高考数学答题技巧与规范答题

合集下载

高考数学各题型答题技巧

高考数学各题型答题技巧

高考数学各题型答题技巧高考数学各题型答题技巧一、排列组合篇1.掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。

2.理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。

3.理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。

4.掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。

5.了解随机事件的发生存在着规律性和随机事件概率的意义。

6.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。

7.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率。

8.会计算事件在n次独立重复试验中恰好发生k次的概率.二、立体几何篇1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。

2.判定两个平面平行的方法:(1)根据定义--证明两平面没有公共点;(2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面;(3)证明两平面同垂直于一条直线。

三、数列问题篇1.在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;2.在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力,进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力。

高考数学解题技巧及规范答题:立体几何大题

高考数学解题技巧及规范答题:立体几何大题
(2)当四棱锥 体积为 时,求二面角 的正弦值.
【分析】
(1)分别取 , 的中点 , ,证明 , 可得 平面 ,
可证 ,由等腰三角形的性质可得 ,证明三角形全等即可求证;
(2)在 上取一点O,连接 ,使 ,根据已知条件证明O为正方形 的中心,建立空间直角坐标系求出平面 和平面 的法向量,利用夹角公式即可求解.
又 ,所以 ,
故 .
【此处由三角形的面积公式和体积公式求体积,若底面面积正确但体积计算错误,减1分.】
【评分细则】
①利用三线合一证明AO⊥BD,得1分
②利用面面垂直的性质证明AO⊥平面BCD,得2分.
③利用线面垂直的性质证明AO⊥CD,得1分.
④利用(1)结论证明三线垂直,合理建系得2分.
⑤正确写出和设出点的坐标,指出一个平面的法向量,得2分.
(1)若三棱锥 体积是 ,求 的值;
(2)若直线 与平面 所成角的正弦值是 ,求 的值.
【分析】
(1)由题意知, 、 、 两两垂直,建立空间直角坐标系,设 ,由 ,求得M的坐标,过 作 于 , 于 ,再由 求解;
(2)由(1)知 ,求得平面 的一个法向量为 ,设直线 与平面 所成的角为 ,然后由 求解.

又 平面 平面 ,
平面 ,
即 ,
又 ,
平面 ,
故 为四棱锥 的高,
为直线 与平面 所成角,
又 ,
即 ,
四棱锥 的体积为 ;
(2)假设存在点 ,建立如图所示的空间直角坐标系,
设 , ,
则 ,
则 , , ,
设平面 和平面 的法向量分别为 , ,
则 ,令 ,则 ,
,令 ,
则 ,
二面角 的余弦值为 ,

2023年高考数学解题技巧及规范答题:三角函数大题

2023年高考数学解题技巧及规范答题:三角函数大题

202 年高考数学解题技巧及规范答题三角函数大题【规律方法】1、正弦定理、余弦定理:正弦定理、余弦定理的作用是在已知三角形部分基本量的情况下求解其余基本量,基本思想是方程思想.正弦定理、余弦定理的另一个作用是实现三角形边角关系的互化,解题时可以把已知条件化为角的三角函数关系,也可以把已知条件化为三角形边的关系.正弦定理、余弦定理解三角形问题是高考高频考点,其解题方法主要有: (1)化边为角:通过正弦定理和余弦定理,化边为角,如:,等,利用三角变换得出三角形内角之间的关系进行判断.此时要注意一些常见的三角等式所体现的内角关系,如:,或等.(2)化角为边:利用正弦定理、余弦定理化角为边,如,等,通过代数恒等变换,求出三条边之间的关系进行判断.注意:(1)注意无论是化边还是化角,在化简过程中出现公因式不要约掉,否则会有漏掉一种形状的可能.(2)在变形过程中要注意角A ,B ,C 的范围对三角函数值的影响.2、三角恒等变换综合应用的解题思路(1)将f (x )化为a sin x +b cos x 的形式;(2)构造;(3)和角公式逆用,得(其中φ为辅助角);(4)利用研究三角函数的性质;2sin a R A =2222cos a b c ab C +-=sin sin A B A B =⇔=sin 2sin 2A B A B =⇔=2A B π+=sin 2a A R =222cos 2b c a A bc+-=())f x x x =+())f x x ϕ=+())f x x ϕ=+3(5)反思回顾,查看关键点、易错点和答题规范.【核心素养】以三角形为载体,以正弦定理、余弦定理为工具,以三角恒等变换为手段考查解三角形问题是高考一类热点题型,考查的核心素养主要有“逻辑推理”、“数学运算”、“数据分析”.【典例】【2020年全国II 卷】中,sin 2A -sin 2B -sin 2C =sin B sin C.(1)求A ;(2)若BC =3,求周长的最大值.【分析】(1)利用正弦定理角化边,配凑出的形式,进而求得;(2)利用余弦定理可得到,利用基本不等式可求得的最大值,进而得到结果.【详解】(1)由正弦定理可得:,,,. (2)由余弦定理得:,即.ABC ABC cos A A ()29AC AB AC AB +-⋅=AC AB +222BC AC AB AC AB --=⋅2221cos 22AC AB BC A AC AB +-∴==-⋅()0,A π∈ 23A π∴=222222cos 9BC AC AB AC AB A AC AB AC AB =+-⋅=++⋅=()29AC AB AC AB +-⋅=第二步,用定理、公式、性质:利用正弦定理、余弦定理、二倍角公式、辅助角公式等进行三角形中边角(当且仅当时取等号),,解得:(当且仅当时取等号),周长,周长的最大值为【解题方法与步骤】1、解三角形问题的技巧:(1)解三角形时,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到. ①应用正弦定理求角时容易出现增解或漏解的错误,要根据条件和三角形的限制条件合理取舍;②求角时易忽略角的范围而导致错误,因此需要根据大边对大角,大角对大边的规则,画图进行判断.(2)三角形解个数的判断:已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角规则进行判断.2、三角恒等变换要遵循的“三看”原则:一看“角”:通过看角之间的差别与联系,把角进行合理拆分,从而正确使用公式; 二看“函数名称”:看函数名称之间的差异,从而确定使用的公式,常见的有“切化弦”;三看“结构特征”:分析结构特征,找到变形的方向,常见的有“遇到分式要通分”“整式因式分解”“二次式配方”等.3、解三角形与三角函数综合问题一般步骤:第一步,转化:正确分析题意,提炼相关等式,利用等式的边角关系合理将问题转化为三角函数的问题; 22AC AB AC AB +⎛⎫⋅≤ ⎪⎝⎭AC AB =()()()22223924AC AB AC AB AC AB AC AB AC AB +⎛⎫∴=+-⋅≥+-=+ ⎪⎝⎭AC AB +≤AC AB =ABC ∴ 3L AC AB BC =++≤+ABC ∴ 3+的的关系的互化;第三步,得结论:利用三角函数诱导公式、三角形内角和定理等知识求函数解析式、角、三角函数值,或讨论三角函数的基本性质等.【好题演练】1.(2021·河南中原高三模拟)在中,,,所对的角分别为,,,已知. (1)求;(2)若,为的中点;且,求的面积.【分析】(1)根据题意,由正弦定理得出,再由两角和的正弦公式化简得,由于,从而可求得,最后根据同角三角函数的平方关系,即可求出;(2)法1:在中由余弦定理得出,再分别在和中,由余弦定理得出和,再由,整理ABC a b c A B C 3cos 3a b A c +=sin B 3a =D AC BD =ABC sin 3sin cos3sin A B A C +=sin 3sin cos A A B =sin 0A >1cos 3B =sin B ABC 221936c b c+-=ABD △BCD △2cos ADB ∠=2cos CDB ∠=cos ADB cos DB 0∠+∠=C化简的出边,最后根据三角形的面积公式,即可求出结果. 法2:由平面向量的加法运算法则得出,两边平方并利用平面向量的数量积运算化简得,从而可求出边,最后根据三角形的面积公式,即可求出结果.【详解】(1)因为,由正弦定理得, 因为, 所以,因为,所以,所以,因为,所以(2)法1:在中,由余弦定理得,即, 在中,由余弦定理得, 在中,由余弦定理得因为,c 1sin2ABC S ac B =△12BD BA BC →→→⎛⎫=+ ⎪⎝⎭()213294c c =++c 1sin 2ABC S ac B =△3cos 3a b A c +=sin 3sin cos 3sin A B A C +=()sin sin sin cos cos sin C A B A B A B =+=+sin 3sin cos A A B =()0,A π∈sin 0A >1cos 3B =()0,B π∈sin B ===ABC 222cos 2a c b B ac +-=221936c b c+-=ABD △2cos ADB ∠=BCD △2cos CDB ∠=πADB CDB ∠+∠=220=即,所以, 整理得,解得:或(舍去), 所以. 法2:因为为的中点,所以,两边平方得,即,即,解得或(舍), 所以. 2.记中内角,,的对边分别为,,.已知. (1)求;(2)点,位于直线异侧,,.求的最大值.【分析】(1,利用正弦定理化边为角结合利用两角和的正弦公式展开整理可求得的值,即可得角; (2)结合(1化角为边可得,即,在中由余弦定理求,利用三角恒等式变换以及三角函数的性质可得最大值.2262b c =+()222296219366c c c b c c+-++-==2230c +c -=1c =3c =-11sin 3122ABC S ac B ==⨯⨯=△D AC 12BD BA BC →→→⎛⎫=+ ⎪⎝⎭222124B BD B BA C BC A →→→→→⎛⎫=+⋅+ ⎪⎝⎭()213294c c =++2230c +c -=1c =3c =-11sin 3122ABC S ac B ==⨯⨯=△ABC A B C a b c a =3cos sin B b A =+A A D BC BD BC ⊥1BD =AD cos sin B b A =+sin sin()C A B =+tan A A cos sin sin C A B B A =+cos sin B a B =+sin c B B =ABD △2AD(1)求 A ;【详解】(1,.. 因为,,所以,,,又因为, 可得:,所以; (2)由(1,, 即,由余弦定理得,所以当且仅当时,取得最大值,所以.3.在中,内角的对边分别为,且满足. 3cos sin B b A =+a =cos sin B b A =+cos sin sin C A B B A =+πA B C ++=,,(0,π)A B C ∈sin sin()sin cos cos sin C A B A B A B =+=+cos s cos sin s i in n A B A B A B B A +=+sin sin sin A B B A =sin 0B ≠sin A A =tan A =0πA <<π3A =cos sin sin C AB B A =+cos sin B a B =+cos sin c a B B B =+=+2222cos AD c BD c BD ABD =+-⋅∠()()()2sin 12sin sin B B B B B =+--222sin 3cos 212sin 2B B B B B =+++++42B =+π4B =2AD )241+=+AD 1+ABC 、、A B C ,,a b c 2sin cos b A B ()2sin c b B =-(2)若l 的取值范围.【分析】(1)由正弦定理得,化简得, 利用的范围可得答案;(2)由正弦定理得,利用的范围和三角函数的性质可得答案.【详解】(1)由正弦定理得, 因为,所以, 所以,即,解得,因为,所以.(2)由正弦定理得, 所以,所以,因为,所以, a =()2sin sin cos 2sin sin sin B A B CB B =-1cos2A =A 4sin ,4sin bB cC ==()4sin sin l B C =++B ()2sin sin cos 2sin sin sin BA B C B B=-0B π<<sin 0B ≠2sincos 2sin sin A BC B =-2sin cos 2sin cos 2sin cos sin A B A B B A B =+-1cos 2A =0A π<<3A π=4sin sin sin a b cAB C===4sin ,4sin b B c C ==()24sin sin sin sin 3l B C B B π⎡⎤⎛⎫=+++-+ ⎪⎢⎥⎝⎭⎣⎦314sin cos 22B B B B ⎛⎫⎫=+++ ⎪⎪ ⎪⎪⎝⎭⎭6B π⎛⎫=++ ⎪⎝⎭20,3B π⎛⎫∈ ⎪⎝⎭5,666B πππ⎛⎫+∈ ⎪⎝⎭所以, 所以.4.(2021·天津高考)在,角所对的边分别为,已知. (I )求a 的值;(II )求的值;(III )求的值.【分析】(I )由正弦定理可得(II )由余弦定理即可计算;(III )利用二倍角公式求出的正弦值和余弦值,再由两角差的正弦公式即可求出.【详解】(I )因为,由正弦定理可得,;(II )由余弦定理可得; (III ),, ,, 所以. 1sin ,162B π⎛⎫⎛⎤+∈ ⎪ ⎥⎝⎭⎝⎦(l ∈ABC ,,A B C ,,a bc sin:sin :sin 2A B C =b =cos C sin 26C π⎛⎫- ⎪⎝⎭::2a b c =2C sin :sin :sin 2A B C =::2:1:ab c=b =2a c ∴==2223cos 24a b c C ab +-===3cos 4C =sin C ∴==3sin 22sin cos 24C C C ∴===291cos 22cos 121168C C =-=⨯-=sin 2sin 2cos cos 2sin 666C C C πππ⎛⎫-=- ⎪⎝⎭1182=⨯=5.(2021·南京市中华中学)在中,分别为内角的对边,且满足. (1)求的大小;(2)从①,②,③这三个条件中任选两个,补充在下面的问题中,并解决问题.问题:已知___________,___________,若存在,求的面积,若不存在,请说明理由.注:如果选择多个条件解答,按第一个解答计分.【分析】(1)由正弦定理进行边角互化,再结合辅助角公式化简运算,可求出角的范围.(2)若选择条件①②,由余弦定理可计算的值,面积公式计算面积;若选择条件②③,正弦定理计算边,两角和的正弦计算,可求面积;若选择条件①③,由大边对大角可知三角形不存在. 【详解】(1)因为,由正弦定理可得因为即因为所以因为即ABC ,,a b c ,,A B C b a =B 2a c =2b =4A π=ABC ABC ABC a c 、a sin C b a =sin sin B A =sin 0A ≠cos 1B B -=1sin()62B π-=0B π<<5666B πππ-<-<66B ππ-==3B π第 11 页 共 11 页(2)若选择条件①②,由余弦定理可得,解得, 故所以若选择条件②③由正弦定理可得,可得所以若选择条件①③这样的三角形不存在,理由如下: 在三角形中,, 所以, 所以,所以又因为所以与矛盾,所以这样的三角形不存在.2222cos b a c ac B=+-222442c c c +-=c =a =11sin sin 223ABC S ac B π=== sin sin a b A B =sin sin b A a B ==11sin 2sin 2234ABC S ab C ππ⎛⎫==⨯+= ⎪⎝⎭ ABC 43A B ππ==,53412C ππππ=--=A C <a c <2a c=a c >a c <。

