人教A版高中数学必修1第二章基本初等函数单元测试题(含参考答案)
人教A版高中数学必修1第二章基本初等函数单元测试题(含参考答案)[1]-推荐下载
![人教A版高中数学必修1第二章基本初等函数单元测试题(含参考答案)[1]-推荐下载](https://img.taocdn.com/s3/m/4e21982b650e52ea55189893.png)
2
3
1
4
6
80.25
2
1 3
.
.
2 log3 5 log3 125
7
.
a
D. (, 0)
8
.
D.[2, )
1
9
10
.
17.( 12 分)已知函数方程 x2 8x 4 0 的两根为 x1 、 x2 ( x1 x2 ). (Ⅰ)求 x12 x22 的值;
1
班级
一.选择题.(每小题 5 分,共 50 分)
必修 1 第二章《基本初等函数》
1.若 m 0 , n 0 , a 0 且 a 1,则下列等式中正确的是
A. (am )n amn
C. loga m loga n loga (m n)
2.函数 y loga (3x 2) 2 的图象必过定点
(Ⅱ)求 x1 2 x2 2 的值.
1
18.(共 12 分)(Ⅰ)解不等式 a2x1 ( 1 )x2 (a 0且 a 1) . a
(Ⅱ)设集合
.
19.(
12 分)
S
(Ⅰ)求方程 f (x) 1 的解. 4
{x
|
log2 (x
设函数 f (x)
2)
2 x
log4 x
序号
2 D. ( , 2)
3
D. 8
1
C. x 2 2x lg x
得分
(
D. (, 2) (5, )
D.不增不减
D. 3
(
D.非奇非偶函数 (
()
()
(
(
(
(
高中数学必修1第二章基本初等函数单元测试题(含参考答案)

高中数学必修1第二章基本初等函数单元测试题(含参考答案)高一数学训练题(二)一.选择题.(每小题5分,共50分)1.若0m >,0n >,0a >且1a ≠,则下列等式中正确的是 ( ) A .()m nm na a+= B .11mmaa =C .loglog log ()aa a m n m n ÷=-D 43()mn =2.函数log (32)2a y x =-+的图象必过定点( )A .(1,2)B .(2,2)C .(2,3)D .2(,2)33.已知幂函数()y f x =的图象过点,则(4)f 的值为( )A .1B . 2C .12D .8 4.若(0,1)x ∈,则下列结论正确的是 ( )A .122lg xx x>> B .122lg xx x>> C .122lg x xx>>D .12lg 2xx x>>5.函数(2)log (5)x y x -=-的定义域是 ( )A .(3,4)B .(2,5)C .(2,3)(3,5)UD .(,2)(5,)-∞+∞U6.某商品价格前两年每年提高10%,后两年每年降低10%,则四年后的价格与原来价格比较,变化的情况是( )A .减少1.99%B .增加1.99%C .减少4%D .不增不减 7.若1005,102a b ==,则2a b +=( )A .0B .1C .2D .3 8.函数()lg(101)2x x f x =+-是( )A .奇函数B .偶函数C .既奇且偶函数D .非奇非偶函数 9.函数2log (2)(01)a y x x a =-<<的单调递增区间是( )A .(1,)+∞B .(2,)+∞C .(,1)-∞D .(,0)-∞10.已知2log (2)y ax =- (0a >且1a ≠)在[0,1]上是x 的减函数,则a 的取值范围是( ) A .(0,1) B .(0,2) C .(1,2)D .[2,)+∞二.填空题.(每小题5分,共25分) 11.计算:459log27log 8log 625⨯⨯=.12.已知函数3log (0)()2(0)xx x >f x x ⎧=⎨≤⎩,, ,则1[()]3f f =. 13.若3())2f x a x bx =++,且(2)5f =,则(2)f -=.14.若函数()log (01)f x ax a =<<在区间[,2]a a 上的最大值是最小值的3倍,则a = .15.已知01a <<,给出下列四个关于自变量x 的函数: ①log x y a =,②2log ay x =, ③31(log)ay x = ④121(log)ay x =.其中在定义域内是增函数的有 . 三.解答题(6小题,共75分)16.