答案.【详解】函数()22(3)8,1,1x a x x f x ax x ⎧-+--≤=⎨>⎩在R 上是增函数,则满足下列条件:(1)()2238y x a x =-+--在(],1-∞递增,2312a -≥,即a ≥a ≤(2)y ax =在()1,+∞递增,则0a >(3)当1x =时满足2138a a -+--≤,解得34a -≤≤综上可得函数()f x 在R 上是增函数,实数a 4a ≤≤ 故选:B. 【点睛】关键点睛:本题考查根据分段函数的单调性求参数的范围,解答本题的关键是分段函数要在定义域内单调递增,则在两段上要分别单调递增,且在分界点出满足2138a a -+--≤,这也时容易出错的地方,属于中档题.3.C解析:C 【分析】先根据函数的解析式建立不等式组,再解不等式组求定义域即可. 【详解】解:因为函数的解析式:()()1ln 24f x x x =-+- 所以2040x x ->⎧⎨-≠⎩,解得24x x >⎧⎨≠⎩故函数的定义域为:()(2,4)4,+∞故选:C 【点睛】数学常见基本初等函数定义域是解题关键.4.C解析:C 【分析】根据函数性质M 的定义和指数对数函数的性质,结合每个选项中具体函数的定义,即可判断. 【详解】解:对于①:3x y =的定义域是R ,所以1212()()13x x f x f x +⋅==,则120x x +=.对于任意的1x D ∈,总存在2x D ∈,使得()()121f x f x ⋅=, 所以函数3x y =具有性质M ,①正确;对于②:函数3y x x =-的定义域为R ,所以若取10x =,则1()0f x =,此时不存在2x R ∈,使得12()()1f x f x ⋅=, 所以函数3y x x =-不具有性质M ,②错误;对于③:函数8log (2)y x =+在[]0,t 上是单调增函数,其值域为[]88log 2,log (2)t +,要使得其具有M 性质,则88881log 2log (2)1log (2)log 2t t ⎧≤⎪+⎪⎨⎪+≤⎪⎩,即88log 2log (2)1t ⨯+=,解得3(2)8t +=,510t =, 故③正确; 故选:C. 【点睛】本题考查函数新定义问题,对数和指数的运算,主要考查运算求解能力和转换能力,属于中档题型.5.D解析:D 【分析】利用奇函数的定义和常见基本初等函数的性质,对选项逐一判断即可. 【详解】 选项A 中,函数1y x =,由幂函数性质知1y x=是奇函数,且其在()(),0,0,-∞+∞两个区间上递减,不能说在定义域内是减函数,故错误; 选项B中,函数y =[)0,+∞,不对称,故不具有奇偶性,,且在定义域内是增函数,故错误;选项C 中,指数函数2x y =,22x x -≠,且22x x -≠-,故不是奇函数,故错误;选项D 中,函数22,0,0x x y x x x x ⎧-≥=-=⎨<⎩,记()y f x =,当0x >时,0x -<,故22(),()f x x f x x =--=,故()()f x f x -=-, 当0x =时,(0)0f =,故()()f x f x -=-,当0x <时,0x ->,故22(),()f x x f x x =-=-,故()()f x f x -=-,综上,()y f x =是奇函数,又0x ≥时,2()f x x =-是开口向下的抛物线的一部分,是减函数,由奇函数性质知()y f x =在定义域R 上是减函数,故正确. 故选:D. 【点睛】本题解题关键是熟练掌握常见的基本初等函数的性质,易错点是分段函数奇偶性的判断,分段函数必须判断定义域内的每一段均满足()()f x f x -=-(或()()f x f x -=)才能判定其是奇函数(或偶函数).6.D解析:D 【分析】根据所给条件,结合二次函数的图像与性质,分类讨论,即可得解. 【详解】当0m <时,二次函数2()(3)1f x mx m x =--+的图像开口向下,()g x mx =单调递减,故存在x 使得()f x 与()g x 同时为负,不符题意; 当0m =时,()31f x x =-+,()0g x =显然不成立; 当0m >时,2109m m ∆=-+, 若∆<0,即19m <<时,显然成立,0∆=,1m =或9m =,则1m =时成立,9m =时,13x =-时不成立,若0∆>,即01m <<或9m >,由(0)1f =可得:若要()f x 与()g x 的值至少有一个为正数,如图,则必须有302mm->,解得01m <<, 综上可得:09m <<, 故答案为:D. 【点睛】本题考查了二次函数和一次函数的图像与性质,考查了分类讨论思想和计算能力,属于中档题.解决此类问题的关键主要是讨论,涉及二次函数的讨论有: (1)如果平方项有参数,则先讨论; (2)再讨论根的判别式; (3)最后讨论根的分布.7.D解析:D 【分析】若函数()f x 在R 上递减,则必须满足当(],2x ∈-∞时,函数22y x ax =-递减,且()2,x ∈+∞时132y a x=-也递减,且端点处的函数值必须满足条件. 【详解】 易知函数132y a x=-在(2,)+∞上单调递减,要使函数()f x 在R 上单调递减, 则函数22y x ax =-在(,2]-∞上单调递减,所以2a ≥, 当2x =时,2244x ax a -=-,113324a a x -=-,要使()f x 在R 上单调递减, 还必须14434a a -≥-,即154a ≤,所以1524a ≤≤.故选:D . 【点睛】解答本题时,首先要保证原函数在每一段上都递减,另外,解答时容易忽略掉端点的函数值的大小关系.8.B解析:B 【分析】结合函数对称性与解析式可知1,0-是零点,则2,3也是零点,由对应关系求出解析式,利用换元法和二次函数性质即可求解 【详解】因为函数()()()21f x x x x ax b =+++有两个零点1-,0,又因为其图象关于直线1x =对称,所以2,3也是函数()f x 的两个零点,即()()()()123f x x x x x =+⋅--,所以()()()22223f x x x x x =---,令()222111t x x x =-=--≥-,则()()223933124y t t t t t t ⎛⎫=-=-=--- ⎭≥⎪⎝,所以94y ≥-,即()f x 的值域为9,4∞⎡⎫-+⎪⎢⎣⎭. 故选:B 【点睛】关键点睛:本题考查函数对称性的应用,换元法的应用,函数值域的求解,解题关键在于:(1)若函数对称轴为x a =,则有()()f a x f a x +=-; (2)换元法求解函数值域必须注意新元取值范围.9.B解析:B根据函数性质判断[]x 是一个常见的新定义的形式,按照新定义,符号[]x 表示不超过x 的最大整数,由此可以得到函数的性质,又定义函数{}[]x x x =-,当0x ≥时,表示x 的小数部分,由于①③是错误的,举例可判断②,根据单调性定义可判断④. 【详解】①函数{}x 的定义域是R ,但[]01x x ≤-<,其值域为)01⎡⎣,,故错误; ②由{}[]12x x x =-=,可得[]12x x =+,则 1.52.5x =,……都是方程的解,故正确; ③由②可得{}11.52=,{}12.52=……当 1.52.5x =,……时,函数{}x 的值都为12,故不是增函数,故错误; ④函数{}x 的定义域是R ,而{}[]{}x x x x -=---≠-,故函数不是奇函数,故错误;综上,故正确的是②. 故选:B. 【点睛】本题以新定义函数{}[]x x x =-的意义为载体,考查了分段函数和函数的值域、单调性等性质得综合类问题,在解答的过程中体现了分类讨论和数形结合的思想,还可以利用函数的图象进行解题.10.D解析:D 【分析】现根据分段函数单调增,列出不等式组,得出011m n m n >⎧⎪<⎨⎪+≤⎩,再根据基本不等式即可求解.【详解】由题意可知,函数在R 上单调递增,则02112m n m n>⎧⎪->⎨⎪+≤-⎩,解得011m n m n >⎧⎪<⎨⎪+≤⎩,则由基本不等式可得2211224m n mn +⎛⎫⎛⎫≤≤= ⎪ ⎪⎝⎭⎝⎭,当且仅当m=n=12时取等号. 故选:D 【点睛】本题主要考查分段函数的单调性,和基本不等式,属于中档题,解题是应注意分段函数单调递增:左边增,右边增,分界点处左边小于等于右边.11.B解析:B求出(0)4f =-,再计算出最小值为32524f ⎛⎫=- ⎪⎝⎭,然后求出()4f m =-的值后可得m 的范围. 【详解】2325()24f x x ⎛⎫=-- ⎪⎝⎭,()f x 在3,2⎛⎫-∞ ⎪⎝⎭上递减,在3,2⎛⎫+∞ ⎪⎝⎭上递增, (0)4f =-,又32524f ⎛⎫=- ⎪⎝⎭,所以32m ≥,由2()344f m m m =--=-解得0m =或3m =, 因此332m ≤≤. 故选:B . 【点睛】方程点睛:本题考查二次函数的性质,掌握其对称轴、单调性是解题关键.由此可得二次函数2()f x ax bx c =++在区间[,]m n 上的最值求法: 设0a >,函数的对称轴0x x =(02bx a=-), 当0x m <时,min ()()f x f m =,0m x n ≤≤时,min 0()()f x f x =,0x n >时,min ()()f x f n =,当02m n x +≤时,max ()()f x f n =,当02m nx +>时,max ()()f x f m =. 0a <类似讨论.12.D解析:D 【分析】采用换元法可构造方程()21213t f t t =-=+,进而求得()f x 解析式,代入2020x =即可得到结果. 【详解】由()f x 是R 上的单调函数,可设()221x f x t +=+,则()13f t =恒成立, 由()221x f x t +=+得:()221x f x t =-+,()21213t f t t ∴=-=+,解得:1t =,()22112121x x xf x -∴=-=++,()2020202021202021f -∴=+. 故选:D . 【点睛】本题考查函数值的求解问题,解题关键是能够采用换元的方式,利用抽象函数关系式求解得到函数的解析式.二、填空题13.100【分析】分析得出得解【详解】∴故答案为:100【点睛】由函数解析式得到是定值是解题关键解析:100 【分析】分析得出(2)()2f x f x -+=得解. 【详解】1()1x f x x +=- 211211(2)()2f x f x x x x x -+∴-+=++=--- ∴135199()()()()100100100100f f f f ++++1199319799101[()()][()()][()()]100100100100100100f f f f f f =+++++ 250100=⨯=故答案为:100. 【点睛】由函数解析式得到(2)()2f x f x -+=是定值是解题关键.14.【分析】本题首先可讨论的情况此时然后根据函数的解析式求出和通过即可求出的值最后讨论的情况此时通过得出此时无解即可得出结果【详解】若则因为函数所以因为所以解得若则因为函数所以因为所以无解综上所述的取值解析:32⎧⎫⎨⎬⎩⎭【分析】本题首先可讨论0a >的情况,此时11a -<、11a +>,然后根据函数()f x 的解析式求出()1f a -和()1f a +,通过()()11f a f a -=+即可求出a 的值,最后讨论0a <的情况,此时11a ->、11a +<,通过()()11f a f a -=+得出此时a 无解,即可得出结果. 【详解】若0a >,则11a -<,11a +>,因为函数()2,12,1x a x f x x a x +<⎧=⎨-+≥⎩,所以1212f a a a a ,1121f a a aa ,因为()()11f a f a -=+,所以21a a ,解得32a =, 若0a <,则11a ->,11a +<,因为函数()2,12,1x a x f x x a x +<⎧=⎨-+≥⎩,所以11213f aa a a ,12123f a a a a ,因为()()11f a f a -=+,所以1323a a ,无解,综上所述,32a =,a 的取值范围是32⎧⎫⎨⎬⎩⎭, 故答案为:32⎧⎫⎨⎬⎩⎭.【点睛】本题考查分段函数的相关问题的求解,在分段函数求函数值的时候,要把自变量代入到所对应的解析式中是解本题的关键,考查分类讨论思想,考查计算能力,是中档题.15.7【解析】由函数的周期为3可得因为若则可得出又根据为奇函数则又可得出又函数是定义在R 上的奇函数可得出从而在中令得出又根据是定义在R 上的奇函数得出从而得到即故从而共7个解解析:7 【解析】由函数的周期为3可得(3)()f x f x +=,因为(2)0f =, 若(0,6)x ∈,则可得出(5)=(2)0f f =, 又根据()f x 为奇函数,则(-2)=-(2)0f f =, 又可得出(4)=(1)(-2)=0f f f =,又函数()f x 是定义在R 上的奇函数,可得出(0)0f =, 从而(3)=(0)0f f =,在(3)()f x f x +=中, 令32x =-,得出33()()22f f -=,又根据()f x 是定义在R 上的奇函数,得出33()-()22f f -=, 从而得到33()-()22f f =,即3()02f =, 故933()(+3)()=0222f f f ==,从而93()()=(4)(1)(3)(5)(2)022f f f f f f f ======,共7个解.16.-8【解析】∵f(x)定义域为3+a5且为奇函数∴3+a =-5∴a =-8点睛:利用奇偶性求值的类型及方法(1)求函数值:利用奇偶性将待求值转化到已知区间上的函数值进而得解(2)求参数值:在定义域关于解析:-8 【解析】∵f(x)定义域为[3+a ,5],且为奇函数, ∴3+a =-5,∴a =-8.点睛:利用奇偶性求值的类型及方法(1)求函数值:利用奇偶性将待求值转化到已知区间上的函数值,进而得解.(2)求参数值:在定义域关于原点对称的前提下,根据奇函数满足f(-x)=-f(x)或偶函数满足f(-x)=f(x)列等式,根据等式两侧对应相等确定参数的值.特别要注意的是:若能够确定奇函数的定义域中包含0,可以根据f(0)=0列式求解,若不能确定则不可用此法.17.【分析】由题意结合二次函数的图象与性质可得当c 可取最小值时再由零点分段法可得分段函数的解析式即可得解【详解】令由题意知当时c 可取最小值此时解得则所以所以的最小值为故答案为:【点睛】本题考查了二次函数 解析:198【分析】由题意结合二次函数的图象与性质可得当c 可取最小值时,2a =-、12==b c ,再由零点分段法可得分段函数()f x 的解析式,即可得解. 【详解】令()2h x x ax b =++,由题意知当()()()021h h h ==-时,c 可取最小值,此时()421b a b b a b =++⎧⎨=-++⎩,解得212a b =-⎧⎪⎨=⎪⎩,则()102c h ==, 所以()112422422f x x a x b x c x x x =-+-+-=++-+- 171,41132,84153,2871,2x x x x x x x x ⎧+≥⎪⎪⎪+<<⎪=⎨⎪-+-<≤⎪⎪⎪--≤-⎩, 所以()f x 的最小值为15193888f ⎛⎫=-+= ⎪⎝⎭.故答案为:198. 【点睛】本题考查了二次函数的图象与性质与应用,考查了零点分段法的应用及分段函数最值的求解,属于中档题.18.①③④【分析】①根据奇偶函数的定义判断;②利用抽象函数的对称性判断;③通过特殊函数判断;④通过分离常数转化为熟悉的函数判断【详解】①函数的定义域为所以函数的定义域也是即所以函数是偶函数故①正确;②对解析:①③④ 【分析】①根据奇偶函数的定义判断;②利用抽象函数的对称性判断;③通过特殊函数判断;④通过分离常数,转化为熟悉的函数判断. 