圆的综合复习测试题

合集下载

中考数学总复习《圆的综合题》练习题(附答案)

中考数学总复习《圆的综合题》练习题(附答案)

中考数学总复习《圆的综合题》练习题(附答案)班级:___________姓名:___________考号:_____________一、单选题1.在平面直角坐标系xOy中以点(3,4)为圆心,4为半径的圆()A.与x轴相交,与y轴相切B.与x轴相离,与y轴相交C.与x轴相切,与y轴相交D.与x轴相切,与y轴相离2.如图,在平面直角坐标系xOy中以原点O为圆心的圆过点A(13,0)直线y=kx-3k+4与⊙O交于B、C两点,则弦BC的长的最小值为()A.22B.24C.10√5D.12√33.如图,四边形ABCD内接于⊙O,若∠BOD=100°,则∠DCB等于()A.90°B.100°C.130°D.140°4.如图,在正五边形ABCDE中连接AD,则∠DAE的度数为()A.46°B.56°C.36°D.26°5.如图,PA、PB为∠O的切线,切点分别为A、B,PO交AB于点C,PO的延长线交∠O 于点D.下列结论不一定成立的是()A.△BPA为等腰三角形B.AB与PD相互垂直平分C.点A,B都在以PO为直径的圆上D.PC为△BPA的边AB上的中线6.如图,四边形ABCD内接于半径为6的∠O中连接AC,若AB=CD,∠ACB=45°,∠ACD=12∠BAC,则BC的长度为()A.6 √3B.6 √2C.9 √3D.9 √27.如图,点A,B,D,C是∠O上的四个点,连结AB,CD并延长,相交于点E,若∠BOD=20°,∠AOC=90°,则∠E的度数为()A.30°B.35°C.45°D.55°8.∠ABC中∠C=Rt∠,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB,BC分别交于点E,D,则AE的长为()A.95B.125C.185D.3659.如图,AB为∠O的直径,点C在∠O上,若∠B=60°,则∠A等于()A.80°B.50°C.40°D.30°10.两个圆的半径分别是2cm和7cm,圆心距是5cm,则这两个圆的位置关系是() A.外离B.内切C.相交D.外切11.已知正三角形的边长为12,则这个正三角形外接圆的半径是()A.B.C.D.12.一个扇形的弧长为4π,半径长为4,则该扇形的面积为()A.4πB.6πC.8πD.12π二、填空题13.在Rt∠ABC中∠C=90°,AB=5,BC=4,求内切圆半径14.如图,∠C过原点,且与两坐标轴分别交于点A,点B,点A的坐标为(0,3),M是第三象限内弧OB上一点,∠BMO=120°,则∠C的半径为.15.一个立体图形的三视图如图所示,根据图中数据求得这个立体图形的侧面积为.16.一个半径为5cm的球形容器内装有水,若水面所在圆的直径为8cm,则容器内水的高度为cm.17.如图,在直角坐标系中以点P为圆心的圆弧与x轴交于A,B两点,已知P(4,2)和A(2,0),则点B的坐标是.18.下面是“作一个30°角”的尺规作图过程.已知:平面内一点A.求作:∠A,使得∠A=30°.作法:如图①作射线AB;②在射线AB取一点O,以O为圆心,OA为半径作圆,与射线AB相交于点C;③以C为圆心,OC C为半径作弧,与⊙O交于点D,作射线AD.则∠DAB即为所求的角.请回答:该尺规作图的依据是.三、综合题19.如图,在△ABC中AC=BC=BD,点O在AC边上,OC为⊙O的半径,AB是⊙O 的切线,切点为点D,OC=2,OA=2√2.(1)求证:BC是⊙O的切线;(2)求阴影部分的面积.20.如图,△ABC内接于⊙O,CD是直径,∠CBG=∠BAC,CD与AB相交于点E,过点E作EF⊥BC,垂足为F,过点O作OH⊥AC,垂足为H,连接BD、OA.(1)求证:直线BG与⊙O相切;(2)若BEOD=54,求EFAC的值.21.如图,四边形ABCD 内接于∠O,BD是∠O的直径,过点A作∠O的切线AE交CD的延长线于点E,DA平分∠BDE.(1)求证:AE∠CD;(2)已知AE=4cm,CD=6cm,求∠O的半径.22.如图,∠O是∠ABC的外接圆,BC为∠O的直径,点E为∠ABC的内心,连接AE并延长交∠O 于D点,连接BD并延长至F,使得BD=DF,连接CF、BE.(1)求证:DB=DE;(2)求证:直线CF为∠O的切线.23.公元前5世纪,古希腊哲学家阿那克萨哥拉因“亵渎神灵罪”而被投人监狱,在狱中他对方铁窗和圆月亮产生了兴趣.他不断变换观察的位置,一会儿看见圆比正方形大,一会儿看见正方形比圆大,于是伟大的古希腊尺规作图几何三大问题之--的化圆为方问题诞生了:作一个正方形,使它的面积等于已知圆的面积(1)设有一个半径为√3的圆,则这个圆的周长为,面积为,作化圆为方得到的正方形的边长为(计算结果保留π)(2)由于对尺规作图的限制(只能有限次地使用没有刻度的直尺和圆规进行作图),包括化圆为方在内的几何三大问题都已被证明是不可能的.但若不受标尺的限制,化圆为方并非难事。