(12分)计算下列各式的值:(Ⅰ)设集合}21|{<<-=x x A ,}31|{<<=x x B ,求B A ⋂, ()RA B ⋂ð, ()()RRA B ⋃痧..17. (本小题满分15分)已知函数⎩⎨⎧<≥+-=0,,0,4222x x x x x y , (1)画出函数的图像;(2)求函数的单调区间;(3)求函数在区间[]3,2-上的最大值与最小值.18. (本小题满分15分)(1)如果定义在区间(1,0)-的函数3()log (1)af x x =+满足()0f x <,求a 的取值范围; (2)解方程:3log (323)2xx +•=19.( 12分) 设函数421()log 1x x f x x x -⎧<=⎨≥⎩.(Ⅰ)求方程1()4f x =的解.(Ⅱ)求不等式()2f x ≤的解集.20.( 13分)设函数22()log (4)log (2)f x x x =⋅的定义域为1[,4]4, (Ⅰ)若x t 2log =,求t 的取值范围;(Ⅱ)求()y f x =的最大值与最小值,并求出最值时对应的x 的值.21. 某公司生产一种仪器的固定成本为10000元,每生产一台仪器需增加投入200元,已知总收益满足函数⎪⎩⎪⎨⎧>≤≤-=400,100000,4000,21400)(2x x x x x g .其中x 是仪器的月产量(单位:台).(1)将利润表示为月产量x 的函数)(x f ;(2)当月产量x 为何值时,公司所获利润最大?最大利润为多少元?(总收益=总成本﹢利润)参考答案一.选择题二.填空题.11. 9 . 12. 12. 13. 1-. 14.4. 15. ③,④.三.解答题:16.(Ⅰ). 解:原式427272101=⨯+--=.(Ⅱ)解:原式33log (425)3315223223211222log ()25⨯=++⨯+=++⨯-=⨯. 17.(1)解:ln(x-1)<lne}1|{11-<∈∴+<∴<-∴e x x x e x ex}2log 1|{2log 12log 1)31()31(2)31()2(3131312log 1x 131+<∈∴+<∴>-∴<∴<--x x x x x x 解:1212,101212,11)3(212212<∴-<-<<>∴->->∴>∴⎪⎭⎫ ⎝⎛>----x x x a x x x a a a a a xx x x 时当时当解:.18.解:(Ⅰ)原不等式可化为:212x xaa -->.当1a >时,2121x x x ->-⇔>.原不等式解集为(1,)+∞. 当1a >时,2121x x x -<-⇔<.原不等式解集为(,1)-∞. (Ⅱ)由题设得:{|024}(2,2]S x x =<+≤=-,21{|1()1}(1,3]2T y y -=-<≤-=-.∴(1,2]S T =-I , (2,3]S T =-U .19.解:(Ⅰ)11()1424x x f x -<⎧⎪=⇔⎨=⎪⎩(无解)或411log 4x x x ≥⎧⎪⇔=⎨=⎪⎩∴方程1()4f x =的解为x = (Ⅱ)1()222xx f x -<⎧≤⇔⎨≤⎩或41log 2x x ≥⎧⎨≤⎩11x x <⎧⇔⎨≥-⎩或116x x ≥⎧⎨≤⎩. 11x ⇔-≤<或116x ≤≤即116x -≤≤.∴不等式()2f x ≤的解集为:[1,16]-. 20.解:(Ⅰ)t 的取值范围为区间221[log,log 4][2,2]4=-. (Ⅱ)记22()(log2)(log 1)(2)(1)()(22)y f x x x t t g t t ==++=++=-≤≤.∵231()()24y g t t ==+-在区间3[2,]2--是减函数,在区间3[,2]2-是增函数∴当23log 2t x ==-即3224x -==时,()y f x =有最小值31()424f g =-=-; 当2log 2t x ==即224x ==时,()y f x =有最大值(4)(2)12f g ==. 21.解:(Ⅰ)∵()f x 是奇函数,所以1(0)014b f b -==⇔=(经检验符合题设) .(Ⅱ)由(1)知21()2(21)x x f x -=-+.对12,x x R ∀∈,当12x x <时,总有2112220,(21)(21)0x x x x ->++> . ∴122112121212121122()()()0221212(21)(21)x x x x x x x x f x f x ----=-⋅-=⋅>++++,即12()()f x f x >.∴函数()f x 在R 上是减函数.(Ⅲ)∵函数()f x 是奇函数且在R 上是减函数, ∴22222(2)(2)0(2)(2)(2)f t t f t k f t t f t k f k t -+-<⇔-<--=-.22221122323()33t t k t k t t t ⇔->-⇔<-=--.(*)对于t R ∀∈(*)成立13k ⇔<-.∴k 的取值范围是1(,)3-∞-. }0|{函数的定义域为,时10当}0|x {函数的定义域为,时1当1a 01(1)a :解22x x <<<>>∴>∴>-x x a x a .)0,()(,10;),0()(,1)2(上递增在时当上递增在时当-∞<<+∞>x f a x f a。