【详解】①函数()f x 的定义域为R ,所以函数()g x 的定义域也是R ,()()()g x f x f x -=-+,即()()g x g x -=,所以函数()g x 是偶函数,故①正确;②对应任意的x ∈R ,都有()()20f x f x +-=,即函数()f x 关于()1,0对称,并不关于1x =对称,故②不正确;③函数0y =既是偶函数又是奇函数,故③正确; ④()()212112222a x a ax af x a x x x ++-+-===++++,若函数在()2,-+∞上单调递增,则120a -<,解得:12a >,故④正确. 故答案为:①③④ 【点睛】方法点睛:函数的对称性包含中心对称和轴对称,一般判断的方法包含:1.若对函数()y f x =的定义域内的任一自变量x 的值都有()()2f x f a x =-,则()y f x =的图象关于x a =成轴对称;若对函数()y f x =的定义域内的任一自变量x 的值都有()()22f x b f a x =--,则()y f x =的图象关于(),a b 成中心对称;19.16【分析】二次函数的值域为得到求得值得解【详解】因为的值域为所以则又所以故答案为:16【点睛】二次函数的值域为得到是解题关键解析:16 【分析】二次函数()f x 的值域为[)0,+∞得到240a ∆=-=求得a 值得解【详解】因为()2()10f x x ax a =++>的值域为[0,)+∞,所以240a ∆=-=,则2a =±.又0a >,所以2,a =.22()21,(3)323116f x x x f ∴=++∴=+⨯+=故答案为:16 【点睛】二次函数()f x 的值域为[)0,+∞得到0∆=是解题关键.20.【分析】利用定义可知在上递减在上递增所以当时取得最小值为再根据是的最小值可知且解得结果即可得解【详解】当时任设则当时所以所以当时所以所以所以在上递减在上递增所以当时取得最小值为又因为是的最小值所以且 解析:02a ≤≤【分析】利用定义可知1()f x x a x=++在(0,1)上递减,在(1,)+∞上递增,所以当1x =时,1()f x x a x=++取得最小值为2a +,再根据(0)f 是()f x 的最小值,可知0a ≥且2(0)2a a -≤+,解得结果即可得解.【详解】当0x >时,1()f x x a x=++, 任设120x x <<,则12121211()()f x f x x a x a x x -=++---12121()(1)x x x x =--, 当120x x <<1<时,120x x -<,12110x x -<,所以12121()(1)0x x x x -->,所以12()()f x f x >,当121x x <<时,120x x -<,12110x x ->,所以12121()(1)0x x x x --<,所以12()()f x f x <,所以1()f x x a x=++在(0,1)上递减,在(1,)+∞上递增, 所以当1x =时,1()f x x a x=++取得最小值为2a +, 又因为(0)f 是()f x 的最小值,所以0a ≥且2(0)2a a -≤+,解得02a ≤≤. 故答案为:02a ≤≤. 【点睛】本题考查了利用定义判断函数的单调性,考查了根据函数的最值点求参数的取值范围,考查了分段函数的性质,属于中档题.三、解答题21.(1)(0)1f =-;()12f =;(2)4k <. 【分析】(1)令0x y ==可得(0)f ,令1x y ==可得()1f ; (2)转化条件为222k x x <-对11,32x ⎡⎤∈⎢⎥⎣⎦∀恒成立,换元后求得222x x -的最小值即可得解. 【详解】(1)令0x y ==,则(0)(0)(0)1f f f =++,所以(0)1f =-; 令1x y ==,则(2)(1)(1)15f f f =++=,所以()12f =;(2)由题意,不等式2()(21)1f kx f x +-<可转化为2()(21)12f kx f x +-+<,所以()()2211f kx x f +-<,因为函数()f x 单调递增,所以2211kx x +-<, 所以222k x x <-对11,32x ⎡⎤∈⎢⎥⎣⎦∀恒成立, 令[]12,3t x =∈,则221122222t t t ⎛⎫-=-- ⎪⎝⎭,所以当2t =即12x =时,222t t -取最小值4, 所以4k <. 【点睛】关键点点睛:解决本题的关键是利用函数的单调性转化不等式为222k x x<-对11,32x ⎡⎤∈⎢⎥⎣⎦∀恒成立,再转化为求222x x -的最小值即可得解.22.(1)单调递增,证明见解析;(2){}111,0,122⎡⎫⎛⎤--⋃⋃⎪ ⎢⎥⎣⎭⎝⎦. 【分析】(1)利用定义设1210-≤<<x x ,计算()()12f x f x -判断正负即可得出单调性; (2)先利用单调性求出()f x 在[)1,0-的取值范围,再根据奇函数的对称性可求出. 【详解】(1)设1210-≤<<x x ,()()()()()()122112122222121211111x x x x x x f x f x x x x x ---=-=++++, 因为1210-≤<<x x ,所以121x x <,210x x ->, 则()()120f x f x -<,()()12f x f x <, 所以()f x 在[)1,0-上单调递增; (2)函数()f x 在[)1,0-上是增函数,∴()()()10f f x f -≤<,()11f -=-,()102f =-,∴()11,2f x ⎡⎫∈--⎪⎢⎣⎭∴当10x -≤<时,()f x 的取值范围11,2⎡⎫--⎪⎢⎣⎭∴而函数()f x 为奇函数,由对称性可知,函数()y f x =在(]0,1上的取值范围为1,12⎛⎤⎥⎝⎦又()00f =,故()y f x =的值域{}111,0,122⎡⎫⎛⎤--⋃⋃⎪ ⎢⎥⎣⎭⎝⎦. 【点睛】思路点睛:利用定义判断函数单调性的步骤: (1)在定义域内任取12x x <; (2)计算()()12f x f x -并化简整理; (3)判断()()12f x f x -的正负;(4)得出结论,若()()120f x f x -<,则()f x 单调递增;若()()120f x f x ->,则()f x 单调递减.23.(1) 1.0,0,1,[]1,1-;(2)4m =或2;(3)904≤<m . 【分析】(1)本题可令3x x =,解得0x =或±1,然后根据函数()3f x x =的单调性以及“和谐区间”定义即可得出结果;(2)本题首先可将函数转化为()342,23342,23x x f x x x ⎧-≥⎪⎪=⎨⎪-+<⎪⎩,然后令322x x -=,解得45x =或4,最后绘出函数图像,结合函数图像即可得出结果; (3)讨论1a b <≤或1a b ≤<或1a b <<,根据二次函数的性质确定函数的单调区间,再由单调性求出函数的值域,根据题干,函数的新定义即可求解. 【详解】解:(1)函数()3f x x =是增函数,定义域为R ,令3x x =,解得0x =或±1,故函数()3f x x =的所有“和谐区间”为[]1,0-、0,1、[]1,1-.(2)因为()322f x x =-, 所以()342,23342,23x x f x x x ⎧-≥⎪⎪=⎨⎪-+<⎪⎩,因为[]()0,0m m >为函数()322f x x =-的一个“和谐区间”, 所以可令322x x -=,解得45x =或4, 如图所示,绘出函数图像:结合“和谐区间”的定义易知,当4x =时满足题意,因为()02f =,所以当2m =时,()min max 2,()0f x f x ==,满足题意, 故m 的值为4或2.(3)①当1a b <≤时,()f x 在,a b 上时单调递减函数,由题意有()()f a bf b a=⎧⎨=⎩,2222a a m b b b m a⎧-+=⎨-+=⎩得1a b +=,因为1a b <≤,所以110,122≤<<≤a b , 且221-+=-a a m a ,即210-+-=a a m ,解得154122+-=≥m a 舍去,或12=<a,1=-=b a 由211(0)2=-++≤<m a a a , 得514m ≤<,所以当514m ≤<时,和谐区间为⎣⎦. ②1a b ≤<时,()f x 在,a b 上时单调递增函数, 由题意有()()f a af b b=⎧⎨=⎩,所以,a b 是方程22-+=x x m x 的两个不等实根.因为3a b +=,又1a b ≤<,得2b ≤,因而有3122≤<<≤a b , 故方程2()30=-+=g x x x m 在31,2⎡⎫⎪⎢⎣⎭和3,22⎛⎤⎥⎝⎦内各有一个实根,即33022≤<且33222<≤, 解得924≤<m , 故当924≤<m时,和谐区间为3322⎡+⎢⎣⎦. ③当1a b <<时,min ()(1)11==-=<f x f m a ,得2m < 当12a b+≤时,即2a b +≤,则max ()()==f x f a b ,得22-+=a a m b , 又1a m =-,得2331=-+>b m m ,得 2m >或1m <, 又由2222+=-+≤a b m m 及2m <,解得01m ≤<,此时和谐区间为21,33⎡⎤--+⎣⎦m m m .当12+≥a b时,即2a b +≥,则max ()()==f x f b b ,得22-+=b b m b ,解得=b若=b 则由2m <知3122+=-+<a b m ,舍去;若32+=b,3122+=-+≥a b m ,解得904≤≤m , 又2m <,所以02m ≤<,此时和谐区间为31,2⎡+-⎢⎣⎦m ,综上,所求范围是904≤<m .【点睛】关键点点睛:本题考查函数新定义,能否结合题意明确函数新定义的含义是解决本题的关键,在解决函数类的问题时,合理利用函数图像可以给解题带来很大帮助,考查数形结合思想,是中档题.24.(1)1;(2)82[,]35-. 【分析】(1)()f x 为R 上的奇函数,由()00f =得解;(2)由“任意[]11,2x ∈-,总存在[]20,3x ∈,使得()()12f x g x =成立”得到等价命题是 “()f x 在[]1,2-上的取值集合是()g x 在[]0,3上的取值集合的子集”,分别求出两个函数的值域得解. 【详解】(1)因为()f x 为R 上的奇函数, 所以()00f =,即102a-=,解得1a = (2)因为[]20,3x ∈,且()g x 在[]0,1上是减函数,在[]1,3上为增函数 所以()g x 在[]0,3上的取值集合为[]1,3m m -+.由122()11221x x xf x -==-+++得()f x 是减函数, 所以()f x 在[]1,2-上是减函数所以()f x 在[]1,2-上的取值集合为31[,]53-.由“任意[]11,2x ∈-,总存在[]20,3x ∈,使得()()12f x g x =成立”()f x 在[]1,2-上的取值集合是()g x 在[]0,3上的取值集合的子集,即[]31[,]1,353m m -⊆-+. 则有315m -≤-,且133m +≥,解得:8235m -≤≤. 即实数m 的取值范围是82[,]35-. 【点睛】探讨方程()()0f x g m -=解的存在性,通常可将方程转化为()()f x g m =,通过确认函数()f x 或()g m 的值域,从而确定参数或变量的范围;类似的,对于不等式()()0(0)f x g m -≥≤,也可仿效此法.25.(1)()223f x x x =+-;(2)()21227,4245,4243,2k k h k k k k k k +≤-⎧⎪=----<<-⎨⎪+≥-⎩. 【分析】(1)由①可知函数()f x 的图象关于直线14x =-对称,由②可知()10f =,可得出关于a 、c 的方程组,进而可得出函数()f x 的解析式;(2)求得()()22413g x x k x =++-,求得该函数的对称轴为直线()1x k =-+,对实数k 的取值进行分类讨论,分析函数()g x 在区间[]1,3上的单调性,进而可求得()h k 关于k 的表达式.【详解】(1)由①可得,函数14f x ⎛⎫-⎪⎝⎭是偶函数, 将函数14f x ⎛⎫- ⎪⎝⎭的图象向左平移14个单位长度可得到函数()f x 的图象, 所以,函数()f x 的图象关于直线14x =-对称,则有1124a -=-,可得2a =. 由②可得:1x =是方程20ax x c ++=的一个解,则有10a c ++=,得3c =-. 于是:()223f x x x =+-; (2)依题意有:()()22413g x x k x =++-,对称轴为()1x k =-+. 当()13k -+≥时,即4k ≤-时,()g x 在[]1,3单调递减,于是()()min 31227g x g k ==+;当()113k <-+<时,即4-<<-2k 时,()g x 在()1,1k -+⎡⎤⎣⎦单调递减,在()1,3k -+⎡⎤⎣⎦单调递增,于是()()2min 1245g x g k k k =--=---; 当()11k -+≤时,即2k ≥-时,()g x 在[]1,3单调递增,于是()()min 143g x g k ==+.综上:()21227,4245,4243,2k k h k k k k k k +≤-⎧⎪=----<<-⎨⎪+≥-⎩. 【点睛】方法点睛:“动轴定区间”型二次函数最值的方法:(1)根据对称轴与区间的位置关系进行分类讨论;(2)根据二次函数的单调性,分别讨论参数在不同取值下的最值,必要时需要结合区间端点对应的函数值进行分析;(3)将分类讨论的结果整合得到最终结果.26.(1)定义域为[1,1]-,值域为(2)1m ≤-或1m ≥【分析】(1)由1010x x +≥⎧⎨-≥⎩可得定义域,先求出2()f x 的值域,再开方求出()f x 的值域; (2)换元,令t =∈,根据对勾函数的单调性求出2()()4t h x g t t ==+的最大值,则不等式转化为21310244am m -+-≥对任意[1,1]a ∈-都恒成立,利用一次函数的图象列式可解得结果.【详解】(1)由函数有意义得1010x x +≥⎧⎨-≥⎩,解得11x -≤≤, 所以函数()f x 的定义域为[1,1]-,因为22()2f x ==+[2,4],又()0f x ≥,所以()f x ∈.(2)()h x ==令t =∈,则22t =-, 所以2()()4t h x g t t ==+14t t=+, 因为()g t在上递增,所以当2t =时,()g t 取得最大值221(2)244g ==+,即max 1()4h x =, 所以不等式231()42h x m am ≤-对于任意[1,1]x ∈-恒成立,转化为2311424m am -≥对任意[1,1]a ∈-都恒成立,即21310244am m -+-≥对任意[1,1]a ∈-都恒成立, 所以2213102441310244m m m m ⎧+-≥⎪⎪⎨⎪-+-≥⎪⎩,即2232103210m m m m ⎧+-≥⎨--≥⎩,解得113113m m m m ⎧≤-≥⎪⎪⎨⎪≤-≥⎪⎩或或, 所以1m ≤-或1m ≥.【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:①若()k f x ≥在[,]a b 上恒成立,则max ()k f x ≥; ②若()k f x ≤在[,]a b 上恒成立,则min ()k f x ≤; ③若()k f x ≥在[,]a b 上有解,则min ()k f x ≥; ④若()k f x ≤在[,]a b 上有解,则max ()k f x ≤;。