中考数学总复习《圆综合解答题》专题训练-附答案

中考数学总复习《圆综合解答题》专题训练-附答案

中考数学总复习《圆综合解答题》专题训练-附答案学校:___________班级:___________姓名:___________考号:___________ 1.如图△ABC内接于⊙O AB、CD是⊙O的直径E是DA长线上一点且∠CED=∠CAB.(1)求证:CE是⊙O的切线;求线段CE的长.(2)若DE=3√5tanB=122.如图在△ABC中AB=AC以AB为直径作⊙O交BC于点D.过点D作DE⊥AC 垂足为E延长CA交⊙O于点F.(1)求证:DE是⊙O的切线;⊙O的半径为5 求线段CF的长.(2)若tanB=123.如图△ABC内接于⊙O直径DE⊙AB于点F交BC于点M DE的延长线与AC的延长线交于点N连接AM.(1)求证:AM=BM;(2)若AM⊙BM DE=8 ⊙N=15° 求BC的长.4.如图△ABC内接于⊙O AB是⊙O的直径D是⊙O上的一点CO平分∠BCD CE⊥AD垂足为E AB与CD相交于点F.(1)求证:CE是⊙O的切线;时求CE的长.(2)当⊙O的半径为5sinB=355.如图1 锐角△ABC内接于⊙O⊙BAC=60°若⊙O的半径为2√3.(1)求BC的长度;(2)如图2 过点A作AH⊙BC于点H若AB+AC=12 求AH的长度.6.如图AB是⊙O的直径M是OA的中点弦CD⊥AB于点M过点D作DE⊥CA交CA的延长线于点E.(1)连接AD则∠AOD=_______;(2)求证:DE 与⊙O 相切;(3)点F 在BC ⏜上 ∠CDF =45° DF 交AB 于点N .若DE =6 求FN 的长.7.如图 AB 是⊙O 的直径 点C 为⊙O 上一点 OF ⊥BC 垂足为F 交⊙O 于点E AE 与BC 交于点H 点D 为OE 的延长线上一点 且∠ODB =∠AEC .(1)求证:BD 是⊙O 的切线(2)求证:CE 2=EH ⋅EA(3)若⊙O 的半径为52 sinA =35 求BH 和DF 的长. 8.如图 在⊙ABC 中 ⊙C=90° 点O 在AC 上 以OA 为半径的⊙O 交AB 于点D BD 的垂直平分线交BC 于点E 交BD 于点F 连接DE .(1)求证:直线DE 是⊙O 的切线(2)若AB=5 BC=4 OA=1 求线段DE 的长.9.如图 AB 是⊙O 的直径 弦CD 与AB 交于点E 过点B 的切线BP 与CD 的延长线交于点P 连接OC CB .(1)求证:AE ·EB =CE ·ED(2)若⊙O 的半径为 3 OE =2BE CE DE =95 求tan∠OBC 的值及DP 的长.10.如图菱形ABCD中AB=4以AB为直径作⊙O交AC于点E过点E作EF⊥AD于点F.(1)求证:EF是⊙O的切线(2)连接OF若∠BAD=60°求OF的长.(3)在(2)的条件下若点G是⊙O上的一个动点则线段CG的取值范围是什么?11.如图点C在以AB为直径的半圆O上(点C不与A B两点重合)点D是弧AC的中点DE⊥AB于点E连接AC交DE于点F连接OF过点D作半圆O的切线DP 交BA的延长线于点P.(1)求证:AC∥DP(2)求证:AC=2DE的值.(3)连接CE CP若AE⊙EO=1⊙2求CECP12.如图1 AB为⊙O直径CB与⊙O相切于点B D为⊙O上一点连接AD OC若AD//OC.