2人教A版高中数学必修1第二章基本初等函数单元测试题(含参考答案)

高一数学单元测试题 必修1第二章《基本初等函数》班级 姓名 序号 得分一.选择题.(每小题5分,共50分)1.若0m >,0n >,0a >且1a ≠,则下列等式中正确的是 ( )A .()m nm na a+= B .11mm a a= C .log log log ()a a a m n m n ÷=- D 43()mn =2.函数log (32)2a y x =-+的图象必过定点 ( ) A .(1,2) B .(2,2) C .(2,3) D .2(,2)33.已知幂函数()y f x =的图象过点,则(4)f 的值为 ( ) A .1 B . 2 C .12D .8 4.若(0,1)x ∈,则下列结论正确的是 ( ) A .122lg xx x >> B .122lg xx x >> C .122lg xx x >> D .12lg 2xx x >> 5.函数(2)log (5)x y x -=-的定义域是 ( ) A .(3,4) B .(2,5) C .(2,3)(3,5) D .(,2)(5,)-∞+∞6. 三个数60.7 ,0.76 ,6log7.0的大小顺序是 ( )A .0.76<6log 7.0<60.7 B. 0.76<60.7<6log 7.0 C. 6log 7.0<60.7<0.76 D. 6log 7.0<0.76<60.77.若1005,102a b==,则2a b += ( ) A .0 B .1 C .2 D .3 8. 函数()lg(101)2xxf x =+-是 ( ) A .奇函数 B .偶函数 C .既奇且偶函数 D .非奇非偶函数9.函数2log (2)(01)a y x x a =-<<的单调递增区间是 ( ) A .(1,)+∞ B .(2,)+∞ C .(,1)-∞ D .(,0)-∞10.已知 )2(log ax y a -=(0a >且1a ≠)在[0,1]上是x 的减函数,则a 的取值范围是( ) A .(0,1) B .(0,2)C .(1,2)D .[2,)+∞二.填空题.(每小题5分,共25分)11.计算:459log 27log 8log 625⨯⨯= . 12.已知函数3log (0)()2(0)xx x >f x x ⎧=⎨≤⎩,, ,则1[()]3f f = . 13.若3())2f x a x bx =++,且(2)5f =,则(2)f -= .14.若函数)10(log )(<<=a x x f a 在区间[,2]a a 上的最大值是最小值的3倍,则a = . 15.已知01a <<,给出下列四个关于自变量x 的函数:①log x y a =,②2log a y x =, ③31(log )ay x = ④121(log )ay x =.其中在定义域内是增函数的有 . 三.解答题(6小题,共75分) 16.(12分)计算下列各式的值:(Ⅰ)4160.253216(24()849-+-⨯.(Ⅱ)21log 32393ln(log (log 81)2log log 12543+++-.17.(本小题满分12分)解方程:3)23(log )49(log 22+-=-x x18.(共12分)(Ⅰ)解不等式2121()x x a a--> (01)a a >≠且.(Ⅱ)设集合2{|log (2)2}S x x =+≤,集合1{|()1,2}2xT y y x ==-≥-求S T ,S T .19.( 12分) 设函数421()log 1x x f x x x -⎧<=⎨≥⎩.(Ⅰ)求方程1()4f x =的解.(Ⅱ)求不等式()2f x ≤的解集.20.( 13分)设函数22()log (4)log (2)f x x x =⋅的定义域为1[,4]4, (Ⅰ)若x t 2log =,求t 的取值范围;(Ⅱ)求()y f x =的最大值与最小值,并求出最值时对应的x 的值.21.(14分)已知定义域为R 的函数12()22x x b f x +-+=+是奇函数.(Ⅰ)求b 的值;(Ⅱ)证明函数()f x 在R 上是减函数; (Ⅲ)若对任意的t R ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求k 的取值范围.