高一北师大版数学必修1第二章 函数单元测试题试卷含答案解析

高一北师大版数学必修1第二章 函数单元测试题试卷含答案解析

阶段性检测卷二(时间:120分钟,满分:150分)一、选择题(本大题共10小题,每题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.函数y =1-x +x 的定义域为( ) A .{x |x ≤1} B .{x |x ≥0} C .{x |x ≥1或x ≤0} D .{x |0≤x ≤1}答案 D2.已知(x ,y )在映射f 作用下的像是(x +y ,x -y ),则(1,2)关于f 的原像是( )A .(1,2)B .(3,-1)C.⎝ ⎛⎭⎪⎫32,-12 D.⎝ ⎛⎭⎪⎫-12,32 解析 由⎩⎪⎨⎪⎧x +y =1,x -y =2.得⎩⎪⎨⎪⎧x =32,y =-12.故选C.答案 C3.下列函数中,既是偶函数,又在(0,+∞)上单调递减的函数是( )A .y =x -2B .y =x -1C .y =x 2D .y =x 13答案 A4.下列函数中,是同一函数的是( ) A .y =(x -1)0与y =1 B .y =x 与y =xC .y =|x |与y =⎩⎪⎨⎪⎧x ,x ≥0-x ,x <0D .y =x 2与y =(x -1)2解析 A 中y =(x -1)0的定义域为{x |x ∈R ,且x ≠1},y =1的定义域为R ,定义域不同,故不是同一函数;B 中y =x 的定义域为[0,+∞),y =x 的定义域为R ,定义域不同,故不是同一函数,D 中的对应法则不同.答案 C5.已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( )A .(-1,1) B.⎝ ⎛⎭⎪⎫-1,-12 C .(-1,0)D.⎝ ⎛⎭⎪⎫12,1 解析 由-1<2x +1<0,解得-1<x <-12,故函数f (2x +1)的定义域为⎝ ⎛⎭⎪⎫-1,-12. 答案 B6.若在[1,+∞)上,函数y =(a -1)x 2+1与y =ax 均单调递减,则a 的取值范围是( )A .a >0B .a >1C .0≤a ≤1D .0<a <1解析 显然a ≠1,且a ≠0,由题意得⎩⎪⎨⎪⎧a -1<0,a >0,得0<a <1.答案 D7.设f (x )是定义在R 上的增函数,则( ) A .f (a )>f (2a ) B .f (a 2)<f (a ) C .f (a 2+1)<f (2a )D .f (a 2+1)>f (a )解析 ∵a 2+1-a =⎝ ⎛⎭⎪⎫a -122+34>0∴a 2+1>a ,由函数的单调性可知f (a 2+1)>f (a ).答案 D8.函数y =x 53的图像大致是下图中的( )解析 y =x 53为奇函数,定义域为R ,且53>1,∴x >0时图像是下凸的,故选B.答案 B9.定义在R 上的偶函数f (x ),对任意x 1,x 2∈[0,+∞)(x 1≠x 2),有f (x 1)-f (x 2)x 1-x 2<0,则( )A .f (3)<f (-2)<f (1)B .f (1)<f (-2)<f (3)C .f (-2)<f (1)<f (3)D .f (3)<f (1)<f (-2)解析 由已知f (x 1)-f (x 2)x 1-x 2<0,得f (x )在x ∈[0,+∞)上单调递减,由偶函数性质得f (3)<f (-2)<f (1),故选A.答案 A10.已知偶函数f (x )在区间[0,+∞)上是增加的,则满足f (2x -1)<f ⎝ ⎛⎭⎪⎫13的x 的取值范围是( )A .[13,23)B .(13,23)C .(12,23)D .[12,23)解析 作出示意图可知:f (2x -1)<f ⎝ ⎛⎭⎪⎫13⇒-13<2x -1<13,即13<x <23,故选B.答案 B二、填空题(本大题共5小题,每题5分,共25分.将答案填在题中横线上.)11.设函数f (x )=⎩⎪⎨⎪⎧x 2+2(x ≤2),2x(x >2),)则f (-4)=________,若f (x 0)=8,则x 0=________.解析 f (-4)=(-4)2+2=18,由f (x 0)=8,得⎩⎪⎨⎪⎧ x 0≤2,x 20+2=8,或⎩⎪⎨⎪⎧x 0>2,2x 0=8,得x 0=-6,或x 0=4. 答案 18 -6或4 12.函数y =(m 2-m -1)·xm 2-2m -3是幂函数,且当x ∈(0,+∞)时为减函数,则m =________.解析 由题意得m 2-m -1=1,得m =2,或m =-1,当m =-1时,y =x 0不合题意,当m =2时,y =x -3,符合题意.答案 213.将y =1x 的图像沿x 轴向右平移1个单位,再向上平移两个单位得到的函数的解析式为________.答案 f (x )=2x -1x -114.函数f (x )=x 2+2mx +1在(-∞,-1]上单调递减,在[-1,+∞)上单调递增,则实数m =________.解析 由于f (x )在(-∞,-1]上单调递减,在[-1,+∞)上单调递增,知f (x )的对称轴为x =-1,即-m =-1得m =1.答案 115.函数y =x 2-2x +5,在x ∈[1,2]上的最大值是________,最小值是________.解析 ∵函数y =x 2-2x +5在[1,2]上单调递增,∴当x =1时,y min =1-2+5=4,当x =2时,y max =4-4+5=5.答案 5 4三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.(12分)求函数f (x )=3x +1x 2-x -2的定义域.解 欲使该函数有意义,需⎩⎪⎨⎪⎧3x +1≥0,x 2-x -2≠0,得⎩⎨⎧x ≥-13,x ≠-1且x ≠2,即x ≥-13,且x ≠2.∴该函数的定义域为⎣⎢⎡⎭⎪⎫-13,2∪(2,+∞).17.(12分)已知幂函数f (x )=x -2m 2+m +3(m ∈Z )为偶函数,且在(0,+∞)上是增函数,求f (x )的解析式.解 由题意得-2m 2+m +3>0,得-1<m <32, 又m ∈Z ,m =0,或m =1,又f (x )为偶函数, ∴m =1,f (x )=x 2.18.(12分)已知函数f (x )=x 2+ax +b ,(1)若对于任意的实数x ,都有f (1+x )=f (1-x )成立,求实数a 的值;(2)若f (x )为偶函数,求a 的值. 解 (1)∵f (x )满足f (1+x )=f (1-x ),∴f (x )关于x =1对称,∴-a2=1, ∴a =-2.(2)∵f (x )为偶函数,∴f (-x )=f (x ), ∴x 2-ax +b =x 2+ax +b , ∴a =0.19.(13分)如图所示,函数的图像是由两条射线及抛物线的一部分组成,求函数的解析式.解 设左侧射线对应的解析式为y =kx +b (x ≤1), ∵(1,1),(0,2)在射线上.∴⎩⎪⎨⎪⎧ k +b =1,b =2,得⎩⎪⎨⎪⎧k =-1,b =2.∴x ≤1时,f (x )=-x +2.设右侧射线对应的解析式为y =k 1x +b 1(x ≥3),∵(3,1),(4,2)在射线上,∴⎩⎪⎨⎪⎧3k 1+b 1=1,4k 1+b 1=2,得⎩⎪⎨⎪⎧k 1=1,b 1=-2.∴当x ≥3时,f (x )=x -2. 设1≤x ≤3时f (x )=a (x -2)2+2,将(1,1)代入上式得a =-1.∴当1≤x ≤3时,f (x )=-(x -2)2+2=-x 2+4x -2. 综上得f (x )=⎩⎪⎨⎪⎧-x +2,x <1,-x 2+4x -2,1≤x ≤3,x -2,x >3.20.(13分)求函数f (x )=(4-3a )x 2-2x +a 在区间[0,1]上的最大值.解 (1)当4-3a =0,即a =43时,f (x )=-2x +43在[0,1]上为减函数,∴f (x )max =f (0)=43.(2)当a >43时,4-3a <0,开口向下,对称轴为x =14-3a <0,则二次函数在区间[0,1]上为减函数∴f (x )max =f (0)=a .(3)当a <43时,4-3a >0,开口向上,对称轴为x =14-3a >0,①当0<14-3a ≤12时,即a ≤23时,f (x )max =f (1)=2-2a , ②当14-3a >12时,即23<a <43时,f (x )max =f (0)=a ,综上所述,当a >23时,f (x )max =a ; 当a ≤23时,f (x )max =2-2a .21.(13分)已知函数f (x )=ax +b1+x 2是定义域为(-1,1)的奇函数,且f ⎝ ⎛⎭⎪⎫12=25. (1)求实数a ,b 的值.(2)判断f (x )在(-1,1)上的单调性,并用定义证明. (3)解不等式:f (t -1)+f (t )<0.解(1)有⎩⎨⎧f (0)=0,f ⎝ ⎛⎭⎪⎫12=25,解得a =1,b =0.(2)f (x )在(-1,1)上是增函数,证明如下:在(-1,1)上任取两数x 1和x 2且-1<x 1<x 2<1,则f (x 1)-f (x 2)=(x 1-x 2)(1-x 1x 2)(1+x 21)(1+x 22)∵-1<x 1<x 2<1,∴x 1-x 2<0,1-x 1x 2>0, 故f (x 1)-f (x 2)=(x 1-x 2)(1-x 1x 2)(1+x 21)(1+x 22)<0, ∴f (x 1)<f (x 2),∴f (x )在(-1,1)上为增函数.(3)f (x )为奇函数,定义域为(-1,1),由f (t -1)+f (t )<0得f (t -1)<-f (t )=f (-t ),∵f (x )在(-1,1)上为增函数, ∴-1<t -1<-t <1,解得0<t <12. 所以原不等式的解集为⎩⎨⎧⎭⎬⎫t |0<t <12.。

第2章 函数概念与基本初等函数单元检测(苏教版必修1)(有答案,含部分试题解析)

第2章 函数概念与基本初等函数单元检测(苏教版必修1)(有答案,含部分试题解析)