数学考试答题技巧与方法

数学考试答题技巧与方法

数学考试答题技巧与方法数学考试答题技巧与方法一、“六先六后”,因人因卷制宜。

考生可依自己的解题习惯和基本功,选择执行“六先六后”的战术原则。

1.先易后难。

2.先熟后生。

3.先同后异。

先做同科同类型的题目。

4.先小后大。

先做信息量少、运算量小的题目,为解决大题赢得时间。

5.先点后面。

高考数学解答题多呈现为多问渐难式的“梯度题”,解答时不必一气审到底,应走一步解决一步,步步为营,由点到面。

6.先高后低。

即在考试的后半段时间,如估计两题都会做,则先做高分题;估计两题都不易,则先就高分题实施“分段得分”。

二、一慢一快,相得益彰,规范书写,确保准确,力争对全。

审题要慢,解答要快。

在以快为上的前提下,要稳扎稳打,步步准确。

假如速度与准确不可兼得的话,就只好舍快求对了。

三、面对难题,以退求进,立足特殊,发散一般,讲究策略,争取得分。

对于一个较一般的问题,若一时不能取得一般思路,可以采取化第1页共5页一般为特殊,化抽象为具体。

对不能全面完成的题目有两种常用方法: 1.缺步解答。

将疑难的问题划分为一个个子问题或一系列的步骤,每进行一步就可得到一步的分数。

2.跳步解答。

若题目有两问,第一问做不上,可以第一问为“已知”,完成第二问。

四、执果索因,逆向思考,正难则反,回避结论的肯定与否定。

对一个问题正面思考受阻时,就逆推,直接证有困难就反证。

对探索性问题,不必追求结论的“是”与“否”、“有”与“无”,可以一开始,就综合所有条件,进行严格的推理与讨论,则步骤所至,结论自明。

数学考试答题技巧(总结)1.对于会做的题目,要解决会而不对,对而不全这个老大难问题.有的考生拿到题目,明明会做,但最终答案却是错的--会而不对.有的考生答案虽然对,但中间有逻辑缺陷或概念错误,或缺少关键步骤--对而不全.因此,会做的题目要特别注意高考数学解答题答题技巧及题型特点,防止被分段扣点分.(经验)表明,对于考生会做的题目,阅卷老师则更注意找其中的合理成分,分段给点分,所以做不出来的题目得一二分易,做得出来的题目得满分难.2.对绝大多数考生来说,更为重要的是如何从拿不下来的题目中分段得点分.我们说,有什么样的解题策略,就有什么样的得分策略.把你解题的真实过程原原本本写出来,就是分段得分的全部秘密。

2024年高考数学无敌答题技巧总结

2024年高考数学无敌答题技巧总结

2024年高考数学无敌答题技巧总结写作目的:为了帮助同学们在2024年高考数学考试中取得优异的成绩,我整理了一些无敌答题技巧,希望能帮助同学们顺利应对各种题型,提高答题效率。