参考答案一.选择题11. 9 . 12.12 . 13. 1-. 14. 4. 15. ③,④. 三.解答题:16.(Ⅰ). 解:原式427272101=⨯+--=.(Ⅱ)解:原式33log (425)33152232232222log ()25⨯=++⨯+=++⨯-=⨯.17.解原方程可化为:8log )23(log )49(log 222+-=-x x , 即012389=+⋅-xx .解得:23=x (舍去)或63=x, 所以原方程的解是6log 3=x 18.解:(Ⅰ)原不等式可化为:212x x aa -->.当1a >时,2121x x x ->-⇔>.原不等式解集为(1,)+∞.当1a >时,2121x x x -<-⇔<.原不等式解集为(,1)-∞. (Ⅱ)由题设得:{|024}(2,2]S x x =<+≤=-,21{|1()1}(1,3]2T y y -=-<≤-=-.∴(1,2]ST =-, (2,3]S T =-.19.解:(Ⅰ) 11()1424x x f x -<⎧⎪=⇔⎨=⎪⎩(无解)或411log 4x x x ≥⎧⎪⇔=⎨=⎪⎩∴方程1()4f x =的解为x = (Ⅱ)1()222x x f x -<⎧≤⇔⎨≤⎩或41log 2x x ≥⎧⎨≤⎩11x x <⎧⇔⎨≥-⎩或116x x ≥⎧⎨≤⎩. 11x ⇔-≤<或116x ≤≤即116x -≤≤.∴不等式()2f x ≤的解集为:[1,16]-.20.解:(Ⅰ)t 的取值范围为区间221[log ,log 4][2,2]4=-. (Ⅱ)记22()(log 2)(log 1)(2)(1)()(22)y f x x x t t g t t ==++=++=-≤≤.∵231()()24y g t t ==+-在区间3[2,]2--是减函数,在区间3[,2]2-是增函数∴当23log 2t x ==-即3224x -==时,()y f x =有最小值31()()424f g =-=-;当2log 2t x ==即224x ==时,()y f x =有最大值(4)(2)12f g ==.21.解:(Ⅰ)∵()f x 是奇函数,所以1(0)014bf b -==⇔=(经检验符合题设) . (Ⅱ)由(1)知21()2(21)x x f x -=-+.对12,x x R ∀∈,当12x x <时,总有2112220,(21)(21)0x x x x ->++> .∴122112121212121122()()()0221212(21)(21)x x x x x x x x f x f x ----=-⋅-=⋅>++++,即12()()f x f x >. ∴函数()f x 在R 上是减函数. (Ⅲ)∵函数()f x 是奇函数且在R 上是减函数,∴22222(2)(2)0(2)(2)(2)f t t f t k f t t f t k f k t -+-<⇔-<--=-.22221122323()33t t k t k t t t ⇔->-⇔<-=--.(*)对于t R ∀∈(*)成立13k ⇔<-.∴k 的取值范围是1(,)3-∞-.。
人教A版高中数学必修1第二章《基本初等函数》测试题(含答案)

21.解:(1)由 或
又 为偶函数,则: 此时: .
(2) 在 上不是单调函数,则 的对称轴 满足
即: .
22.解:(1)由题意得
,
即 的值域为[-4,﹢∞).
(2)由不等式 对任意实数 恒成立得 ,
又 ,
设 ,则 ,
∴ ,
∴当 时, = .
∴ ,即 ,
整理得 ,即 ,
解得 ,
∴实数x的取值范围为 .
(2)由(1)知,函数 ,∵ , ,即 的定义域为 .
因为 ,
又∵ ,∴ ,所以 的值域为 .
(3)∵ 的定义域为 ,且 ,所以 是奇函数.
20.解:(1)由已知得 ,解得 所以函数 的定义域为
(2) ,令 ,得 ,即 ,解得 ,∵ ,∴函数 的零点是
(3)由2知, ,
∵ ,∴ .
∵ ,∴ ,
∴ ,
(2)判断函数 的奇偶性,并证明;
(3)解不等式 .
19.(12分)已知函数 的图象经过点 .
(1)求 的值;
(2)求函数 的定义域和值域;
(3)证明:函数 是奇函数.
20.(12分)已知函数 .
(1)求函数 的定义域;
(2)求函数 的零点;
(3)若函数 的最小值为 ,求 的值.
21.(12分)已知幂函数 为偶函数.
17.解:(1)原式=2( × )6+ −4× − × +1
=2×22×33+2-7-2+1
=210.
(2)原式=2-2+ +log24
= +2
=
18.解:(1)易知函数 , .
所以定义域为 .