第2章函数概念与基本初等函数Ⅰ单元测验(本卷满分160分)一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.........1.(2012•诸城市)已知函数y=f(x)是定义在R上的增函数,函数y=f(x﹣1)图象关于点(1,0)对称,若对任意的x,y∈R,不等式f(x2﹣6x+21)+f(y2﹣8y)<0恒成立,则当x>3时,x2+y2的取值范围是_________.2.(2008•浙江)已知t为常数,函数y=|x2﹣2x﹣t|在区间[0,3]上的最大值为2,则t=_________.3.已知图象变换:①关于y轴对称;②关于x轴对称;③右移1个单位;④左移一个单位;⑤右移个单位;⑥左移个单位;⑦横坐标伸长为原来的2倍,纵坐标不变;⑧横坐标缩短为原来的一半,纵坐标不变.由y=e x的图象经过上述某些变换可得y=e1﹣2x 的图象,这些变换可以依次是_________(请填上变换的序号).4.(2010•天津)设函数f(x)=x﹣,对任意x∈[1,+∞),f(mx)+mf(x)<0恒成立,则实数m的取值范围是_________.5.已知函数f(x)=x2,x∈[﹣1,2],g(x)=ax+2,x∈[﹣1,2],若对任意x1∈[﹣1,2],总存在x2∈[﹣1,2],使f(x1)=g(x2)成立,则a的取值范围是_________.6.设定义域为R的函数f(x),若关于x的方程2f2(x)+2bf(x)+1=0有8个不同的实数根,则b的取值范围是_________.7.设函数f(x)=x3+x,若时,f(mcosθ)+f(1﹣m)>0恒成立,则m取值范围是_________.8.若不等式对于一切实数x∈(0,2)都成立,则实数λ的取值范围是_________.9.(2010•天津)设函数f(x)=x2﹣1,对任意,恒成立,则实数m的取值范围是_________.10.已知函数,,设F (x )=f (x+3)•g (x ﹣3),且函数F (x )的零点均在区间[a ,b](a <b ,a ,b ∈Z )内,则b ﹣a 的最小值为 _________ .11.不等式a >2x ﹣1对于x ∈[1,2恒成立,则实数的取值范围是 _________ .12.若函数y=f (x )存在反函数y=f ﹣1(x ),且函数y=2x ﹣f (x )的图象过点(2,1),则函数y=f ﹣1(x )﹣2x 的图象一定过点 _________ .13.定义在R 上的函数满足f (0)=0,f (x )+f (1﹣x )=1,,且当0≤x 1<x 2≤1时,f (x 1)≤f (x 2),则= _________ .14.(2010•福建)已知定义域为(0,+∞)的函数f (x )满足: (1)对任意x ∈(0,+∞),恒有f (2x )=2f (x )成立; (2)当x ∈(1,2]时f (x )=2﹣x 给出结论如下:①任意m ∈Z ,有f (2m)=0; ②函数f (x )的值域为[0,+∞);③存在n ∈Z ,使得f (2n+1)=9;④“函数f (x )在区间(a ,b )上单调递减”的充要条件是“存在k ∈Z ,使得(a ,b )⊆(2k,2k ﹣1).其中所有正确结论的序号是 _________二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)(2012年高考(上海文理))已知函数)1lg()(+=x x f .(1)若1)()21(0<--<x f x f ,求x 的取值范围;(2)若)(x g 是以2为周期的偶函数,且当10≤≤x 时,有)()(x f x g =,求函数)(x g y =])2,1[(∈x 的反函数.16.(本小题满分14分)已知函数()21f x x =-,2,0()1,0x x g x x ⎧≥=⎨-<⎩,求[()]f g x 和[()]g f x 的解析式.17.(本小题满分14分)设函数.)2(,2)2(,2)(2⎩⎨⎧>≤+=x x x x x f(1)求)9(f 的值; (2)若8)(0=x f ,求.0x18. (本题满分16分)已知函数32)(2-+-=mx x x f 为)3,5(n +--上的偶函数, (1)求实数n m ,的值; (2)证明:)(x f 在]0,5(-上是单调增函数19. (本题满分16分)(2012年高考(江苏))如图,建立平面直角坐标系xoy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程221(1)(0)20y kx k x k =-+>表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标. (1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a 不超过多少时,炮弹可以击中它?请说明理由.20.(本小题满分16分)已知函数()log (1)log (3)a a f x x x =-++,其中01a <<,记函数)(x f 的定义域为D . (1)求函数)(x f 的定义域D ;(2)若函数()f x 的最小值为4-,求a 的值;(3)若对于D 内的任意实数x ,不等式2222x mx m m -+-+<1恒成立,求实数m 的取值范围.第2章函数概念与基本初等函数Ⅰ单元测验参考答案与试题解析一、填空题(共14小题)(除非特别说明,请填准确值)1.(2012•诸城市)已知函数y=f(x)是定义在R上的增函数,函数y=f(x﹣1)图象关于点(1,0)对称,若对任意的x,y∈R,不等式f(x2﹣6x+21)+f(y2﹣8y)<0恒成立,则当x>3时,x2+y2的取值范围是(13,49).﹣1)的图象关于点(1,0)对称,)的图象关于点(0,0)对称,)为奇函数,则f(﹣x)=﹣f(x),)是定义在R上的增函数且f(x2﹣6x+21)+f(y2﹣)<﹣f(y2﹣8y)=f(8y﹣y2)恒成立,y2,4)2<4恒成立,,则当x>3时,M表示以(3,4)为圆心2为半径的右半圆内的任意d=表示区域内的点和原点的距离.,2.(2008•浙江)已知t为常数,函数y=|x2﹣2x﹣t|在区间[0,3]上的最大值为2,则t=1.3.已知图象变换:①关于y轴对称;②关于x轴对称;③右移1个单位;④左移一个单位;⑤右移个单位;⑥左移个单位;⑦横坐标伸长为原来的2倍,纵坐标不变;⑧横坐标缩短为原来的一半,纵坐标不变.由y=e x的图象经过上述某些变换可得y=e1﹣2x 的图象,这些变换可以依次是①⑧⑤或①③⑧或⑧①⑤或⑧⑥①或④⑧①或④①⑧(请填上变换的序号).的图象与函数y=e的图象,均在x轴上方,关于x轴对称变换,但观察到两个解析式,底数相同,指数部分含x项符号相反,故一定要进行)若第一步进行对称变换,第二步进行伸缩变换,第三步进行平移变换,平移变换为:右移个单位,即①⑧⑤;)若第一步进行对称变换,第二步进行平移变换,第三步进行伸缩变换,1个单位,即①③⑧;)若第一步进行伸缩变换,第二步进行对称变换,第三步进行平移变换,则平移变换为:右移个单位,即⑧①⑤;则平移变换为:左移个单位,即4.(2010•天津)设函数f(x)=x﹣,对任意x∈[1,+∞),f(mx)+mf(x)<0恒成立,则实数m的取值范围是m<﹣1.时,有1+5.已知函数f(x)=x2,x∈[﹣1,2],g(x)=ax+2,x∈[﹣1,2],若对任意x1∈[﹣1,2],总存在x2∈[﹣1,2],使f(x1)=g(x2)成立,则a的取值范围是(﹣∞,﹣2]∪[2,+∞).,解得6.设定义域为R的函数f(x),若关于x的方程2f2(x)+2bf(x)+1=0有8个不同的实数根,则b的取值范围是﹣1.5<b<﹣.)∈(0,1)时,有四个不同的x与f(x)对应.再结合题中+1=0有8个不同实数解“,可以分解为形如关于有两个不同的实数根K1、K2,且K1和K2均为大于0且小于列式如下:,即<﹣<﹣7.设函数f(x)=x3+x,若时,f(mcosθ)+f(1﹣m)>0恒成立,则m取值范围是(﹣∞,1).时,,解得:8.若不等式对于一切实数x∈(0,2)都成立,则实数λ的取值范围是[4,+∞).+8)(8﹣x),y1=f(x),y2=λ(x+1).利用导数工具得出)单调增,原不等式对于一切实数x∈(0,2)都成立转化为:y1<f(x)都成立,从而得出实数λ的取值范围.x2+8)(8﹣x),y1=f(x),y2=λ(x+1(x)=24x2﹣4x3+64﹣16x>0.)时,f(x)单调增,=12 9.(2010•天津)设函数f(x)=x2﹣1,对任意,恒成立,则实数m的取值范围是.依据题意得上恒定成立,即在立,求出函数函数的最小值即可求出解:依据题意得在时,函数取得最小值,所以解得,﹣[,10.已知函数,,设F(x)=f(x+3)•g(x﹣3),且函数F(x)的零点均在区间[a,b](a<b,a,b∈Z)内,则b﹣a的最小值为9.﹣﹣,=+…11.不等式a>2x﹣1对于x∈[1,2恒成立,则实数的取值范围是a≥3.12.若函数y=f(x)存在反函数y=f﹣1(x),且函数y=2x﹣f(x)的图象过点(2,1),则函数y=f﹣1(x)﹣2x的图象一定过点(3,﹣4).13.定义在R上的函数满足f(0)=0,f(x)+f(1﹣x)=1,,且当0≤x1<x2≤1时,f(x1)≤f(x2),则=.求出一些特值,),(,再利用条件将逐步转化到内,代入求解即可.)的图象关于中令),=可得因为所以所以故答案为:14.(2010•福建)已知定义域为(0,+∞)的函数f(x)满足:(1)对任意x∈(0,+∞),恒有f(2x)=2f(x)成立;(2)当x∈(1,2]时f(x)=2﹣x给出结论如下:①任意m∈Z,有f(2m)=0;②函数f(x)的值域为[0,+∞);③存在n∈Z,使得f(2n+1)=9;④“函数f(x)在区间(a,b)上单调递减”的充要条件是“存在k∈Z,使得(a,b)⊆(2k,2k﹣1).其中所有正确结论的序号是①②④,则)﹣((,﹣17. 解:(1)因为29>,所以1892)9(=⨯=f(2) ⅰ)若8220=+x ,则620=x ,即660-=或x ,而20≤x ,所以0x 的值不存在;ⅱ)若2,24,82000=>==x x x 所以则 综上得20=x 18. 解:(1)8,0==n m(2)由(1)知,32)(2--=x x f设215x x <<-,22212122)()(x x x f x f +-=- =))((22112x x x x +- 因为215x x <<-,所以0,02112<+>-x x x x所以0)()(21<-x f x f ,即)(x f 在]0,5(-上是单调增函数. 19. 解:(1)在221(1)(0)20y kx k x k =-+>中,令0y =,得221(1)=020kx k x -+.由实际意义和题设条件知00x>k >,. ∴2202020===10112k x k k k≤++,当且仅当=1k 时取等号. ∴炮的最大射程是10千米.(2)∵0a >,∴炮弹可以击中目标等价于存在0k >,使221(1)=3.220ka k a -+成立, 即关于k 的方程2222064=0a k ak a -++有正根. 