以下是我总结的十个技巧,希望能对你有所帮助。

技巧一:熟悉考纲和教材高考数学考试的内容都是基于教材和考纲来设置的,所以熟悉考纲和教材非常重要。

仔细阅读考纲,了解每个知识点的要求及考查形式,针对性地进行复习,可以更有针对性地准备考试。

技巧二:掌握基本概念和公式数学是一个基础学科,掌握基本的概念和公式是做好数学题的基础。

在备考过程中,要逐个学习、理解和掌握各个概念和公式,并应用到解题中,培养自己的灵活性和逻辑思维能力。

技巧三:多做题,多总结做题是掌握数学知识的最佳方法之一。

通过多做题可以让同学们熟悉各种题型,加深对知识点的理解,提高自己的解题能力。

同时,做题后要及时总结,找出解题的规律和方法,并进行归纳总结,以备考时参考和巩固。

技巧四:合理安排时间高考数学考试时间紧张,因此在备考过程中要合理安排时间。

要根据自己的情况,将复习时间合理划分,将重点放在理解重点知识,掌握解题技巧和熟悉考题的分析方法上。

技巧五:掌握解题方法和技巧掌握解题方法和技巧是高考数学取得好成绩的关键之一。

要通过练习和总结,掌握各类题型的解题思路和解题方法,灵活运用到实际题目中。

同时,要善于分析题目,理清题目要求,准确把握解题方向。

技巧六:注重思维过程高考数学考试注重思维能力和解题过程,不仅要求得到正确答案,还要求清晰的逻辑推理和严密的论证过程。

因此,在解题过程中要注重思维过程,合理安排解题步骤,注意逻辑性和条理性。

技巧七:审题准确在答题过程中,要仔细审题,准确理解题意,不要随意猜测或主观臆断。

可以通过标记关键信息和关键词,分析问题的要点,帮助自己更好地理解和解答题目。

技巧八:注意单位转换和近似计算高考数学考试中,常常需要进行单位转换和近似计算。

在解题过程中要注意计算过程中的单位是否一致,并正确进行单位的转换。

高考数学各类题型的答题套路及技巧

高考数学各类题型的答题套路及技巧

高考数学各类题型的答题套路及技巧高考数学必考题及解题技巧篇一1、解三角形常用知识:正余弦定理、面积公式、边角互换、均值不等式,注意角范围的叙述(三角形内角和定理);三角函数与解三角形,向量相结合:化一公式、诱导公式、二倍角公式、基本关系式,均值不等式、周期的求法。

2、数列求通项an的方法:公式法、累加法、累乘法、构造法、倒数法、同除法、an与S,和Sn-1的等量关系。

求Sn的常用方法:公式法、错位相减法、裂项相消法、分组求和法等。

3、立体几何证明平行:做辅助线(中位线,平行四边形,相似三角形等)可证面面平行,线面平行性质等。

证明垂直:勾股定理;等腰,等边三角形性质;菱形,正方形性质;基本图形的垂直;线面垂直得线线垂直;面面垂直性质,直径所对的圆周角等。

求距离:解三角形,等体积法等。

求空间角:做辅助线,建系,标出相应点的坐标,求出平面的法向量,写出相应的夹角公式,线面角公式等。

高考数学答题技巧篇二1、高考数学答题带着量角器进考场带个量角器进考场,遇见解析几何马上可以知道是多少度,小题求角基本马上解了,要是求别的也可以代换,大题角度是个很重要的结论,如果你实在不会,也可以写出最后结论。

2、高考数学答题取特殊值法圆锥曲线中最后题往往联立起来很复杂导致算不出,这时你可以取特殊值法强行算出过程就是先联立,后算代尔塔,用下韦达定理,列出题目要求解的表达式,就可以了。