(2)由 ,从而知 为偶函数;
人教A版高中数学必修1第二章基本初等函数单元测试题(含参考答案)[1]
![人教A版高中数学必修1第二章基本初等函数单元测试题(含参考答案)[1]](https://img.taocdn.com/s3/m/fa9f1a4cc77da26924c5b04e.png)
必修1第二章《根本初等函数》班级姓名序号得分一.选择题.(每小题5分,共50分)1.若,,且,则下列等式中准确的是 ( ) A.B.C. D.2.函数的图象必过定点 ( )A. B. C. D.3.已知幂函数的图象过点,则的值为()A.B. C. D.4.若,则下列结论准确的是()A.B.C.D.5.函数的界说域是()A. B. C. D.6.某商品价钱前两年每年进步,后两年每年下降,则四年后的价钱与本来价钱比较,变更的情形是()A.削减 B.增长 C.削减 D.不增不减7.若,则()A. B. C. D.8.函数是()A.奇函数B.偶函数C.既奇且偶函数D.非奇非偶函数9.函数的单调递增区间是()A. B. C.D.10.若 (且)在上是的减函数,则的取值规模是()A.B. C. D.一.选择题(每小题5分,共50分)题号 1 2 3 4 5 6 7 8 9 10答案二.填空题.(每小题5分,共25分)11.盘算:.12.已知函数 ,则.13.若,且,则.14.若函数上的最大值是最小值的在区间倍,则=.15.已知,给出下列四个关于自变量的函数:①,②,③④.个中在界说域内是增函数的有.三.解答题(6小题,共75分)16.(12分)盘算下列各式的值:(Ⅰ).(Ⅱ).17.(12分)已知函数方程的两根为.().(Ⅰ)求的值;(Ⅱ)求的值.18.(共12分)(Ⅰ)解不等式.(Ⅱ)设聚集,聚集求,.19.( 12分)设函数.(Ⅰ)求方程的解.(Ⅱ)求不等式的解集.20.( 13分)设函数的界说域为,(Ⅰ)若,求的取值规模;(Ⅱ)求的最大值与最小值,并求出最值时对应的的值.21.(14分)已知界说域为的函数是奇函数.(Ⅰ)求的值;(Ⅱ)证实函数在上是减函数;(Ⅲ)若对随意率性的,不等式恒成立,求的取值规模.参考答案一.选择题题号 1 2 3 4 5 6 7 8 9 10答案 D A C B C A B B D C二.填空题.11.. 12.. 13.. 14.. 15.③,④.三.解答题:16.(Ⅰ).解:原式.(Ⅱ)解:原式.17.解:由前提得:,.(Ⅰ).(Ⅱ).18.解:(Ⅰ)原不等式可化为:.当时,.原不等式解集为.当时,.原不等式解集为.(Ⅱ)由题设得:,.∴,.19.解:(Ⅰ)(无解)或.∴方程的解为.(Ⅱ)或或.或即.∴不等式的解集为:.20.解:(Ⅰ)的取值规模为区间.(Ⅱ)记.∵在区间是减函数,在区间是增函数∴当即时,有最小值;当即时,有最大值.21.解:(Ⅰ)∵是奇函数,所以(经磨练相符题设) .(Ⅱ)由(1)知.对,当时,总有.∴,∴.∴函数在上是减函数.(Ⅲ)∵函数是奇函数且在上是减函数,∴..(*)对于(*)成立.∴的取值规模是.。
高中数学 第二章 基本初等函数(Ⅰ)单元测试题(含解析)新人教A版必修1(2021年最新整理)

高中数学第二章基本初等函数(Ⅰ)单元测试题(含解析)新人教A版必修1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第二章基本初等函数(Ⅰ)单元测试题(含解析)新人教A版必修1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第二章基本初等函数(Ⅰ)单元测试题(含解析)新人教A版必修1的全部内容。
基本初等函数(I) 测试题(时间:120分钟 满分:150分)学号:______ 班级:______ 姓名:______ 得分:______一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知2log 3x =,则13x -等于 ( )A 。
2B 。
12C.32 D 。
22.下列函数中,既是单调函数,又是奇函数的是( ) A.y=x 5B .5x y =C .2log y x =D .1y x -=3. 函数()()2log 31x f x =+的值域为( )A. ()0,+∞ B 。
)0,+∞⎡⎣ C.()1,+∞ D. )1,+∞⎡⎣ 4.设2log ,0,()1(),0,3x x x f x x >⎧⎪=⎨≤⎪⎩则1(())8f f 的值 ( )A. 9B. 116C. 27D. 1815。
已知幂函数()y f x =的图象过点13(,)23,则3log (2)f 的值为( )A .12B .-12C .2D .-26.设15log 6a =,0.216b ⎛⎫= ⎪⎝⎭,165c =,则( )A .a b c <<B .c b a <<C .c a b <<D .b a c <<7. 给出四个函数,分别满足: ①f(x +y )=f (x )+f (y ) ;② g (x +y )=g (x )g (y ) ;③h (x ·y )=h (x )+h (y ); ④ t (x ·y )=t (x )·t (y ),又给出四个函数图象,它们的正确匹配方案是 ( )A 。
高中数学必修1第二章基本初等函数单元测试题(含参考答案)

A.(1,)
B.(2,)C.(,1)
D.(,0)
10•已知y log2(2 ax)(a 0且a 1)在[0,1]上是x的减函数,贝U a的取值范围是(
A•(0,1)B•(0,2)C•(1,2)D.[2,)
一.选择题(每小题5分,共50分)
题号
1
2
3
4
5
6
7
8
9
10
答案
二•填空题.(每小题5分,共25分)
3.已知幕函数
f (x)的图象过点
2
(2=),则f⑷
的值为
D.8
4.右
x(0,1),
则下列结论正确的是
x
2lgx
1 1
x"B.2xx2
lg x
C.