由()()222=204640a a a ∆--+≥得6a ≤.此时,0k (不考虑另一根).∴当a 不超过6千米时,炮弹可以击中目标.20. 解:(1)要使函数有意义:则有1030x x ->⎧⎨+>⎩,解得13<<-x∴ 函数的定义域D 为)1,3(- ………………………………………2分(2)22()log (1)(3)log (23)log (1)4a a a f x x x x x x ⎡⎤=-+=--+=-++⎣⎦13<<-x 201)44x ++≤∴<-(10<<a ,2log (1)4log 4a a x ⎡⎤-++≥⎣⎦∴,即min ()log 4a f x =, ……5分由log 44a =-,得44a-=,1424a -==∴. ………………………7分 (注:14242a -==∴不化简为14242a -==∴扣1分)(3)由题知-x 2+2mx -m 2+2m <1在x ∈)1,3(-上恒成立,2x ⇔-2mx +m 2-2m +1>0在x ∈)1,3(-上恒成立, ……………………9分令g (x )=x 2-2mx+m 2-2m+1,x ∈)1,3(-,配方得g (x )=(x -m )2-2m +1,其对称轴为x =m , ①当m ≤-3时, g (x )在)1,3(-为增函数,∴g (-3)= (-3-m )2-2m +1= m 2+4m +10≥0, 而m 2+4m +10≥0对任意实数m 恒成立,∴m ≤-3. ………………11分 ②当-3<m <1时,函数g (x )在(-3,-1)为减函数,在(-1, 1)为增函数, ∴g (m )=-2m +1>0,解得m <.21 ∴-3<m <21…………13分 ③当m ≥1时,函数g (x )在)1,3(-为减函数,∴g (1)= (1-m )2-2m +1= m 2-4m+2≥0, 解得m ≥2m ≤2 ∴-3<m <21………………15分 综上可得,实数m 的取值范围是 (-∞,21)∪[2+∞) ……………16分。

新北师大版高中数学必修一第二单元《函数》检测题(含答案解析)(2)

新北师大版高中数学必修一第二单元《函数》检测题(含答案解析)(2)

一、选择题1.已知函数()1,0112,12x x x f x x +≤<⎧⎪=⎨-≥⎪⎩,若0a b >≥,()()f a f b =,则()bf a 的取值范围是( )A .3,24⎛⎤⎥⎝⎦B .1,22⎡⎤⎢⎥⎣⎦C .(]1,2D .3,24⎡⎫⎪⎢⎣⎭2.若函数()22(3)8,1,1x a x x f x ax x ⎧-+--≤=⎨>⎩在R 上是增函数,则实数a 的取值范围是( )A.4,⎡-⎣B.4⎤⎦C .[]3,4-D.⎡⎣3.已知函数()f x 的定义域是[]2,3-,则()23f x -的定义域是( ) A .[]7,3-B .[]3,7-C .1,32⎡⎤⎢⎥⎣⎦D .1,32⎡⎤-⎢⎥⎣⎦4.已知函数(2)f x 的定义域为3(0,)2,则函数(13)f x -的定义域是( ) A .21(,)33-B .11(,)63-C .(0,3)D .7(,1)2-5.已知函数f (x )的定义域为R ,满足f (x )=2f (x +2),且当x ∈[2-,0) 时,19()4f x x x =++,若对任意的m ∈[m ,+∞),都有1()3f x ≤,则m 的取值范围为( ) A .11,5⎡⎫-+∞⎪⎢⎣⎭ B .10,3⎡⎫-+∞⎪⎢⎣⎭C .)5,2⎡-+∞⎢⎣D .11,4⎡⎫-+∞⎪⎢⎣⎭6.对x R ∀∈,用()M x 表示()f x ,()g x 中较大者,记为()()()max{,}M x f x g x =,若()()2{3,1}M x x x =-+-,则()M x 的最小值为( )A .-1B .0C .1D .47.已知定义在R 上的函数()f x 满足:对任意的[)()1212,2,x x x x ∈+∞≠,有()()21210f x f x x x ->-,且()2f x +是偶函数,不等式()()121f m f x +≥-对任意的[]1,0x ∈-恒成立,则实数m 的取值范围是( )A .[]4,6-B .[]4,3-C .(][),46,-∞-+∞ D .(][),43,-∞-⋃+∞8.已知53()1f x ax bx =++且(5)7,f =则(5)f -的值是( )A .5-B .7-C .5D .79.设f (x )、g (x )、h (x )是定义域为R 的三个函数,对于以下两个结论:①若f (x )+g (x )、f (x )+h (x )、g (x )+h (x )均为增函数,则f (x )、g (x )、h (x )中至少有一个增函数; ②若f (x )+g (x )、f (x )+h (x )、g (x )+h (x )均是奇函数,则f (x )、g (x )、h (x )均是奇函数, 下列判断正确的是( ) A .①正确②正确B .①错误②错误C .①正确②错误D .①错误②正确10.已知函数()1,0,21,0,x x f x x x +≥⎧=⎨--<⎩若()()0a f a f a -->⎡⎤⎣⎦,则实数a 的取值范围是( ) A .()2,+∞ B .[)(]2,00,2-C .(](),22,-∞-+∞D .()()2,00,2-11.函数sin sin 122xxy =+的部分图象大致是( )A .B .C .D .12.已知函数()113sin 22f x x x ⎛⎫=+-+ ⎪⎝⎭,则122018201920192019f f f ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭( ) A .2018 B .2019 C .4036D .4038二、填空题13.函数()()2325f x kx k x =+--在[)1+∞,上单调递增,则k 的取值范围是________. 14.若函数()y f x =的定义域是[0,2],则函数()1g x x =-______. 15.已知实数0a ≠,函数()2,12,1x a x f x x a x +<⎧=⎨-+≥⎩,若()()11f a f a -=+,则a 的取值范围是___________.16.已知二次函数()()22,f x x ax b a b R =++∈,,M m 分别是函数()f x 在区间[]0,2的最大值和最小值,则M m -的最小值是________17.若函数211x y x -=-的值域是()[),03,-∞+∞,则此函数的定义域是____. 18.已知函数()f x 是R 上的奇函数,()()2g x af x bx =++,若(2)16g =,则(2)g -=______.19.已知函数2220()20x x x f x x x x ⎧-≥=⎨--<⎩,,,,则不等式()()f x f x >-的解集为_______________.20.函数y =a x (a >0且a ≠1)在[1,2]上的最大值比最小值大2a,则a =______. 三、解答题21.已知函数()2112f x a a x=+-,实数a R ∈且0a ≠. (1)设0m n <<,判断函数()f x 在[],m n 上的单调性,并说明理由;(2)设0m n <<且0a > 时,()f x 的定义域和值域都是[],m n ,求n m -的最大值; (3)若1≥x 时不等式()22a f x x ≤恒成立,求实数a 的取值范围.22.已知函数1()(1)1x x a f x a a -=>+,求:(1)判断函数的奇偶性;(2)证明()f x 是R 上的增函数; (3)求该函数的值域. 23.设函数12ax y x +=-. (1)当1a =时,在区间[)(]2,22,6-⋃上画出这个函数的图像;(2)是否存在整数a ,使该函数在[4,)+∞上是严格减函数,且当4x ≥时,都有4y ≤,如果存在,求出所有符合条件的a ,若不存在,请说明理由.24.已知函数()f x 对一切x ,y 都有()()()212f x y f y x x y +-=+++成立,且()10f =.(1)求函数()f x 的解析式; (2)若[]1,0x ∈-,函数()()11242f x xx m g x m -⎛⎫=+- ⎪⎝⎭,是否存在实数m 使得函数()g x 的最小值为14,若存在,求m 的值;若不存在的,请说明理由. 25.已知函数()81f x x =-(1)求函数()f x 的定义域并求()2f -,()6f ;(2)已知()4211f a a+=+,求a 的值. 26.若函数f (x )()()2211,02,0b x b x x b x x ⎧-+->⎪=⎨-+-≤⎪⎩,满足对于任意的12x x ≠,都有()()12120f x f x x x ->-成立,g (x )=23x +.(1)求b 的取值范围;(2)当b =2时,写出f [g (x )],g [f (x )]的表达式.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】由()f x 在每一段上单调递增可知01b a ≤<≤,由()f x 每一段上的值域可知()3,22f b ⎡⎫∈⎪⎢⎣⎭,进一步确定112b ≤<,由()()()1bf a bf b b b ==+,根据二次函数的值域得到结果. 【详解】()f x 在[)0,1和[)1,+∞上单调递增,∴由()()f a f b =得:01b a ≤<≤,当[)0,1x ∈时,()[)1,2f x ∈;当[)1,x ∈+∞时,()3,2f x ⎡⎫∈+∞⎪⎢⎣⎭, 若()()f a f b =,则()3,22f x ⎡⎫∈⎪⎢⎣⎭,即()31,22f b b ⎡⎫=+∈⎪⎢⎣⎭,解得:112b ≤<, ()()()2211124bf a bf b b b b b b ⎛⎫==+=+=+- ⎪⎝⎭,∴当112b ≤<时,()3,24bf a ⎡⎫∈⎪⎢⎣⎭. 故选:D. 【点睛】易错点点睛:本题解题关键是能够将()bf a 转化为关于b 的函数,易错点是没有对b 的范围进行细化,造成函数值域求解错误.解析:B 【分析】函数()f x 在R 上是增函数,则在两段上分别要单调递增,且在分界点处要满足2138a a -+--≤,从而得到答案.【详解】函数()22(3)8,1,1x a x x f x ax x ⎧-+--≤=⎨>⎩在R 上是增函数,则满足下列条件:(1)()2238y x a x =-+--在(],1-∞递增,2312a -≥,即a ≥a ≤(2)y ax =在()1,+∞递增,则0a >(3)当1x =时满足2138a a -+--≤,解得34a -≤≤综上可得函数()f x 在R 上是增函数,实数a 4a ≤≤ 故选:B. 【点睛】关键点睛:本题考查根据分段函数的单调性求参数的范围,解答本题的关键是分段函数要在定义域内单调递增,则在两段上要分别单调递增,且在分界点出满足2138a a -+--≤,这也时容易出错的地方,属于中档题.3.C解析:C 【分析】由2233x -≤-≤解得结果即可得解. 【详解】因为函数()f x 的定义域是[]2,3-,所以23x -≤≤, 要使()23f x -有意义,只需2233x -≤-≤,解得132x ≤≤。