3、高考数学答题空间几何空间几何证明过程中有一步实在想不出把没用过的条件直接写上然后得出想不出的那个结论即可。

如果第一题真心不会做直接写结论成立则第二题可以直接用!用常规法的同学建议先随便建立个空间坐标系,做错了还有2分可以得。

4、高考数学答题图像法超越函数的导数选择题,可以用满足条件常函数代替,不行用一次函数。

如果条件过多,用图像法秒杀。

不等式也是特值法图像法。

先易后难我们在答数学试卷的时候,一定要先选择自己会的有把握的,要按照这个顺序,确保自己会都正确,我们在做其他的题。

高考考前指导数学规范答题技巧

普集高中校本教材-------------高考数学规范答题规范答题1 应对填空题要注重反思与验算考题再现:1.已知全集S={1,3,x3-x2-2x},A={1,|2x-1|},如果S A={0},则这样的实数x的集合是.学生作答:甲生:{0,-1,2} 乙生:-1,2 丙生(-1,2)规范解答{-1,2}老师忠告:(1)由于填空题不像选择题那样有一个正确答案供我们校正结果,所以填空题更容易丢分.因此,对得出的结果要注意验算与反思,验算一下结果是否符合题意,反思一下表达形式是否符合数学的格式,像乙、丙两位同学已经求得了x的值,但由于书写格式不对,造成丢分.(2)注意集合“三性”,防止“奸细”混入.例如甲同学就是没有考虑到x=0时,A={1,1}违反了元素的互异性原则,应舍去.考题再现:2.(2009·上海,2)已知集合A={x|x≤1},B={x|x≥a},且A∪B=R,则实数a的取值范围是.学生作答:甲生:a<1 乙生:a≥1规范作答:a≤1老师忠告:(1)集合的“交、并、补”特别要小心的是“端点值的取舍”.常犯的错误就是对“端点值”把握不准,其实很简单,只要单独反思一下“端点值”即可.(2)一定要养成“在数轴上进行集合(数集)运算”的好习惯,借助数轴,集合的运算关系一目了然.上面甲同学丢掉了端点值,乙同学没有搞清并集的含义及画法.规范答题2 注重数学思维能力的培养考题再现:某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价与上市时间的关系用图1的一条折线表示;西红柿的种植 成本与上市时间的关系用图2的抛物线表示.(1)写出图1表示的市场售价与时间的函数关系式P=f (t );写出图2表示的种植成本与时间的函数关系式Q=g (t );(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?(注 :市场售价和种植成本的单位:元/百千克,时间单位:天) 学生作答: 解 设f(t)=kt+b,当0≤t ≤200,由图可得方程 当t >200时,所以p=f(t)=t+300设g(t)=A(t-150)2+100 把t=250,Q=150代入g(t)解得(2)设F (t )=f(t)-g(t)当0≤t ≤200时,当t=50时,F(t)取得最大值F(t)max=100 当200<t ≤300时,不合题意, 1,300,100200300-==⎩⎨⎧=+=k b b k b 解得⎩⎨⎧=+=+300300100200b k b k 3002)(,2300-=∴⎩⎨⎧=-=t x f k b ,2001=A ).3000(100)150(2001)(2≤≤+-=t t t g5.87212001)(]100)150(2001[300)(22++-=+--+-=t t t F t t t F 化简得答 当上市时间为50天时,纯收益最大;最大为100元.规范解答解 (1)由图1可得市场售价与时间的函数关系为由图2可得种植成本与时间的函数关系为(2)设t 时刻的纯收益为h(t),则由题意得h (t )=f (t )-g (t ),当0≤t ≤200时,配方整理得 所以,当t=50时,h(t)取得区间[0,200]上的最大值100;当200<t ≤300时,配方整理得 所以,当t=300时,h(t)取得区间(200,300]上的最大值87.5.综上,由100>87.5可知,h(t)在区间[0,300]上可以取得最大值100,此时t=50,即从二月一日开始的第50天时,上市的西红柿纯收益最大. 老师忠告:(1)解题能力由解题的结果体现,但思维能力水平的高低由解题步骤体现,清晰条理的解题步骤表现了解答人的数学素养,同时它也能提高一个人的数学素养.(2)第(1)小题的解答复杂而混乱,反映了解答人思维上的混乱与慌乱进而造成错误.第(2)小题中对200<t ≤300时不合题意的说明不恰当,没有说服力,要丢分!(3)对应用题的解答,要深刻理解题意.对解决方案先做到胸有成竹,才有“下笔成章”.若有不同情况,要分别说出各种情况下的答案,再汇总确定答案. 规范答题3 注重表达式及结果的化简 考题再现:已知函数f (x )=(1)若f (x )=2,求x 的值; ⎩⎨⎧≤<-≤≤-=;300200,3002,2000,300)(t t t t t f .3000,100)150(2001)(2≤≤+-=t t t g ⎪⎪⎩⎪⎪⎨⎧≤<-+-≤≤++-=.300200,20251272001,2000,2175212001)(22t t t t t t t h 即,100)50(2001)(2+--=t t h ,100)350(2001)(2+--=t t h .212||x x -(2)若2tf(2t)+mf(t)≥0对于t ∈[1,2]恒成立,求实数m 的取值范围. 学生作答解 由题意得规范解答解老师忠告(1)解答数学题时,若能及时对表达式进行化简,会使运算过程变的简单且正确率高,反之冗长的表达式不仅书写麻烦,且给考生增加心理上的压力; 运算结果不注重化简更是直接丢分.(2)该生在求f(x)解析式时,当x<0时,f (x )解析式化简不彻底,使进一步解答时显得逻辑上存在漏洞.(3)对(2)化简变形的方向性不明确造成变形无法进行,反映出平时训练时对步骤的严谨性要求不够,对此类问题的通解通法掌握不好.⎪⎪⎪⎩⎪⎪⎪⎨⎧=<->-=-0,00,2120,212)(x x x x f x x x x ).12(log 21)2(,22122)()1(212+=∴=-=-∴=+x x f x x x x 即 0)1(2)2(2,022220)212()212(20)()2(2)2(2322≥+-+≥⋅-⋅+-≥-+-∴≥+---m m m m m t mf t f t t t t t t t t t t t t t ;212)(,0xx x f x -=>时当⎪⎩⎪⎨⎧≤>-=∴===-=-=<-0,00,212)(.0)(,0;022212)(,0x x x f x f x x f x x x x x xx 时当时当).21(log ,02.212,01222,2212)1(22+=∴>±==-⋅-=-x x x x x x x 解得即由条件可知),5[].5,17[)21(],2,1[).12(,012).12()12(02122122,]2,1[)2(2224222+∞-∴--∈+-∴∈+-≥∴>---≥-≥⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-∈的取值范围是即时当m t m m m t t t t tt tt t t t规范答题4 注重解题步骤“数学” 的表达考题再现 考题再现:1.(2009·北京理,18)设函数f (x )=x e kx (k ≠0). (1)求曲线y =f (x )在点(0,f (0))处的切线方程; (2)求函数f (x )的单调区间;(3)若函数f (x )在区间(-1,1)内单调递增,求k 的取值范围. 学生作答解 (1)f ′(x )=(1+kx )·e kx ,f ′(0)=1,f (0)=0.∴曲线y=f(x)在点(0,f(0))处的切线方程为y=x .(2)由f ′(x)=(1+kx)·e kx =0,得x=-1k (k ≠0).若k>0,则当x ∈(-∞,-1k )时,f(x)<0,函数f(x)单调递减;当x ∈(-1k ,+∞)时,f ′(x)>0,函数f(x)单调递增.若k<0,则当x ∈(-∞,-1k )时,f ′(x)>0,函数f(x)单调递增;当x ∈(-1k ,+∞)时,f ′(x)<0,函数f(x)单调递减.(3)若k>0,则-1k <-1,得k<1时函数f(x)在(-1,1)内单调递增.若k<0则-1k >1,得k>-1函数f(x)在(-1,1)内单调递增. 规范解答解 (1)f′(x)=(1+kx)e kx ,f′(0)=1,f(0)=0, 曲线y =f(x)在点(0,f(0))处的切线方程为y =x.(2)由f′(x)=(1+kx)e kx=0,得x =-1k (k≠0),若k>0,则当x ∈⎝ ⎛⎭⎪⎫-∞,-1k 时,f′(x)<0,函数f(x)单调递减;当x ∈⎝ ⎛⎭⎪⎫-1k ,+∞时,f′(x)>0,函数f(x)单调递增,若k<0,则当x ∈⎝ ⎛⎭⎪⎫-∞,-1k 时,f′(x)>0,函数f(x)单调递增;当x ∈⎝ ⎛⎭⎪⎫-1k ,+∞时,f′(x)<0,函数f(x)单调递减,综上所述:当k>0时,函数f(x)的增区间是⎝ ⎛⎭⎪⎫-1k ,+∞,减区间是⎝ ⎛⎭⎪⎫-∞,-1k ;当k<0时,函数f(x)的增区间是⎝ ⎛⎭⎪⎫-∞,-1k ,减区间是⎝ ⎛⎭⎪⎫-1k ,+∞.(3)由(2)知,若k>0,则当且仅当-1k ≤-1,即k≤1时,函数f(x)在(-1,1)内单调递增,此时0<k≤1.若k<0,则当且仅当-1k ≥1,即k≥-1时,函数f(x)在(-1,1)内单调递增,此时-1≤k<0.综上可知,函数f(x)在(-1,1)内单调递增时,k 的取值范围是[-1,0)∪(0,1]. 老师忠告(1)结论的完备性,答案的准确性是拿到满分的关键.(2)第(2)问中,并没有回答出函数的单调区间,要注意“f(x)的增区间是(a ,b)”与“f(x)在(a ,b)上是增函数”的区别.一般来说,由分类讨论得出的结论,要做汇总说明. (3)第(3)问中,一方面要注意区间的“端点值”不要漏掉,另一方面要注意与分类范围取交集. 考题再现2.已知函数f(x)=x 4-3x 2. (1)求f(x)的单调区间;(2)若与曲线y =f(x)相切的直线过原点,求该切线方程. 学生作答解 (1)f′(x)=4x 3-6x =4x ⎝⎛⎭⎪⎫x +62⎝ ⎛⎭⎪⎫x -62,由f′(x)>0,解得-62<x<0或x>62,由f′(x)<0,解得x<-62或0<x<62;故f(x)的递增区间为⎝ ⎛⎭⎪⎫-62,0,⎝ ⎛⎭⎪⎫62,+∞f(x)的递减区间为⎝⎛⎭⎪⎫-∞,-62,⎝ ⎛⎭⎪⎫0,62.(2)由题意,原点是切点,得f′(0)=0,故切线方程为y =0.规范答题解 (1)f′(x)=4x 3-6x =4x ⎝⎛⎭⎪⎫x +62⎝ ⎛⎭⎪⎫x -62,由f′(x)>0,解得-62<x<0或x>62,由f′(x)<0,解得x<-62或0<x<62;故f(x)的递增区间为⎝ ⎛⎭⎪⎫-62,0,⎝ ⎛⎭⎪⎫62,+∞,递减区间为⎝⎛⎭⎪⎫-∞,-62,⎝ ⎛⎭⎪⎫0,62.(2)若原点是切点,则f′(0)=0,得切线方程y =0.若原点不是切点,设切点 P(x 0,y 0) (x 0·y 0≠0)则k =f′(x 0)=4x 30-6x 0=y0x0=x 30-3x 0,得x 0=±1. 当x 0=1时,P(1,-2),k =-2, 切线方程为2x +y =0;当x0=-1时,P(-1,-2),k =2, 切线方程为2x -y =0.综上所述:所求切线方程为y =0或2x +y =0或2x -y =0. 老师忠告:(1)特别要注意某些数学符号的用法,如:取值范围、定义域、值域等的合并要用“∪”,而单调区间是不能用“∪”的,如函数在多个区间上都是增函数,则这几个区间用“,”隔开或用“和”字连接.(2)要注意区别“在曲线上点A(a ,b)处的切线”与“过点A(a ,b)的曲线的切线”两种说法的区别.规范答题5 审题不仔细,导致失分 考题再现:是否存在实数a,使函数y=sin2x+acos x+ 在闭区间 上的最大值为1? 若存在,求出对应的a 值;若不存在,请说明理由.