1
x2
2x
lg x
lg x
2x
5.函数y log(x 2)(5x)的定义域是
A.(3,4)
B.(2,5)
(2,3) U(3,5)
(,2) U (5,
6.某商品价格前两年每年提高 变化的情况是
16.(12分)计算下列各式的值:
41
([)(32、、3)6(2■■2)34 (世)?42 80.25.
49
高一数学单元测试题
必修
一.选择题.
1.若m0,
(每小题
0,
班级姓名
5分,共50分)
a0且a1,则下列等式中正确的是
序号
得分
m、n
A-(a)
C. logam logan loga(m n)
3>4
D. ■.m
-4 n
4
(mn)3
2.函数y
人教A版高中数学必修1第二章基本初等函数单元测试题(含参考答案)

高一数学单元测试题 必修1第二章《基本初等函数》班级 姓名 序号 得分一.选择题.(每小题5分,共50分)1.若0m >,0n >,0a >且1a ≠,则下列等式中正确的是 ( )A .()m nm na a+= B .11mm a a= C .log log log ()a a a m n m n ÷=- D 43()mn =2.函数log (32)2a y x =-+的图象必过定点 ( ) A .(1,2) B .(2,2) C .(2,3) D .2(,2)33.已知幂函数()y f x =的图象过点,则(4)f 的值为 ( ) A .1 B . 2 C .12D .8 4.若(0,1)x ∈,则下列结论正确的是 ( ) A .122lg xx x >> B .122lg xx x >> C .122lg xx x >> D .12lg 2xx x >> 5.函数(2)log (5)x y x -=-的定义域是 ( ) A .(3,4) B .(2,5) C .(2,3)(3,5) D .(,2)(5,)-∞+∞6.某商品价格前两年每年提高10%,后两年每年降低10%,则四年后的价格与原来价格比较,变化的情况是 ( ) A .减少1.99% B .增加1.99% C .减少4% D .不增不减7.若1005,102a b==,则2a b += ( ) A .0 B .1 C .2 D .3 8. 函数()lg(101)2xxf x =+-是 ( ) A .奇函数 B .偶函数 C .既奇且偶函数 D .非奇非偶函数9.函数2log (2)(01)a y x x a =-<<的单调递增区间是 ( ) A .(1,)+∞ B .(2,)+∞ C .(,1)-∞ D .(,0)-∞10.已知2log (2)y ax =- (0a >且1a ≠)在[0,1]上是x 的减函数,则a 的取值范围是( )A .(0,1)B .(0,2)C .(1,2)D .[2,)+∞二.填空题.(每小题5分,共25分)11.计算:459log 27log 8log 625⨯⨯= . 12.已知函数3log (0)()2(0)xx x >f x x ⎧=⎨≤⎩,, ,则1[()]3f f = . 13.若3())2f x a x bx =++,且(2)5f =,则(2)f -= .14.若函数()log (01)f xax a =<<在区间[,2]a a 上的最大值是最小值的3倍,则a = . 15.已知01a <<,给出下列四个关于自变量x 的函数:①log x y a =,②2log ay x =, ③31(log )ay x = ④121(log )ay x =.其中在定义域内是增函数的有 . 三.解答题(6小题,共75分) 16.(12分)计算下列各式的值:(Ⅰ)4160.253216(24()849-+-⨯.(Ⅱ)21log 32393ln(log (log 81)2log log 12543+++-.17.( 12分)已知函数方程2840x x -+=的两根为1x 、2x (12x x <).(Ⅰ)求2212x x ---的值;(Ⅱ)求112212x x ---的值.18.(共12分)(Ⅰ)解不等式2121()x x a a--> (01)a a >≠且.(Ⅱ)设集合2{|log (2)2}S x x =+≤,集合1{|()1,2}2xT y y x ==-≥-求S T ,S T .19.( 12分) 设函数421()log 1x x f x x x -⎧<=⎨≥⎩.(Ⅰ)求方程1()4f x =的解.(Ⅱ)求不等式()2f x ≤的解集.20.( 13分)设函数22()log (4)log (2)f x x x =⋅的定义域为1[,4]4, (Ⅰ)若x t 2log =,求t 的取值范围;(Ⅱ)求()y f x =的最大值与最小值,并求出最值时对应的x 的值.21.(14分)已知定义域为R 的函数12()22x x b f x +-+=+是奇函数.(Ⅰ)求b 的值;(Ⅱ)证明函数()f x 在R 上是减函数; (Ⅲ)若对任意的t R ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求k 的取值范围.参考答案11. 9 . 12.12 . 13. 1-. 14. 4. 15. ③,④. 三.解答题:16.(Ⅰ). 