(1)求证:CD为⊙O的切线(2)如图2 过点A作AE⊥AB交CD延长线于点E连接BD交OC于点F若AB=3AE=12求BF的长.13.已知:如图在⊙O中∠PAD=∠AEP AF=CF AB是⊙O的直径CD⊥AB于点G.(1)求证:AP是⊙O的切线.(2)若AG=4tan∠DAG=2求△ADE的面积.(3)在(2)的条件下求DQ的长.14.如图已知AB是⊙O的直径点E是⊙O上异于A B的点点F是弧EB的中点连接AE AF BF过点F作FC⊙AE交AE的延长线于点C交AB的延长线于点D⊙ADC的平分线DG交AF于点G交FB于点H.(1)求证:CD是⊙O的切线(2)求sin⊙FHG的值(3)若GH=4√2HB=2 求⊙O的直径.15.如图⊙O的两条弦AB、CD互相垂直垂足为E且AB=CD.(1)求证:AC=BD.(2)若OF⊥CD于F OG⊥AB于G问四边形OFEG是何特殊四边形?并说明理由.(3)若CE=1,DE=3求⊙O的半径.16.【问题提出】如图1 △ABC为⊙O内接三角形已知BC=a圆的半径为R 探究a R sin∠A之间的关系.【解决问题】如图2 若∠A为锐角连接BO并延长交⊙O于点D连接DC则∠A=∠D在△DBC中BD为⊙O的直径BC=a所以BD=2R,∠BCD=90°.所以在Rt△DBC中建立a R sin∠D的关系为________________.所以在⊙O内接三角形△ABC中a R sin∠A之间的关系为________________.类比锐角求法当∠A为直角和钝角时都有此结论.【结论应用】已知三角形△ABC中∠B=60°,AC=4则△ABC外接圆的面积为________.17.已知AB为⊙O的直径PA PC是⊙O的的切线切点分别为A C过点C作CD//AB交⊙O于D.(1)如图当P D O共线时若半径为r求证CD=r(2)如图当P D O不共线时若DE=2CE=8求tan∠POA.18.如图1 已知矩形ABCD中AB=2√3AD=3 点E为射线BC上一点连接DE以DE为直径作⊙O(1)如图2 当BE=1时求证:AB是⊙O的切线(2)如图3 当点E为BC的中点时连接AE交⊙O于点F连接CF求证:CF=CD (3)当点E在射线BC上运动时整个运动过程中CF长度是否存在最小值?若存在请直接写出CF长度的最小值若不存在请说明理由.19.已知四边形ABCD为⊙O的内接四边形直径AC与对角线BD相交于点E作CH⊥BD于H CH与过A点的直线相交于点F∠FAD=∠ABD.(1)求证:AF为⊙O的切线(2)若BD平分∠ABC求证:DA=DC(3)在(2)的条件下N为AF的中点连接EN若∠AED+∠AEN=135°⊙O 的半径为2√2求EN的长.20.如图1 直线l1⊥l2于点M以l1上的点O为圆心画圆交l1于点A B交l2于点C D OM=4 CD=6 点E为弧AD上的动点CE交AB于点F AG⊙CE 于点G连接DG AC AD.(1)求⊙O的半径长(2)若⊙CAD=40° 求劣弧弧AD的长(3)如图2 连接DE是否存在常数k使CE−DE=k·EG成立?若存在请求出k的值若不存在请说明理由(4)若DG⊙AB则DG的长为(5)当点G在AD的右侧时请直接写出⊙ADG面积的最大值.参考答案1.