学生作答:解 假设存在实数a,2385-a ⎥⎦⎤⎢⎣⎡2π,02385cos sin 2-++=a x a x y 则2185cos cos 2-++-=a x a x 21854)2(cos 22-++--=a a a x .234,234121854,221854)2(,cos 2max 22符合题意或故存在或解得时当则令=-==-==-+==-++--==a a a a a a y a t a a a t y x t规范解答:解 假设存在实数a,老师忠告:审题不仔细,导致换元时忽视了新元的取值范围,本题中自变量的取值范围限制在上,根据余弦函数的性质,新元t 的取值范围应该是[0,1],而不是R 或[-1,1].规范答题6 思维定势,乱套公式 考题再现已知函数f(x)=a ·(b -a ),其中向量a =(cos ωx,0),b =( sin ωx,1),且ω为正实数.(1)求f(x)的最大值;(2)对任意m ∈R ,函数y=f(x),x ∈[m ,m+π]的图象与直线 有且仅有一个交点,求ω的值,并求满足 的x 值. 学生作答解.10,21854)21(,10,cos ,1cos 0,2π021854)2(cos 2185cos cos 2385cos sin 222222≤≤-++--=≤≤=≤≤≤≤-++--=-++-=-++=t a a a t y t x t x x a a a x a x a x a x a x y 则令时当则,12185,0cos ,0,0,02)2(max =-===<<a y x t a a 时即则当时即当.,0,512值足条件的故这种情况下不存在满由于解得a a a <=.23,.,21320,1320,123813,1cos ,1,2,12)3(max 符合题意存在综上知值足条件的故这种情况下不存在满由于解得时即则当时即当=<==-===>>a a a a y x t a a )12π7,12π(213)(⎥⎦⎤⎢⎣⎡∈-=x x f 21=y 2||))()1(a b a a (b a -⋅=-⋅=x f 21)6π2sin(22cos 12sin 23cos 2sin 23cos 0sin cos 322--=+-=-=-+=x x x x x x x x ωωωωωωωω规范解答 解.21)(1)6π2sin(1的最大值为又x f x ∴≤-≤-ω ,23)6π4sin(,21321)6π4sin(,21)6π4sin()(,2π,π2π,)(,21)()2(=-∴-=--∴--=∴=∴=∴∴=x x x x f x f y x f ωω的周期为有且只有一个交点与直线函数.24π58π,3π23π6π4===-∴x x x 或即或3(1)3cos sin 01sin 2.2x x x ωωω⋅=+⨯=a b .21)(,1)6π2sin(1.21)6π2sin(212cos 212sin 2322cos 12sin 23cos 2sin 232的最大值为x f x x x x x x x x ∴≤-≤---=--=+-=-=ωωωωωωωω ,21)()2(的大值为函数x f ,21π),[),(有一个交点有且仅的图象与直线=+∈=y m m x x f y .12π54π,3π23π6π2π],,0[6π2,6π7,6π2,12π7,12π.23)6π2sin(,21321)6π2sin(,21)6π2sin()(.1π,2π2.π)(===-∴∈-∴⎥⎦⎤⎢⎣⎡∈∴⎥⎦⎤⎢⎣⎡∈=-∴-=--∴--=∴=∴=∴∴x x x x x x x x x x f T x f 或即或为的周期函数 ωω老师忠告本题中2ω相当于公式 中的ω,需明确其意义.思维定势,乱套公式,造成由 得ω=2,致使后面运算全部出错,仅得7分. 规范答题7 步骤不完整,导致失分 考题再现已知数列{a n }的前n 项和为S n ,点(n ,S n ) (n ∈N +)均在函数y =f (x )=3 x 2-2 x 的图象上.(1)求数列{a n }的通项公式;(2)设b n =3 a n a n +1,T n 是数列{b n }的前n 项和,求使得T n <m20对所有n ∈N +都成立的最小正整数m . 学生作答.10,20)1611(21)1611(21)]161561()13171()711[(21),161561(21]5)1(6)[56(33)1()2(.56)]1(2)1(3[)23(.23.23)()N )(,()1(1122122为整数所以满足要求的最小正由故得知由所以所以的图象上均在函数因为点m m n n n n b T n n n n a a b n n n n n S S a n n S x x x f y n S n ni i n n n n n n n n n <+-+-=+--++-+-==+--=-+-==-=-----=-=-=-==∈∑=+-+ 规范解答解 (1)因为点(n ,S n ) (n ∈N +)均在函数y =f(x)=3 x 2-2 x 的图象上,所以S n =3n 2-2n. 当n ≥2时,a n =S n -S n -1=(3n 2-2n)-[3(n -1)2-2(n -1)]=6n -5. 当n =1时,a 1=S 1=3×12-2=6×1-5, 所以,a n =6n -5 (n ∈N +). (2)由(1)得知b n =3 a n a n +1=3(6n -5)[6(n +1)-5]=12⎝⎛⎭⎪⎫16n -5-16n +1, 故T n =∑n i =1b i =12[⎝ ⎛⎭⎪⎫1-17+⎝ ⎛⎭⎪⎫17-113+…+⎝ ⎛⎭⎪⎫16n -5-16n +1=12⎝⎛⎭⎪⎫1-16n +1. 因此,要求12⎝⎛⎭⎪⎫1-16n +1<m 20 (n ∈N +)成立的m , ωπ2=T π,π2=ω必须且仅须满足12≤m20,即m ≥10,所以满足要求的最小正整数m 为10. 老师忠告在第(1)问中没有注意到a n =S n -S n -1成立的条件,造成步骤的缺失,因而被扣分.在第(2)问的解答中没有写出必要的文字说明、方程式和重要的演算步骤,只写出最后答案不能得全分,犯了“大题小作”中的“一步到位”错误. 规范答题8 书写紊乱,所言无据 考题再现设正整数数列{a n }满足:a 2=4,且对于任何n ∈N +,有2+1 a n +1<1 a n +1 a n +11n -1n +1<2+1a n.求数列{a n }的通项a n .学生作答解规范解答解 (1)由已知不等式得:2+1a n +1<n(n +1)⎝ ⎛⎭⎪⎫1a n +1 a n +1<2+1 a n .① 当n =1时,由①得:2+1 a 2<2⎝ ⎛⎭⎪⎫1a 1+1 a 2<2+1 a 1, 即2+14<2 a 1+24<2+1 a 1,解得23<a 1<87.∵a 1为正整数,∴a 1=1.当n =2时,由①得:2+1 a3<6⎝ ⎛⎭⎪⎫14+1 a3<2+14, 解得8<a 3<10.∵a 3为正整数,∴a 3=9.∴a 1=1,a 3=9.11212111113323312311112(1)()2.11111,22()2,122122,44281111. 1.2,26()2.374481091,4,9,n n n nn n n a a a a n a a a a a a a a n a a a a a a a a n +++<++<+=+<+<++<+<+<<∴==+<+<+<<∴=====当时得即当时由得(2)由a1=1,a2=4,a3=9,猜想:an=n2.下面用数学归纳法证明1°当n=1,2时,由(1)知an =n2均成立;2°假设n=k (k≥2)成立,即ak=k2,则n=k+1时,由①得2+1ak+1<k(k+1)⎝⎛⎭⎪⎫1k2+1ak+1<2+1k2⇒k3(k+1)k2-k+1<ak+1<k(k2+k-1)k-1⇒(k+1)2-k+1k2-k+1<ak+1<(k+1)2+1k-1∵k≥2时,(k2-k+1)-(k+1)=k(k-2)≥0,∴k+1k2-k+1∈(0,1],又∵k-1≥1,∴1k-1∈(0,1].又ak+1∈N+,∴(k+1)2≤ak+1≤(k+1)2.故ak+1=(k+1)2,即当n=k+1时,an=n2成立.综上,由1°,2°知,对任意n∈N+,an=n2老师忠告解题表述的总原则是:说理充分,逻辑严谨,层次清楚,表述规范.本解答从头到尾只有方程,没有必要的文字说明,而且像写作文,关键点不突出,一定会失去应得之分,还要注意解题步骤最忌像“散文”一样连着写下来,让方程、答案淹没在文字之中,应像“诗”一样分行写出,出现一个结果就另起一行单独书写,这样即使阅卷速度快,也不会因为找不到你的得分点而少给分;正确结论的获得要通过严格推理,或在猜想出结论后再利用数学归纳法加以严格证明.本解答中用不完全归纳法猜想数列的通项,犯了以偏概全的错误,缺乏思维的严谨性,扣分是必然的.规范答题9 审题马虎,题意理解有误考题再现1.甲、乙两地相距s km,汽车从甲地匀速行驶到乙地,速度不得超过c km/h,已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v(km/h)的平方成正比,比例系数为b;固定部分为a元.(1)把全程运输成本y(元)表示为速度v(km/h)的函数,并指出这个函数的定义域;(2)为了使全程运输成本最小, 汽车应以多大速度行驶? 学生作答 甲生解 (1)依题意,汽车从甲地匀速行驶到乙地所用的时间是 ,全程运输成本为y=a+bv 2,故所求函数为y=a+bsv,定义域为{v|0<v ≤c}.乙生解 (1)由题意可知:汽车从甲地到乙地所用时间为 ,运输成本为故函数表达式为 定义域为 (2)依题意s ,a ,b ,v 均为正数,故规范解答解 (1)依题意,汽车从甲地匀速行驶到乙地所用的时间是sv,全程运输成本为y =a s v +bv2s v =s ⎝ ⎛⎭⎪⎫a v +bv .故所求函数为y =s ⎝ ⎛⎭⎪⎫a v +bv ,定义域为{v|0<v ≤c}.因此,当v =c 时,全程运输成本最小.事实上,s ⎝ ⎛⎭⎪⎫a v +bv -s ⎝ ⎛⎭⎪⎫a c +bc=s ⎣⎢⎡⎦⎥⎤a ⎝ ⎛⎭⎪⎫1v -1c +b(v -c)=svc(c -v)(a -bcv) ∵c -v ≥0且a>bc2,∴a -bcv ≥a -bc2>0. ∴s ⎝ ⎛⎭⎪⎫a v +bv ≥s ⎝ ⎛⎭⎪⎫a c +bc (当且仅当v =c 时,等号成立). 综上所述,为使全程运输成本最小,当 ab ≤c 时,行驶速度v = ab ;当ab>c 时,行驶速度v =c. 老师忠告甲生在答题前没有认真审题,想当然的认为运输成本中的固定部分就是a ,与时间的长短没关系,事实上题目交待的很清楚,汽车每小时的运输成本中固定部分vsvs ),(2bv v a s v s bv v s a y +=•+•=v s),(bv va s y +=(].,0c 运输成本最小.全程时,等号成立,时,即时,当且仅当b a v b a v bv v a ab s bv vas =∴==≥+,2)(,,0,②.,的减函数是易证时当若全程运输成本最小时v y c v c b a b a v≤<>=∴为a 元,只是语句较长,看了后面部分又忘记了前面部分的总的要求.因此,在今后的考试中,做应用题时,一定要认真阅读两遍以上.乙生在答题时,由于审题马虎没有注意到或做题时忘记“速度不得超过c km/h”实际问题中的条件限制,使解答不够完整.应分 ≤c 时, >c 时两种情况求运输成本y 最小时汽车的行驶速度. 考题再现2.如图所示,将一矩形花坛ABCD 扩建成一个更大 的矩形花坛AMPN ,要求B 点在AM 上,D 点在AN 上,且对角线MN 过C 点,已知AB =3米,AD = 2米.(1)要使矩形AMPN 的面积大于32平方米,则DN 的长应在什么范围内?(2)当DN 的长为多少时,矩形花坛AMPN 的面积 最小?并求出最小值.学生作答规范解答解 (1)设DN 的长为x (x>0)米,则AN =(x +2)米∵DN AN =DCAM ,∴AM =3(x +2)x , ∴SAMPN =AN ·AM =3(x +2)2x .由SAMPN>32,得3(x +2)2x>32,又x>0,得3x2-20x +12>0,解得:0<x<23或x>6,即DN 长的取值范围是⎝ ⎛⎭⎪⎫0,23∪(6,+∞).