解:原式427272101=⨯+--=. (Ⅱ)解:原式33log (425)3315223223211222log ()25⨯=++⨯+=++⨯-=⨯.17. 解:由条件得:14x =-24x =+.(Ⅰ)221221122121212()()1111()()()x x x x x x x x x x x x --+--=+-===. (Ⅱ)1122121x x ---===. 18.解:(Ⅰ)原不等式可化为:212x x aa -->.当1a >时,2121x x x ->-⇔>.原不等式解集为(1,)+∞. 当1a >时,2121x x x -<-⇔<.原不等式解集为(,1)-∞. (Ⅱ)由题设得:{|024}(2,2]S x x =<+≤=-,21{|1()1}(1,3]2T y y -=-<≤-=-.∴(1,2]S T =- , (2,3]S T =- .19.解:(Ⅰ) 11()1424x x f x -<⎧⎪=⇔⎨=⎪⎩(无解)或411log 4x x x ≥⎧⎪⇔=⎨=⎪⎩∴方程1()4f x =的解为x = (Ⅱ)1()222x x f x -<⎧≤⇔⎨≤⎩或41log 2x x ≥⎧⎨≤⎩11x x <⎧⇔⎨≥-⎩或116x x ≥⎧⎨≤⎩. 11x ⇔-≤<或116x ≤≤即116x -≤≤.∴不等式()2f x ≤的解集为:[1,16]-.20.解:(Ⅰ)t 的取值范围为区间221[log ,log 4][2,2]4=-. (Ⅱ)记22()(log 2)(log 1)(2)(1)()(22)y f x x x t t g t t ==++=++=-≤≤.∵231()()24y g t t ==+-在区间3[2,]2--是减函数,在区间3[,2]2-是增函数∴当23log 2t x ==-即322x -==时,()y f x =有最小值31()24f g =-=-;当2log 2t x ==即224x ==时,()y f x =有最大值(4)(2)12f g ==.21.解:(Ⅰ)∵()f x 是奇函数,所以1(0)014bf b -==⇔=(经检验符合题设) . (Ⅱ)由(1)知21()2(21)x xf x -=-+.对12,x x R ∀∈,当12x x <时,总有 2112220,(21)(21)0x x x x ->++> .∴122112121212121122()()()0221212(21)(21)x x x x x x x x f x f x ----=-⋅-=⋅>++++,即12()()f x f x >.∴函数()f x 在R 上是减函数. (Ⅲ)∵函数()f x 是奇函数且在R 上是减函数,∴22222(2)(2)0(2)(2)(2)f t t f t k f t t f t k f k t -+-<⇔-<--=-.22221122323()33t t k t k t t t ⇔->-⇔<-=--.(*)对于t R ∀∈(*)成立13k ⇔<-.∴k 的取值范围是1(,)3-∞-.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学单元测试题 必修1第二章《基本初等函数》班级 姓名 序号 得分一.选择题.(每小题5分,共50分)1.若0m >,0n >,0a >且1a ≠,则下列等式中正确的是 ( )A .()m n m na a+= B .11m ma a=C .log log log ()a a a m n m n ÷=-D 43()mn =2.函数log (32)2a y x =-+的图象必过定点 ( ) A .(1,2) B .(2,2) C .(2,3) D .2(,2)33.已知幂函数()y f x =的图象过点2,则(4)f 的值为 ( )A .1B . 2C .12D .84.若(0,1)x ∈,则下列结论正确的是 ( )A .122lg xx x >> B .122lg xx x >> C .122lg xx x >> D .12lg 2x x x >> 5.函数(2)log (5)x y x -=-的定义域是 ( ) A .(3,4) B .(2,5) C .(2,3)(3,5) D .(,2)(5,)-∞+∞6.某商品价格前两年每年提高10%,后两年每年降低10%,则四年后的价格与原来价格比较,变化的情况是 ( ) A .减少1.99% B .增加1.99% C .减少4% D .不增不减7.若1005,102a b==,则2a b += ( )A .0B .1C .2D .3 8. 函数()lg(101)2xx f x =+-是 ( )A .奇函数B .偶函数C .既奇且偶函数D .非奇非偶函数9.函数2log (2)(01)a y x x a =-<<的单调递增区间是 ( )A .(1,)+∞B .(2,)+∞C .(,1)-∞D .(,0)-∞10.已知2log (2)y ax =- (0a >且1a ≠)在[0,1]上是x 的减函数,则a 的取值范围是( )A .(0,1)B .(0,2)C .(1,2)D .[2,)+∞一.选择题(每小题5分,共50分)二.填空题.(每小题5分,共25分)11.计算:459log 27log 8log 625⨯⨯= . 12.