一元二次函数、方程和不等式 单元检测卷(含解析)—2024-2025学年高一上学期数学必修第一册

 一元二次函数、方程和不等式 单元检测卷(含解析)—2024-2025学年高一上学期数学必修第一册

第二章一元二次函数、方程和不等式(单元检测卷)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若A=a2+3ab,B=4ab-b2,则A,B的大小关系是( )A.A≤BB.A≥BC.A<B或A>BD.A>B2.设集合A={x|x2-4≤0},B={x|2x+a≤0},且A∩B={x|-2≤x≤1},则a=( )A.-4B.-2C.2D.43.下列选项中,使不等式x<1x<x2成立的x的取值范围是( )A.{x|x<-1}B.{x|-1<x<0}C.{x|0<x<1}D.{x|x>1}4.设m>1,P=m+4m-1,Q=5,则P,Q的大小关系为( )A.P<QB.P=QC.P≥QD.P≤Q5.某校对高一美术生划定录取分数线,专业成绩x不低于95分,文化课总分y高于380分,体育成绩z超过45分,用不等式(组)表示是( )A.Error!B.Error!Error! D.Error!6.若0≤x≤6,则x(8-x)的最大值为( )A.163B.4C.433D.57.若不等式x2+ax+b<0(a,b∈R)的解集为{x|2<x<5},则a,b的值为( )A.a=-7,b=10B.a=7,b=-10C.a=-7,b=-10D.a=7,b=108.已知不等式ax2-2ax-2<0对任意x∈R恒成立,则实数a的取值范围是( )A.{a|-1≤a≤0}B.{a|-2<a<0}C.{a|-2<a≤0}D.{a|a<-2或a≥0}二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,有选错的得0分,部分选对的得部分分.9.已知2<x<3,2<y<3,则( )A.6<2x+y<9B.2<2x-y<3C.-1<x-y<1D.4<xy<910.若x>y>0,则下列不等式成立的是( )A.x2>y2B.-x>-yC.1x<1yD.xy<x+1y+111.若正实数a,b满足a+b=1,则下列选项中正确的是( )A.ab有最大值14B.a +b 有最小值1C.1a+1b有最小值4 D.a2+b2有最小值22三、填空题:本题共3小题,每小题5分,共15分.把答案填在题中横线上.12.已知关于x的不等式x2-5ax+b>0的解集为{x|x<1或x>4},则a+b=________13.已知-1≤x+y≤4,且2≤x-y≤3,则z=2x-3y的取值范围是________14.已知实数a>0,b>0,且a2+4b2=8,则a+2b的最大值为________;4a+2+12b的最小值为________四、解答题:本题共5小题,共77分.解答时应写出文字说明、证明过程或演算步骤.15.(13分)已知a∈R且a≠1,试比较11-a与1+a的大小.16.(16分)解关于x的不等式x2-x-a2+a<0,0≤a≤1.17.(16分)已知x>0,y>0,且2x+8y-xy=0,求:(1)xy的最小值;(2)x+y的最小值.18.(16分)已知y=x+2x2+x+1(x>-2).(1)求1y的取值范围;(2)当x为何值时,y取得最大值?19.(16分)某单位决定投资3 200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米造价40元,两侧墙砌砖,每米造价45元,顶部每平方米造价20元,求:(1)仓库面积S的最大允许值是多少?(2)为使S达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长?参考答案及解析:一、选择题1.B 解析:因为A -B =a 2+3ab -(4ab -b 2)=+34b 2≥0,所以A≥B .2.B 解析:集合A ={x|x 2-4≤0}={x|-2≤x ≤2},B ={x|2x +a ≤0}=,由A ∩B ={x|-2≤x ≤1},可得-a2=1,则a =-2.故选B .3.A 解析:取x =-2,知符合x <1x <x 2,即-2是此不等式的解集中的一个元素,所以可排除选项B ,C ,D .4.C 解析:∵m>1,∴P =m +4m -1=m -1+4m -1+1≥2(m -1)·4m -1+1=5,当且仅当m -1=4m -1,即m =3时等号成立.∴P ≥Q ,故选C .5.D 解析:由题中x 不低于95,即x ≥95;y 高于380,即y >380;z 超过45,即z >45.6.B 解析:因为0≤x ≤6,所以8-x >0,所以x(8-x)≤x +(8-x)2=4,当且仅当x =8-x ,即x =4时,等号成立.故所求最大值为4.7.A 解析:不等式x 2+ax +b <0的解集为{x|2<x <5},则对应方程x 2+ax +b =0的两个根为2和5,即Error! 解得a =-7,b =10.故选A .8.C 解析:对任意实数x ,不等式ax 2-2ax -2<0恒成立,①当a =0时,-2<0恒成立,符合题意,②当a ≠0时,则Error!解得-2<a <0.综上所述,实数a 的取值范围为{a|-2<a ≤0}.故选C .二、选择题9.ACD 解析:∵2<x<3,2<y<3,∴4<xy<9.∴4<2x<6,6<2x +y<9,∴-3<-y<-2,-1<x -y<1,1<2x -y<4.故选ACD .10.AC 解析:对于A ,当x >y >0时,x 2>y 2,A 成立;对于B ,当x >y >0时,-x <-y ,B2b(a )2-{a x |x 2⎫≤-⎬⎭不成立;对于C,当x>y>0时,xxy>yxy,即1x<1y,C成立;对于D,xy-x+1y+1=x(y+1)-y(x+1)y(y+1)=x-yy(y+1),∵x>y>0,∴x-y>0,∴xy-x+1y+1>0,即xy>x+1y+1,D不成立.故选AC.11.AC 解析:1=a+b≥2ab,所以ab≤14,当且仅当a=b=12时,等号成立,所以ab有最大值14,所以A正确; a +b≥2ab,2ab≤2,所以 a +b的最小值不是1,所以B错误;1a+1b=a+bab=1ab≥4,所以1a+1b有最小值4,所以C正确;a2+b2≥2ab,2ab≤12,所以a2+b2的最小值不是22,所以D错误.故选AC.三、填空题12.答案:5 解析:根据不等式x2-5ax+b>0的解集为{x|x<1或x>4},知方程x2-5ax+b=0的两个根是1和4,则5a=1+4,b=1×4,解得a=1,b=4,所以a+b=5.13.答案:3≤z≤8 解析:∵z=-12(x+y)+52(x-y),-2≤-12(x+y)≤12,5≤52(x-y)≤152,∴3≤-12(x+y)+52(x-y)≤8,∴3≤z≤8.14.答案:4,3 2 解析:∵a>0,b>0,16=2(a2+4b2)≥(a+2b)2,∴a+2b≤4,当且仅当a=2b,即a=2,b=1时等号成立,∴a+2b的最大值为4.∵(a+2+2b)·=8ba+2+a+22b+5≥24+5=9,∴4a+2+12b≥9a+2b+2≥94+2=32,当且仅当a=2,b=1时等号成立,∴4a+2+12b的最小值为3 2.41(a22b++四、解答题15.解:因为11-a -(1+a)=a 21-a,可得①当a =0时,11-a =1+a ;②当a >1时,a 21-a<0,所以11-a<1+a ;③当a <1且a ≠0时,a 21-a >0,所以11-a>1+a .综上可知,当a =0时,11-a=1+a ;当a >1时,11-a<1+a ;当a <1且a ≠0时,11-a>1+a .16.解:由x 2-x -a 2+a<0得,(x -a)[x -(1-a)]<0,0≤a ≤1①当1-a>a ,即0≤a<12时,a<x<1-a ;②当1-a =a ,即a =12时,<0,不等式无解;③当1-a<a ,即12<a ≤1时,1-a<x<a .综上所述,当0≤a<12时,解集为{x|a <x <1-a};当a =12时,解集为∅;当12<a ≤1时,解集为{x|1-a <x <a}.17.解:(1)由2x +8y -xy =0,得8x +2y=1,又x>0,y>0,则1=8x +2y ≥28x ·2y =8xy ,得xy ≥64,当且仅当x =16,y =4时,等号成立.所以xy 的最小值为64.(2)由2x +8y -xy =0,得8x +2y=1,∵x >0,y >021(x 2则x +y =·(x +y)=10+2x y +8y x ≥10+22x y ·8yx=18.当且仅当x =12,y =6时等号成立,所以x +y 的最小值为18.18.解:(1)设x +2=t ,则x =t -2,t >0(x >-2).故1y =x 2+x +1x +2=(t -2)2+(t -2)+1t=t 2-3t +3t=t +3t-3≥23-3,∴1y≥23-3.(2)由题意知y >0,故欲使y 最大,必有1y 最小,此时t =3t ,t =3,x =3-2,y =123-3=23+33,∴当x =3-2时,y 最大,最大值为23+33.19.解:(1)设铁栅长为x 米,一堵砖墙长为y 米,而仓库面积即顶部面积,故S =xy .依题意,得40x +2×45y +20xy =3 200,由基本不等式,得3 200≥240x ×90y +20xy =120xy +20xy =120S +20S ,所以S +6S -160≤0,即(S -10)(S +16)≤0.因为S +16>0,所以S -10≤0,故S ≤10,从而S ≤100,所以S 的最大允许值是100.(2)取得最大值的条件是40x =90y 且xy =100,求得x =15,即铁栅的长是15米.82(x y。