(2)矩形花坛AMPN 的面积为 y =3(x +2)2x =3x2+12 x +12 x =3x +12 x +12≥2 3 x ·12x +12=24b a ba.24.241212321212312123)2(3)2(.326.632,012203,32)2(3,32,)2(3,)2(3,)2(,)1(22222的面积的最小值为故矩形花坛的面积为矩形花坛或长的取值范围是即或即得米则米的长为设AMPN xx x x x x x x x y AMPN x x DN x x x x x x S x x AM AN S xx AM AMDC ANDN x AN x DN AMPN AMPN =+•≥++=++=+=<>><>+-∴>+>∴+=•=∴+=∴=+=当且仅当3x =12x ,即x =2时,矩形花坛AMPN 的面积取得最小值24. 故DN 的长为2米时,矩形AMPN 的面积最小,最小值为24平方米. 老师忠告该生在答卷过程中,存在着较多不规范的问题,一是由于马虎忽略了实际应用问题中的线段的长为正数的限制条件,导致第(1)问答案错误;二是审题不仔细,第(2)问明明有两个设问,但只解答了一个;三是做题不严谨,面积y 有没有最小值,关键是“=”能不能成立,没有验证“=”成立的条件就直接得最小值为24的结论;四是数学符号运用不规范,线段的长度在代数、三角、立体几何中用线段端点的两字母表示即可,只有在解析几何中对表示线段两端的字母加上绝对值符号.规范答题10 因定理运用所需条件不全失分 考题再现如图所示,M ,N ,K 分别是正方体ABCD —A 1B 1C 1D 1的棱AB ,CD ,C 1D 1的中点.(1)求证:AN ∥平面A 1MK ; (2)求证:平面A 1B 1C ⊥平面A 1MK.学生作答证明:(1) ∵K 、N 分别为C 1D 1,CD 的中点 ∴ AN ∥A 1K ∴ AN ∥面A 1MK(2) ∵M 、K 分别为AB ,C 1D 1的中点 ∴ MK ∥BC 1 又四边形BCC 1B 1为正方形∴ BC 1⊥B 1C ∴ MK ⊥B 1C 又A 1B 1⊥面BCC 1B 1∴ A 1B 1⊥BC 1∴ MK ⊥A 1B 1 ∴ MK ⊥面A 1B 1C ∴面A 1MK ⊥面A 1B 1C 规范解答证明(1)如图所示,连接NK.在正方体ABCD —A 1B 1C 1D 1中,∵四边形AA 1D 1D ,DD 1C 1C 都为正方形, ∴AA 1∥DD 1,AA 1=DD 1,C 1D 1∥CD ,C 1D 1=CD. ∵N ,K 分别为CD ,C 1D 1的中点,∴DN ∥D 1K ,DN=D 1K , ∴四边形DD 1KN 为平行四边形.∴KN ∥DD 1,KN=DD 1, ∴AA 1∥KN ,AA 1=KN.∴四边形AA 1KN 为平行四边形.∴AN ∥A 1K.A 1K 平面A 1MK ,AN 平面A 1MK ,∴AN ∥平面A 1MK.(2)连接BC 1.在正方体ABCD —A 1B 1C 1D 1中,AB ∥C 1D 1,AB=C 1D. ∵M ,K 分别为AB ,C 1D 1的中点,∴BM ∥C 1K,BM=C 1K. ∴四边形BC 1KM 为平行四边形.∴MK ∥BC 1.在正方体ABCD —A 1B 1C 1D 1中,A 1B 1⊥平面BB 1C 1C ,BC 1平面BB 1C 1C ,∴A 1B 1⊥BC 1.∵MK ∥BC 1,∴A 1B 1⊥MK.∵四边形BB 1C 1C 为正方形,∴BC 1⊥B 1C.∴MK ⊥B 1C.∵A 1B 1平面A 1B 1C ,B 1C 平面A 1B 1C ,A 1B 1∩B 1C=B 1,∴MK ⊥平面A 1B 1C.∵MK 平面A 1MK , ∴平面A 1MK ⊥平面A 1B 1C. 老师忠告该生(1)问中AN ∥A 1K 跨度太大,缺少关键步骤,应先证四边形ANKA 1为平行四边形,(2)问中MK ∥BC 1跨度大,证MK ⊥面A 1B 1C 及面A 1MK ⊥面A 1B 1C 时,缺少运用有关定理证明垂直的条件,这种粗线条的思维是不可行的,一定要处处留心,条理清晰.规范答题11 解题过程缺少必要的文字说明 考题再现如图所示,已知直三棱柱ABC —A 1B 1C 1中,△ABC 是等腰直角三角形,∠BAC=90°,且AB=AA 1,D 、E 、F 分别是B 1A 、CC 1、BC 的中点.现设A 1A=2a.(1)求证:DE ∥平面ABC ; (2)求证:B 1F ⊥平面AEF ;(3)求二面角B 1—AE —F 的正切值. 学生作答(1)证明 ∵D 、E 分别为AB 1、CC 1的中点, ∴ DE ∥AC ,又DE 面ABC ,∴DE ∥面ABC. (2)证明 B(2a,0,0),C(0,2a,O),F(a,a,0),E(0,2a,a),B(2a,0,2a)B 1F ·EF=0,B 1F ·AF=0 (3)解 面AEF 的法向量为B 1F=(-a ,a ,-2a )设面AEB 1的法向量为n=(x,y,1)..,111AEF F B F ,AF EF AF F B EF F B 面又⊥∴=⋂⊥⊥∴.5,5,tan 65,cos 1,sin 61,cos )1,21,1(0·0·),2,0(),2,0,2(1112111111---∴->=<∴=><->=<∴-=•=><∴--=∴⎪⎩⎪⎨⎧==∴==的正切值为二面角又F AE B F B n F B n F B n ,FB n F B n n ,AE n AB n a a AE a a AB规范解答(1)证明 如图建立空间直角坐标系A —xyz ,则A (0,0,0),B (2a ,0,0),C (0,2a,0),A 1(0,0,2a),B 1(2a,0,2a),C 1(0,2a,2a).取AB 的中点H ,连接DH ,CH.∵E (0,2a ,a ),D (a ,0,a ),H (a ,0,0),∴CH=(a ,-2a ,0),ED=(a ,-2a ,0), ∴CH ∥DE.∵CH 平面ABC ,而DE ∥平面ABC ,∴DE ∥平面ABC.(2)证明 ∵B (2a ,0,0),C (0,2a ,0),∴F (a ,a ,0),∴B 1F=(-a ,a ,-2a ),EF=(a ,-a ,-a ),AF=(a ,a ,0),∴B 1F ·EF=(-a )·a+a ·(-a )+(-2a )·(-a )=0,B 1F ·AF=(-a )·a+a ·a+(-2a )·0=0, ∴B 1F ⊥EF ,B 1F ⊥AF.∵EF ∩AF=F ,∴B 1F ⊥平面AEF.(3)解 设平面AB 1E 的一个法向量为m=(x,y,z),∵AB 1=(2a ,0,2a ),AE=(0,2a ,a ),∴m ·AB 1=2ax+2az=0,m ·AE=2ay+az=0,由(2)知平面AEF 的一个法向量为B 1F=(-a ,a ,-2a ),设B 1F 与m 所成的角为θ.则cos θ= ∵平面AB 1E 与平面AEF 所成的二面角为锐二面角,∴二面角B 1—AE —F .∴二面角B 1—AE —F . 老师忠告该生在第(1)问审题中将条件理想化,DE 根本不是中位线,在(2)问中缺少文字说明,应交待建系,求出向量的坐标,最后把向量转化成直线,在(3) 问中没注意隐含条件,二面角B 1—AE —F 的平面角为锐角.审题时要审条件、审结论、审关系、审图形,解题过程中必要的文字说明不可少. 规范答题12 符号应用不规范,忽视隐含条件 考题再现).,21,(,21.a a a m y x --==⎪⎩⎪⎨⎧-=-=∴则a z 令z.z 2221223662a a a a a --==||11F B ||m 65在平面直角坐标系xOy 中,已知点A (-1,0)、 B (1,0),动点C 满足条件:△ABC 的周长为2+ .记动点C 的轨迹为曲线W. (1)求W 的方程;(2)经过点(0, )且斜率为k 的直线l 与曲线W 有两个不同的交点P和Q ,求k 的取值范围;(3)已知点M ( ,0),N (0,1),在(2)的条件下,是否存在常数k ,使得向量 与 共线?如果存在,求出k 的值;如果不存在,请说明理由.学生作答解 (1)设C (x,y ), ∵AC+BC+AB=2+ , AB=2 ∴AC+BC= >2,∴由定义知,动点C 的轨迹是以A 、B 为焦点,长轴长为 的椭圆.∴a= ,c=1, ∴b 2=a 2-c 2=1, ∴W 的方程为 (2)设直线l 的方程为y=kx+ ,代入椭圆方程,得 整理得 ①因为直线l 与椭圆有两个不同的交点P 和Q 等价于 解得k<- 或k>∴满足条件的k 的取值范围为k< - 或 k>(3)设P (x 1,y 1),Q(x 2,y 2)则 =(x 1+x 2,y 1+y 2)由①得x 1+x 2=- ,因为M ( ,0),N (0,1),所以 ,所以 与 共线等价于x 1+x 2= (y 1+y 2)解得k= 所以不存在常数k ,使得向量 与 共线 规范解答解(1)设C (x ,y ),∵|AC|+|BC|+|AB|=2+ ,|AB|=2,∴|AC|+|BC|= >2,∴由定义知,动点C 的轨迹是以A 、B 为焦点,长轴长为 的椭圆除去与x 轴的两个交点. ∴a= ,c=1.∴b 2=a 2-c 2=1.∴W 的方程为 +y 2=1(y ≠0).(2)设直线l 的方程为y=kx+ ,代入椭圆方程,得 +(kx+ )2=1.2222OQ OP +MN 22222221222=+y x21)2(222=++kx x 0122)21(22=+++kx x k 024)21(48222>-=+-=∆k k k 22222222OQ OP +22124kk+2)1,2(-=MN OQ OP +MN 2-22OQ OP +MN 222222222x 222x 2整理,得 ① 因为直线l 与椭圆有两个不同的交点P 和Q 等价于解得k< - 或k> .∴满足条件的k 的取值范围为(-∞, - )∪( , +∞).(3)设P (x 1,y 1),Q (x 2,y 2),则 =(x 1+x 2,y 1+y 2),由①得x 1+x 2=- , ②又y 1+y 2=k(x 1+x 2)+ , ③因为M ( ,0),N (0,1),所以 =(- ,1).所以 与 共线等价于 x 1+x 2=- (y 1+y 2).将②③代入上式,解得k= .所以不存在常数k ,使得向量 与 共线. 老师忠告在(1)中线段的长度要遵循解析几何的规定加上绝对值符号,由于△ABC的三点不能共线,故动点C 的轨迹与x 轴的两个交点要去除.题目做完后,一定要经过认真的检查和分析,防止不必要的疏漏和错误.在(3)中由于未能在卷面上体现出y 1+y 2而造成步骤不完整,这种失分令人痛惜. 规范答题14 因解答使用结论降低试题难度而丢分 考题再现设抛物线y2=2px (p>0)的焦点为F ,经过点F 的直线交抛物线于A 、B 两点,点C 在抛物线的准线上,且BC ∥x 轴.证明:直线AC 经过原点O. 学生作答证明 记A(x 1,y 1)、B(x 2,y 2),则y 1y 2=-p 2,因为BC//x 轴,且点C 在准线x= 上,所以点C 的坐标为 规范解答0122)21(22=+++kx x k 024)21(48222>-=+-=∆k k k 22222222OQ OP +22124k k +222MN MN MN OQ OP +OQ OP +22222p -2(,)2py -.,221112O AC OA k x y y p p y k CO 经过原点所以直线的斜率也是直线即的斜率为故直线==-=(,0),2p证明 如图所示,因为抛物线y 2=2px (p>0)的焦点为F ,由于直线AB 不可能与x 轴平行,所以经过点F 的直线AB 的方程可设为x=my+ 代入抛物线方程得y 2-2pmy-p 2=0.若记A(x 1,y 1)、B(x 2,y 2), 则y 1、y 2是该方程的两个根,所以y 1y 2=-p 2.因为BC ∥x 轴,且点C 在准线x= 上,所以点C 的坐标为 故直线CO 的斜率为即k 也是直线OA 的斜率,所以直线AC 经过原点O. 老师忠告解答高考解答题的理论根据应该是教材中的定义、定理、公理和公式,对于课本习题、例题的结论,是要通过证明才能直接使用,否则将被“定性”为解题不完整而被扣分.此考生直接运用课本中的引申结论“y 1y 2=-p 2”而跳过拟考查的知识点、能力点而可能被扣2到4分.由于使用“升华结论”达不到考查能力、考查过程的目的,因此不能以题解题,不能直接运用教材以外的东西,以免被扣分..2p2p -2(,).2py -21112,2y y p k p y x ===-优秀学习资料欢迎下载。