已知函数3log (0)()2(0)xx x >f x x ⎧=⎨≤⎩,, ,则1[()]3f f = .13.若3())2f x a x bx =++,且(2)5f =,则(2)f -= .14.若函数()log (01)f x axa =<<在区间[,2]a a 上的最大值是最小值的3倍,则a = . 15.已知01a <<,给出下列四个关于自变量x 的函数:①log x y a =,②2log a y x =, ③31(log )ay x =④121(log )ay x =.其中在定义域内是增函数的有 . 三.解答题(6小题,共75分)16.(12分)计算下列各式的值:(Ⅰ)4160.253216(24()849-+⨯-⨯-.(Ⅱ)21log 32393ln(log (log 81)2log log 12543++++-.17.( 12分)已知函数方程2840x x -+=的两根为1x 、2x (12x x <). (Ⅰ)求2212x x ---的值;(Ⅱ)求112212x x ---的值.18.(共12分)(Ⅰ)解不等式2121()x x a a--> (01)a a >≠且.(Ⅱ)设集合2{|log (2)2}S x x =+≤,集合1{|()1,2}2xT y y x ==-≥-求S T ,S T .19.( 12分) 设函数421()log 1xx f x xx -⎧<=⎨≥⎩.(Ⅰ)求方程1()4f x =的解.(Ⅱ)求不等式()2f x ≤的解集.20.( 13分)设函数22()log (4)log (2)f x x x =⋅的定义域为1[,4]4,(Ⅰ)若x t 2log=,求t 的取值范围;(Ⅱ)求()y f x =的最大值与最小值,并求出最值时对应的x 的值.21.(14分)已知定义域为R 的函数12()22xx b f x +-+=+是奇函数.(Ⅰ)求b 的值;(Ⅱ)证明函数()f x 在R 上是减函数;(Ⅲ)若对任意的t R ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求k 的取值范围.参考答案一.选择题二.填空题.11. 9 .12. 12. 13. 1-. 14.4.15. ③,④.三.解答题:16.(Ⅰ). 解:原式427272101=⨯+--=.(Ⅱ)解:原式33log (425)3315223223211222log ()25⨯=++⨯+=++⨯-=⨯.17. 解:由条件得:14x =-24x =+.(Ⅰ)221221122121212()()11118()()()16x x x x x x x x x x x x --+-⨯-=+-===.(Ⅱ)1122121x x ---=-=-=.18.解:(Ⅰ)原不等式可化为:212x x a a -->.当1a >时,2121x x x ->-⇔>.原不等式解集为(1,)+∞. 当1a >时,2121x x x -<-⇔<.原不等式解集为(,1)-∞. (Ⅱ)由题设得:{|024}(2,2]S x x =<+≤=-,21{|1()1}(1,3]2T y y -=-<≤-=-.∴(1,2]S T =- , (2,3]S T =- .19.解:(Ⅰ) 11()1424x x f x -<⎧⎪=⇔⎨=⎪⎩(无解)或411log 4x x x ≥⎧⎪⇔=⎨=⎪⎩∴方程1()4f x =的解为x =.(Ⅱ)1()222x x f x -<⎧≤⇔⎨≤⎩或41log 2x x ≥⎧⎨≤⎩11x x <⎧⇔⎨≥-⎩或116x x ≥⎧⎨≤⎩.11x ⇔-≤<或116x ≤≤即116x -≤≤.∴不等式()2f x ≤的解集为:[1,16]-. 20.解:(Ⅰ)t 的取值范围为区间221[log ,log 4][2,2]4=-.(Ⅱ)记22()(log 2)(log 1)(2)(1)()(22)y f x x x t t g t t ==++=++=-≤≤. ∵231()()24y g t t ==+-在区间3[2,]2--是减函数,在区间3[,2]2-是增函数∴当23log 2t x ==-即3224x -==时,()y f x =有最小值31(()424f g =-=-;当2log 2t x ==即224x ==时,()y f x =有最大值(4)(2)12f g ==. 21.解:(Ⅰ)∵()f x 是奇函数,所以1(0)014b f b -==⇔=(经检验符合题设) .(Ⅱ)由(1)知21()2(21)xxf x -=-+.对12,x x R ∀∈,当12x x <时,总有2112220,(21)(21)0x x x x ->++> .∴122112121212121122()()()0221212(21)(21)x x x x x x x xf x f x ----=-⋅-=⋅>++++,即12()()f x f x >. ∴函数()f x 在R 上是减函数.(Ⅲ)∵函数()f x 是奇函数且在R 上是减函数,∴22222(2)(2)0(2)(2)(2)f t t f t k f t t f t k f k t -+-<⇔-<--=-.22221122323()33t t k t k t t t ⇔->-⇔<-=--.(*)对于t R ∀∈(*)成立13k ⇔<-.∴k 的取值范围是1(,)3-∞-.。