第二章二次函数 单元测试 2022-2023学年九年级下册数学北师大版

第二章二次函数 单元测试 2022-2023学年九年级下册数学北师大版

第二章二次函数(单元测试)2022-2023学年九年级下册数学北师大版一、单选题(本大题共12小题,每小题3分,共36分)1.如图是拱形大桥的示意图,桥拱与桥面的交点为O ,B ,以点O 为原点,水平直线OB 为x 轴,建立平面直角坐标系,桥的拱形可以近似看成抛物线y =-0.01(x -20)2+4,桥拱与桥墩AC 的交点C 恰好位于水面,且AC ⊥x 轴,若OA =5米,则桥面离水面的高度AC 为( )A .5米B .4米C .2.25米D .1.25米2.下列关于二次函数()()312y x x =+-的图像和性质的叙述中,正确的是( )A .点()0,2在函数图像上B .开口方向向上C .对称轴是直线1x =D .与直线3y x =有两个交点3.如图,抛物线2(0)y ax bx c a =++≠的对称轴为2x =-,下列结论正确的是( )A .a<0B .0c >4.在平面直角坐标系中,将二次函数2y x 的图像向左平移2个单位长度,再向上平移1个单位长度,所得抛物线对应的函数表达式为( ) A .()221y x =-+ B .()221y x =++ C .()221y x =+- D .()221y x =-- 5.抛物线y =x 2+3上有两点A (x 1,y 1),B (x 2,y 2),若y 1<y 2,则下列结论正确的是( )A .0≤x 1<x 2B .x 2<x 1≤0C .x 2<x 1≤0或0≤x 1<x 2D .以上都不对6.如图,二次函数2y ax bx c =++的图象关于直线1x =对称,与x 轴交于1(,0)A x ,2(,0)B x 两点,若121x -<<-,则下列四个结论:⊥234x <<,⊥320a b +>,⊥24b a c ac >++,⊥a c b >>.正确结论的个数为( )A .1个B .2个C .3个D .4个7.已知抛物线22y x kx k =+-的对称轴在y 轴右侧,现将该抛物线先向右平移3个单位长度,再向上平移1个单位长度后,得到的抛物线正好经过坐标原点,则k 的值是( )A .5-或2B .5-C .2D .2-8.关于二次函数()215y x =-+,下列说法正确的是( ) A .函数图象的开口向下 B .函数图象的顶点坐标是()1,5-9.已知实数a ,b 满足1b a -=,则代数式2267a b a +-+的最小值等于( )A .5B .4C .3D .210.已知抛物线22()1y x =-+,下列结论错误的是( )A .抛物线开口向上B .抛物线的对称轴为直线2x =C .抛物线的顶点坐标为(2,1)D .当2x <时,y 随x 的增大而增大 11.如图,二次函数2y ax bx c =++的图像与x 轴相交于()1,0A -,B 两点,对称轴是直线1x =,下列说法正确的是( )A .0a >B .当1x >-时,y 的值随x 值的增大而增大C .点B 的坐标为()4,0D .420a b c ++>12.将二次函数223y x x =-++的图象在x 轴上方的部分沿x 轴翻折后,所得新函数的图象如图所示.当直线y x b =+与新函数的图象恰有3个公共点时,b 的值为( )二、填空题(本大题共8小题,每小题3分,共24分)13.已知抛物线(1)(5)y x x =--与x 轴的公共点坐标是12(,0),(,0)A x B x ,则12x x +=_______.14.如图,抛物线y =ax 2与直线y =bx +c 的两个交点坐标分别为A (﹣3,6),B (1,3),则方程ax 2﹣bx ﹣c =0的解是_________.15.如图,是一名男生推铅球时,铅球行进过程中形成的抛物线.按照图中所示的平面直角坐标系,铅球行进高度y (单位:m )与水平距离x (单位:m )之间的关系是21251233y x x =-++,则铅球推出的水平距离OA 的长是_____m .16.如图,平行四边形ABCD 中,4AB =,点D 的坐标是(08),,以点C 为顶点的抛物线经过x 轴上的点A ,B ,则此抛物线的解析式为__________________.17.如图,二次函数2(0)y ax bx c a =++≠的图像过点(-1,0),对称轴为直线x =2,下列结论:⊥4a +b =0;⊥9a +c <3b ;⊥8a +7b +2c >0;⊥若点A (-3,1y )、点B (21,2y -)、点C (37,2y )在该函数图像上,则132y y y <<:⊥若方程()()153a x x +-=-的两根为12,x x ,且12x x <,则1215.x x <-<<其中正确的结论有__________. (只填序号)18.平面直角坐标系xOy 中,已知点()2,39P m n -,且实数m ,n 满足240m n -+=,则点P 到原点O 的距离的最小值为___________.19.某食品零售店新上架一款冷饮产品,每个成本为8元,在销售过程中,每天的销售量y (个)与销售价格x (元/个)的关系如图所示,当1020x ≤≤时,其图象是线段AB ,则该食品零售店每天销售这款冷饮产品的最大利润为______________元(利润=总销售额-总成本).20.某游乐场的圆形喷水池中心O 有一雕塑OA ,从点A 向四周喷水,喷出的水柱为抛物线,且形状相同.如图,以水平方向为x 轴,点O 为原点建立直角坐标系,点A 在y 轴上,x 轴上的点C ,D 为水柱的落水点,水柱所在抛物线(第一象限部分)的函数表达式为y 16-=(x ﹣5)2+6 (1)雕塑高OA 的值是____m ;(2)落水点C ,D 之间的距离是____m .三、解答题(本大题共5小题,每小题8分,共40分)21.某超市采购了两批同样的冰墩墩挂件,第一批花了6600元,第二批花了8000元,第一批每个挂件的进价是第二批的1.1倍,且第二批比第一批多购进50个.(1)求第二批每个挂件的进价;(2)两批挂件售完后,该超市以第二批每个挂件的进价又采购一批同样的挂件,经市场调查发现,当售价为每个60元时,每周能卖出40个,若每降价1元,每周多卖10个,由于货源紧缺,每周最多能卖90个,求每个挂件售价定为多少元时,每周可获得最大利润,最大利润是多少?22.为了落实劳动教育,某学校邀请农科院专家指导学生进行小番茄的种植,经过试验,其平均单株产量y 千克与每平方米种植的株数x (28x ≤≤,且x 为整数)构成一种函数关系.每平方米种植2株时,平均单株产量为4千克;以同样的栽培条件,每平方米种植的株数每增加1株,单株产量减少0.5千克.(1)求y 关于x 的函数表达式.(2)每平方米种植多少株时,能获得最大的产量?最大产量为多少千克?(1)求抛物线的解析式;△面积的4倍,若存在,请直接写出点P的坐标:若不存在,请(2)抛物线上是否存在点P,使PBC的面积是BCD说明理由.24.丹东是我国的边境城市,拥有丰富的旅游资源.某景区研发一款纪念品,每件成本为30元,投放景区内进行销售,规定销售单价不低于成本且不高于54元,销售一段时间调研发现,每天的销售数量y(件)与销售单价x(元/件)满足一次函数关系,部分数据如下表所示:销售单价x(元/件)…354045…每天销售数量y(件)…908070…(1)直接写出y与x的函数关系式;(2)若每天销售所得利润为1200元,那么销售单价应定为多少元?(3)当销售单价为多少元时,每天获利最大?最大利润是多少元?25.某电子科技公司研发出一套学习软件,并对这套学习软件在24周的销售时间内,做出了下面的预测:设第x 周该软件的周销售量为T(单位:千套),当0<x≤8时,T与x+4成反比;当8<x≤24时.T﹣2与x成正比,并预测得到了如表中对应的数据.设第x周销售该软件每千套的利润为K(单位:千元),K与x满足如图中的函数关系图象:(1)求T与x的函数关系式;(2)观察图象,当12≤x≤24时,K与x的函数关系式为________.(3)设第x周销售该学习软件所获的周利润总额为y(单位:千元),则:⊥在这24周的销售时间内,是否存在所获周利润总额不变的情况?若存在,求出这个不变的值;若不存在,请说明理由.⊥该公司销售部门通过大数据模拟分析后认为,最有利于该学习软件提供售后服务和销售的周利润总额的范围是286≤y≤504,求在此范围内对应的周销售量T的最小值和最大值.参考答案:1.C2.D3.C4.B5.D6.B7.B8.D9.A10.D11.D12.A13.614.x 1=﹣3,x 2=115.1016.221624y x x =-+-17.⊥⊥⊥⊥18310 19.12120. 116##156 22 21.(1)第二批每个挂件的进价为40元(2)当每个挂件售价定为58元时,每周可获得最大利润,最大利润是1080元22.(1)0.55y x =-+(28x ≤≤,且x 为整数)(2)每平方米种植5株时,能获得最大的产量,最大产量为12.5千克23.(1)2=23y x x --(2)存在,()11P,()21P24.(1)y =﹣2x +160(2)销售单价应定为50元(3)当销售单价为54元时,每天获利最大,最大利润1248元25.(1)120(08)42(824)x T x x x ⎧<≤⎪=+⎨⎪+<≤⎩;(2)44K x =-+;(3)⊥存在,不变的值为240;⊥当周利润总额的范围是286≤y ≤504时,对应的周销售量T 的最小值是11千套,最大值是18千套.答案第3页,共1页。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 函数单元检测题说明:本试卷分为第Ⅰ、Ⅱ卷两部分,请将第Ⅰ卷选择题的答案填入题后括号内,第Ⅱ卷可在各题后直接作答.共150分,考试时间120分钟.第Ⅰ卷(选择题 共50分)一、选择题(本大题共10小题,每小题5分,共50分) 1.下列各式中,表示y 是x 的函数的有①y =x -(x -3);②y =2-x +x -1;③y =⎩⎨⎧≥+<-);0(1),0(1x x x x ④y =⎩⎨⎧).(1),(0为实数为有理数x xA.4个B.3个C.2个D.1个解析:①③表示y 是x 的函数;在②中由⎩⎨⎧≥-≥-01,02x x 知x ∈∅,因为函数定义域不能是空集,所以②不表示y 是x 的函数;在④中若x =0,则对应的y 的值不唯一,所以④不表示y 是x 的函数. 答案:C2.函数f (x )=2x 2-mx +3,当x ∈[-2,+∞)时是增函数,当x ∈(-∞,-2]时是减函数,则f (1)等于A.-3B.13C.7D.由m 而定的常数解析:由题意可知,x =-2是f (x )=2x 2-mx +3的对称轴,即-4m-=-2, ∴m =-8.∴f (x )=2x 2+8x +3. ∴f (1)=13. 答案:B3.已知f (x )=3x +1(x ∈R),若|f (x )-4|<a 的充分条件是|x -1|<b (a 、b >0),则a 、b 之间的关系为A.a ≤3bB.b ≤3aC.b >3aD.a >3b 解析:|f (x )-4|<a 等价于|x -1|<3a,由|x -1|<b ⇒|x -1|<3a,∴b ≤3a .答案:B 4.函数f (x )=c x b ax ++ (a 、b 、c 是常数)的反函数是f --1(x )=213+-x x ,则a 、b 、c 的值依次是 A.2,1,3 B.-2,-1,-3 C.-2,1,3 D.-1,3,-2 解析:由f -1(x )= 213+-x x 解得f (x )= xx -+312=312---x x .又f (x )= cx bax ++,∴a =-2,b =-1,c =-3. 答案:B5.若f(x)=21++x ax 在区间(-2,+∞)上是增函数,则a 的取值范围是( )。