高考重要数学答题技巧归纳

高考重要数学答题技巧归纳高中数学常考题型答题技巧1、解决绝对值问题主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。

具体转化方法有:①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。

②零点分段讨论法:适用于含一个字母的多个绝对值的情况。

③两边平方法:适用于两边非负的方程或不等式。

④几何意义法:适用于有明显几何意义的情况。

2、因式分解根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。

因式分解的一般步骤是:提取公因式选择用公式十字相乘法分组分解法拆项添项法3、配方法利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。

配方法的主要根据有:4、换元法解某些复杂的特型方程要用到“换元法”。

换元法解方程的一般步骤是:设元→换元→解元→还元5、待定系数法待定系数法是在已知对象形式的条件下求对象的一种方法。

适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。

其解题步骤是:①设②列③解④写6、复杂代数等式复杂代数等式型条件的使用技巧:左边化零,右边变形。

①因式分解型:(-----)(----)=0两种情况为或型②配成平方型:(----)2+(----)2=0两种情况为且型7、数学中两个最伟大的解题思路(1)求值的思路列欲求值字母的方程或方程组(2)求取值范围的思路列欲求范围字母的不等式或不等式组8、化简二次根式基本思路是:把√m化成完全平方式。

即:9、观察法10、代数式求值方法有:(1)直接代入法(2)化简代入法(3)适当变形法(和积代入法)注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用“和积代入法”求值。

11、解含参方程方程中除过未知数以外,含有的其它字母叫参数,这种方程叫含参方程。

解含参方程一般要用‘分类讨论法’,其原则是:(1)按照类型求解(2)根据需要讨论(3)分类写出结论12、恒相等成立的有用条件(1)ax+b=0对于任意x都成立关于x的方程ax+b=0有无数个解a=0且b=0。

高考数学答题技巧与解题思路

高考数学答题技巧与解题思路在高考中,数学是许多学生普遍感到困扰的科目之一。

它需要灵活运用各种技巧和解题思路来处理各类题目。

本文将介绍一些高考数学答题技巧和解题思路,帮助学生更好地应对数学考试。

一、选择题解题思路选择题在高考数学试卷中占有重要的比重。

解答选择题需要注意以下几点:1. 首先,仔细阅读题目,理解题目所要求的内容。

阅读题干和选项时要注意细节,避免因为粗心而丢分。

2. 其次,列出已知条件,找到相关的数学概念和定理。

有时候,选择题通过对已知条件的解析可以得到答案。

3. 利用排除法。

根据选项中的信息,可以在几个选项中排除一些明显错误的答案,从而缩小答案的范围。

4. 适时使用近似计算法。

高考中有些选择题可以通过适当的近似计算法来估算答案,从而快速获得正确答案。

二、解答计算题技巧高考数学试卷中,计算题往往需要较长时间来解答,需要学生具备一定的计算技巧。

以下是一些解答计算题的技巧:1. 简化计算:在进行长算式计算时,可以通过化简或者简化计算过程,减少繁琐的步骤,以节省时间。

2. 小数计算:小数计算是高考数学试卷中常见的计算类型之一。

处理小数时,可以采用移位运算、精确估算等方法,提高计算的准确性和效率。

3. 分数计算:分数计算也是高考数学试卷中的重要考点。

在进行分数计算时,可以通过通分、约分、倒数等方法,简化计算过程。

4. 视觉化计算:有些计算题可以通过将计算过程转化为图形或者几何形状,从而提高计算速度和准确度。

例如,通过图形的面积计算来解决几何题。

三、解答证明题方法证明题在高考数学试卷中往往是分数较高的题目,需要学生具备一定的推理和证明能力。

以下是一些解答证明题的方法:1. 利用数学知识和定理:对于证明题,学生需要熟练掌握各类数学知识和定理,并能够将其运用到具体问题中。

在解答证明题时,可以先回顾所学知识和定理,找到相关理论支撑。

2. 逻辑推理法:证明题往往需要学生进行逻辑推理,通过推导和演绎的方式来得到结论。

高考数学答题技巧(最全)

高考数学答题技巧(最全)高考数学答题技巧1、函数与方程思想函数思想是指使用运动改变的观点,分析和讨论数学中的数量关系,通过建立函数关系使用函数的图像和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,使用数学语言将问题转化为方程或不等式模型去解决问题。

同学们在解题时可利用转化思想实行函数与方程间的互相转化。

2、数形结合思想中学数学讨论的对象可分为两绝大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合或形数结合。

它既是查找问题解决切入点的“法宝”,又是优化解题途径的“良方,所以建议同学们在解答数学题时,能画图的尽量画出图形,以利于精确地理解题意、快速地解决问题。

3、特别与一般的思想用这种思想解选择题有时特殊有效,这是由于一个命题在普遍意义上成立时,在其特别状况下也必定成立,依据这个点,同学们能够直接确定选择题中的精确选项。

不但如此,用这种思想〔方法〕去探求主观题的求解策略,也同样有用。

数学怎么答题得分高1、审题要慢,答题要快有些考生只知道一味求快,往往题意未清,便匆忙动笔,结果误入歧途,即所谓欲速则不达,看错一个字可能会圆满终生,所以审题肯定要慢,有了这个“慢”,才能形成完好的合理的解题策略,才有答题的“快”。

2、运算要准,胆子要大高考没有足够的时间让你反复验算,更不容你一再地变换解题方法,往往是拿到一个题目,凭感觉选定一种方法就动手做,这时除了你的每一步运算务求正确外,还要求把你当时的解法坚持究竟,或许你选择的不是最好的方法,但如回头重来将会花费更多的时间,当然坚持究竟并不意味着钻牛角尖,一旦发觉自己走进死胡同,还是要立即迷途知返。

提高理科成果有什么窍门让教材滚瓜烂熟我在高三找到的一个看书的〔学习方法〕是回想法。

对于需要我背诵或者特殊娴熟的内容,光看是没用的,记不住。

我会在每看完一段之后合上书,自己把这一段写下来,或者用自己的话说出来,或者自己把这一段的学问结构整理写出来。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学答题技巧与规范答题高考数学答题技巧与规范答题
一、调整好状态,控制好自我。

(1)保持清醒。

数学的考试时间在下午,建议同学们中午最好休息半个小时或一个小时,其间尽量放松自己,从心理上暗示自己:只有静心休息才能确保考试时清醒。

(2)提前进入角色,考前做好准备.
按清单带齐一切用具,提前半小时到达考区,一方面可以消除紧张、稳定情绪、从容进场,另一方面也留有时间提前进入角色让大脑开始简单的数学活动,进入单一的数学情境。

如:1.清点一下用具是否带齐(笔、橡皮、作图工具、身份证、准考证等)。

2.把一些基本数据、常用公式、重要定理在脑子里过过电影。

3.最后看一眼难记易忘的知识点。

4.互问互答一些不太复杂的问题。

5.注意上厕所。

(3)按时到位。

今年的答题卡不再单独发放,要求答在答题卷上,但发卷时间应在开考前5分钟内。

建议同学们提前15~20分钟到达考场。

二、浏览试卷,确定考试策略
一般提前5分钟发卷,涂卡、填密封线内部分和座号后浏览试卷:试卷发下后,先利用23分钟时间迅速把试卷浏览一遍,检查试卷有无遗漏或差错,了解考题的难易程度、分值等概况以及试题的数目、类型、结构、占分比例、哪些是难
题,同时根据考试时间分配做题时间,做到心中有数,把握全局,做题时心绪平定,得心应手。

三、巧妙制定答题顺序
在浏览完试卷后,对答题顺序基本上做到心中有数,然后尽快做出答题顺序,排序要注意以下几点:
1.根据自己对考试内容所掌握的程度和试题分值来确定答题顺序。

2.根据自己认为的难易程度,按先易后难先小后大先熟后生的原则排序。

四、提高解选择题的速度、填空题的准确度。

数学选择题是知识灵活运用,解题要求是只要结果、不要过程。

因此,逆代法、估算法、特例法、排除法、数形结合法尽显威力。

12个选择题,若能把握得好,容易的一分钟一题,难题也不超过五分钟。

由于选择题的特殊性,由此提出解选择题要求快、准、巧,忌讳小题大做。

填空题也是只要结果、不要过程,因此要力求完整、严密。

五、审题要慢,做题要快,下手要准。

题目本身就是破解这道题的信息源,所以审题一定要逐字逐句看清楚,只有细致地审题才能从题目本身获得尽可能多的信息。

找到解题方法后,书写要简明扼要,快速规范,不拖泥带水,牢记高考评分标准是按步给分,关键步骤不能丢,但允许合理省略非关键步骤。

答题时,尽量使用数学语言、
符号,这比文字叙述要节省而严谨。

六、保质保量拿下中下等题目。

中下题目通常占全卷的80%以上,是试题的主要部分,是考生得分的主要来源。

谁能保质保量地拿下这些题目,就已算是打了个胜仗,有了胜利在握的心理,对攻克高难题会更放得开。

唐宋或更早之前,针对“经学”“律学”“算学”和“书学”各科目,其相应传授者称为“博士”,这与当今“博士”含义已经相去甚远。

而对那些特别讲授“武事”或讲解“经籍”者,又称“讲师”。

“教授”和“助教”均原为学官称谓。

前者始于宋,乃“宗学”“律学”“医学”“武学”等科目的讲授者;而后者则于西晋武帝时代即已设立了,主要协助国子、博士培养生徒。

“助教”在古代不仅要作入流的学问,其教书育人的职责也十分明晰。

唐代国子学、太学等所设之“助教”一席,也是当朝打眼的学官。

至明清两代,只设国子监(国子学)一科的“助教”,其身价不谓显赫,也称得上朝廷要员。

至此,无论是“博士”“讲师”,还是“教授”“助教”,其今日教师应具有的基本概念都具有了。

七、要牢记分段得分的原则,规范答题。

会做的题目要特别注意表达的准确、考虑的周密、书写的规范、语言的科学,防止被分段扣点分。

难题要学会①缺步解答:聪明的解题策略是,将它们分解为一系列的步骤,或者是一个个小问题,能解决多少就解决多
少,能演算几步就写几步。

②跳步答题:解题过程卡在某一过渡环节上是常见的。

这时,我们可以假定某些结论是正确的往后推,看能否得到结论,或从结论出发,看使结论成立需要什么条件。

如果方向正确,就回过头来,集中力量攻克这一卡壳处。

如果时间不允许,那么可以把前面的写下来,再写出证实某步之后,继续有一直做到底,这就是跳步解答。

也许,后来中间步骤又想出来,这时不要乱七八糟插上去,可补在后面。

若题目有两问,第一问想不出来,可把第一问作已知,先做第二问,这也是跳步解答。

今年仍是网上阅卷,望大家规范答题,减少隐形失分。

要练说,得练看。

看与说是统一的,看不准就难以说得好。

练看,就是训练幼儿的观察能力,扩大幼儿的认知范围,让幼儿在观察事物、观察生活、观察自然的活动中,积累词汇、理解词义、发展语言。

在运用观察法组织活动时,我着眼观察于观察对象的选择,着力于观察过程的指导,着重于幼儿观察能力和语言表达能力的提高。

灵活调整时间。

时间分配的目的是为了考试成功,要灵活掌握,随时巧变,不要墨守常规。

单靠“死”记还不行,还得“活”用,姑且称之为“先死后活”吧。

让学生把一周看到或听到的新鲜事记下来,摒弃那些假话套话
空话,写出自己的真情实感,篇幅可长可短,并要求运用积累的成语、名言警句等,定期检查点评,选择优秀篇目在班里朗读
或展出。

这样,即巩固了所学的材料,又锻炼了学生的写作能力,同时还培养了学生的观察能力、思维能力等等,达到“一石多鸟”的效果。

相关文档
最新文档