A. a<1 B. a>21 C. a<21D. a>1解析:a>21。

f(x)=a+221+-x a , f(x)在(-2,+∞)上是增函数,∴1-2a<0,解得a>21答案:B6.已知函数f (x )=12++mx mx 的定义域是一切实数,则m 的取值范围是A.0<m ≤4B.0≤m ≤1C.m ≥4D.0≤m ≤4解析:要使函数有意义,只需对任意x ∈R,不等式mx 2+mx +1≥0恒成立. 当m =0时,1≥0,显然成立.当m ≠0时,只需⎩⎨⎧≤->0402m m m ⇒⎩⎨⎧≤≤>400m m ⇒0<m ≤4.综上可知,0≤m ≤4.答案:D7.设f (x )>0是定义在区间I 上的减函数,则下列函数中增函数的个数是y =3-2f (x ) y =1+)(2x f y =[f (x )]2 y =1-)(x fA.1B.2C.3D.4解析:因为f (x )>0且f (x )在I 上是减函数,故y =3-2f (x ),y =1+)(2x f ,y =1-)(x f 为I 上的增函数,故选C. 答案:C8.对于任意x 1、x 2∈[a ,b ],满足条件f (21x x +)>1[f (x 1)+f (x 2)]的函数f (x )的图象是 AC BD解析:对于A 有f (x )为一次函数,显然f (221x x +)=21[f (x 1)+f (x 2)]. 对于D 如下图所示,任取x 1<x 2,则f (221x x +)的值为对应点A 的纵坐标,21[f (x 1)+f (x 2)]的值为对应线段CD 中点B 的纵坐标,显然A 在B 上方,故选D.答案:D9.设二次函数f (x )=ax 2+bx +c (a ≠0),若f (x 1)=f (x 2)(x 1≠x 2),则f (x 1+x 2)等于A.-a b 2B.- abC.cD. a b ac 442-解析:由f (x 1)=f (x 2) ⇒x 1+x 2=-a b ,代入表达式得f (x 1+x 2)=f (-ab )=a b 2-a b 2+c =c .答案:C10.已知函数y =f (x )(x ∈[a ,b ]),那么集合{(x ,y )|y =f (x ),x ∈[a ,b ]}∩{(x ,y )|x =2}中所含元素的个数为A.1B.0C.0或1D.1或2解析:此题即求y =f (x )(x ∈[a ,b ])与直线x =2的交点个数,不注意对应法则常误选A ,其原因在于未注意2是否属于[a ,b ].若2∈[a ,b ],则交点为1个;若2∉[a ,b ],则交点为0个. 答案:C11.定义在R 上的函数y =f (x -1)是单调递减函数(如下图所示),给出四个结论,其中正确结论的个数是①f (0)=1 ②f (1)<1 ③f -1(1)=0 ④f --1(21)>0 A.1 B.2 C.3 D.4 解析:由图知,当x =1时,f (x -1)=1,即f (0)=1. ∴①正确.∵y =f (x )的反函数存在, ∴f --1(1)=0. ∴③正确.由题意知x =2时,f (x -1)<1,即f (1)<1. ∴②正确.∵y =f (x -1)单调递减, ∴y =f --1(x )单调递减. 由图知, 21<f (0), ∴f --1(21)>f --1[f (0)]=0. ∴④正确. 答案:D12.由于电子技术的飞速发展,计算机的成本不断降低,若每隔5年计算机的价格降低31, 现在价格8100元的计算机15年后的价格为( )(A )300元 (B )900元 (C )2400元 (D )3600元答案:C第Ⅱ卷(非选择题 共70分)二、填空题(本大题共5小题,每小题5分,共25分)13.已知映射f :A →B ,其中A =B =R ,对应法则f :y =-x 2+2x ,对于实数k ∈B ,在集合A 中不存在原象,则k 的取值范围是解析:由题意可知,k 不在函数y =-x 2+2x 的值域之中,由y =-x 2+2x =-(x -1)2+1≤1,可得k >1. 答案: k >1.14.已知函数f (x )= 1+x x ,则f (1)+f (2)+…+f (2005)+f (2006)+f (1)+f (21)+…+f (20051)+f (20061)=_______. 解析:∵f (x )+f (x 1)=1+x x +11+x =1,∴原式=2006×1=2006. 答案:200615.如果f [f (x )]=2x -1,则一次函数f (x )=_________. 解析:用待定系数法求函数解析式. 设f (x )=ax +b (a ≠0),则f [f (x )]=af (x )+b =a (ax +b )+b =a 2x +ab +b .由f [f (x )]=2x -1,得⎩⎨⎧-=+=,1,22b ab a解得⎪⎩⎪⎨⎧-==21,2b a 或⎪⎩⎪⎨⎧+=-=.21,2b a所以f (x )=2x +1-2,或f (x )=- 2x +1+2.答案:2x +1-2或-2x +1+216.对于定义在R 上的函数f (x ),若实数x 0满足f (x 0)=x 0,则称x 0是函数f (x )的一个不动点.若函数f (x )=x 2+ax +1没有不动点,则实数a 的取值范围是_______.解析:f (x )无不动点等价于方程x 2+ax +1=x 无解, 即(a -1)2-4<0⇒-1<a <3.答案:-1<a <3三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)如图,用长为1的铁丝弯成下部为矩形,上部为半圆形的框架,若半 圆半径为x ,求此框架围成的面积y 与x 的函数式y=f(x),并写出它的定 义域。

解:AB=2x, CD =πx,于是AD=221xx π--,因此,y=2x · 221x x π--+22x π,即y=-lx x ++224π。

由⎪⎩⎪⎨⎧>-->022102x x x π,得0<x<∴+,21π函数的定义域为(0,21+π)。

18(12分) (1)已知m x f x +-=132)(是奇函数,求常数m 的值; (2)画出函数|13|-=xy 的图象,并利用图象回答:k 为何值时,方程|13-x |=k 无解?有一解?有两解?解: (1)常数m =1(2)当k <0时,直线y =k 与函数|13|-=xy 的图象无 交点,即方程无解;当k =0或k ≥1时, 直线y =k 与函数|13|-=xy 的图象有唯一的交点,所以方程有一解; 当0<k <1时, 直线y =k 与函数|13|-=xy 的图象有两个不同交点,所以方程有两解。

19.(本小题满分12分)设a ∈R,函数f (x )=x 2+|x -a |+1,x ∈R,求f (x )的最小值. 解:(1)当x ≥a 时,f (x )=x 2+x -a+1=(x +21)2-a +43, 若a ≤-21时,则f (x )在[a ,+∞)上的最小值为f (-21)=43-a ;若a >-21时,则f (x )在[a ,+∞)上单调递增,f (x )min =f (a )=a 2+1.(2)当x ≤a 时,f (x )=x 2-x +a +1=(x -21)2+a +43]; 若a ≤21时,则f (x )在(-∞,a ]上单调递减,f (x )min =f (a )=a 2+1; 当a >21时,则f (x )在(-∞,a ]上的最小值为f (21)=43+a .综上所述,当a ≤-21时,f (x )的最小值为43-a ;当-21<a ≤21时,f (x )的最小值为a 2+1;当a >21时,f (x )的最小值为43+a .20.(本小题满分13分)已知函数f (x )=ax x ++13 (x ≠-a ,a ≠31).(1)求f (x )的反函数;(2)若这两个函数的图象关于y =x 对称,求a 的值. 解:(1)设y =ax x ++13,则y (x +a )=3x +1, 整理得(y -3)x =1-ay . 若y =3,则a =31,与已知矛盾, ∴x =31--y ay. 故所求反函数为f -1(x )= 31--x ax(x ≠3). (2)依题意得f --1(x )=f (x ),则a x x ++13=31--x ax,整理得3x 2-8x -3=-ax 2+(1-a 2)x +a ,比较两边对应项的系数,有⎪⎩⎪⎨⎧-==-=-,3,81,32a a a故a =-3.21.(本小题满分13分)已知关于x 的方程(1-a )x 2+(a +2)x -4=0,a ∈R,求方程至少有一正根的充要条件.解:方程有两个实根的充要条件是⎩⎨⎧≥∆≠-,0,01a 即⎩⎨⎧≥-++≠0)1(16)2(12a a a ⇔⎩⎨⎧≥≤≠,102,1a a a 或即a ≥10或a ≤2且a ≠1. (1)设此方程的两个实数根为x 1、x 2,则方程有两个正根⇔⎪⎪⎩⎪⎪⎨⎧>>+≥≤≠0010212121x x x x a a a 或⇔⎪⎪⎪⎩⎪⎪⎪⎨⎧>->-+≥≤≠.014,012,102,1a a a a a a 或 解得1<a ≤2或a ≥10.∴1<a ≤2或a ≥10是方程有两个正根的充要条件.(2)①由(1)可知,当a ≥10或1<a ≤2时,方程有两个正根; ②方程有一正根一负根的充要条件是 x 1x 2<0⇔14-a <0,即a <1. ③当a =1时,方程可化为3x -4=0,有一正根x =34. 综上①②③,可知方程(1-a )x 2+(a +2)x -4=0至少有一正根的充要条件是a ≤2或a ≥10. 22.(本小题满分13分)有甲、乙两种商品,经营销售这两种商品所能获得的利润依次是P 和Q (万元),它们与投入资金x (万元)的关系有经验公式:P =51x ,Q=53x .今有3万元资金投入经营甲、乙两种商品,为获得最大利润,对甲、乙两种商品的资金投入分别应为多少,能获得的最大利润为多少?解:设对甲种商品投资x 万元,获总利润为y 万元,则对乙种商品的投资为(3-x )万元,于是y =51x +53x -3(0≤x ≤3).令t =x -3 (0≤t ≤3),则x =3-t 2,∴y =51 (3-t 2)+ 53t =51(3+3t -t 2) =-51 (t -23)2+2021,t ∈[0,3]. ∴当t =23时,y max =2021=1.05(万元);由t =23可求得x =0.75(万元),3-x =2.25(万元),∴为了获得最大利润,对甲、乙两种商品的资金投入应分别为0.75万元和2.25万元,获得最高利润1.05万元.。

相关文档
最新文档