(1)证明:⊙AB是⊙O的直径⊙∠ACB=90°⊙∠CAB+∠B=90°⊙∠CED=∠CAB∠B=∠D⊙∠CED+∠D=90°⊙∠DCE=∠ACB=90°⊙CD⊥CE⊙CD是⊙O的直径即OC是⊙O半径⊙CE是⊙O的切线(2)由(1)知CD⊥CE在Rt△ABC和Rt△DEC中⊙∠B=∠D tanB=12⊙tan∠B=tan∠D=CECD =12⊙CD=2CE在Rt△CDE中CD2+CE2=DE2DE=3√5⊙(2CE)2+CE2=(3√5)2解得CE=3(负值舍去)即线段CE的长为3.2.解:(1)⊙OB=OD⊙∠ABC=∠ODB⊙AB=AC⊙∠ABC=∠ACB⊙∠ODB=∠ACB⊙OD∥AC⊙DE⊥AC OD是半径⊙DE⊥OD⊙DE是⊙O的切线.(2)连接BF AD⊙⊙O的半径为5 AB为直径⊙AB=10∠ADB=90°∠BFC=90°⊙tanB=1设AD=x则BD=2x2在Rt△ABD中由勾股定理得:AD2+BD2=AB2即x2+(2x)2=102解得:x=2√5或x=−2√5(舍去)⊙BD=2x=4√5⊙AB=AC∠ADB=90°⊙BD=CD⊙BC=2BD=8√5由(1)知OD∥AC⊙∠ODB=∠C⊙OB=OD⊙∠B=∠ODB=∠C⊙tanC=tanB=1即CF=2BF2在Rt△BCF中BF2+CF2=BC2即BF2+(2BF)2=(8√5)2解得BF=8或BF=−8(舍去)⊙CF=2BF=16.3.(1)证明:⊙直径DE⊙AB于点F⊙AF=BF⊙AM=BM(2)连接AO BO如图由(1)可得AM=BM⊙AM⊙BM⊙⊙MAF=⊙MBF=45°⊙⊙CMN=⊙BMF=45°⊙AO=BO DE⊙AB∠AOB⊙⊙AOF=⊙BOF=12⊙⊙N=15°⊙⊙ACM=⊙CMN+⊙N=60° 即⊙ACB=60°∠AOB.⊙⊙ACB=12⊙⊙AOF=⊙ACB=60°.⊙DE=8⊙AO=4.得AF=2√3在Rt⊙AOF中由sin∠AOF=AFAO在Rt⊙AMF中AM=√2AF=2√6.得BM= AM=2√6得CM=2√2在Rt⊙ACM中由tan∠ACM=AMCM⊙BC=CM+BM=2√2+2√6.4.(1)证明:⊙弧AC=弧AC⊙∠ADC=∠B.⊙OB=OC⊙∠B=∠OCB.⊙CO平分∠BCD⊙∠OCB=∠OCD⊙∠ADC=∠OCD.⊙CE⊥AD⊙∠ADC+∠ECD=90°⊙∠OCD+∠ECD=90°即CE⊥OC.⊙OC为⊙O的半径⊙CE是⊙O的切线.(2)连接OD得OD=OC⊙∠ODC=∠OCD.⊙∠OCD=∠OCB=∠B⊙∠ODC=∠B⊙CO=CO⊙△OCD≌△OCB⊙CD=CB.⊙AB是⊙O的直径⊙∠ACB=90°⊙AC=AB⋅sinB=10×35=6⊙CB=√AB2−AC2=√102−62=8⊙CD=8⊙CE=CD⋅sin∠ADC=CD⋅sinB=8×35=245.5.解:(1)连接OB OC过点O作OD⊙BC于点D⊙BD =CD =12BC⊙⊙A =60°⊙⊙BOC =2⊙A =120°⊙OB =OC⊙⊙OBC =⊙OCB =180°−∠BOC2=30°⊙OB =2√3⊙BD =OB •cos30°=2√3×√32=3⊙BC =2BD =6.(2)设点G 为此三角形ABC 内切圆的圆心(角平分线的交点) 过G 分别向ABAC BC 作垂线GM GN GQ⊙GM =GN =GQ CQ =CN BQ =BM AM =AN⊙AM +AN =AB +AC -BC =6⊙AM =AN =3.在Rt △AGM 中⊙⊙GAM =30°⊙GM =√3⊙S △ABC =12BC •AH =S △ABG +S △BCG +S △ACG=12AB •GM +12BC •GQ +12AC •GN=12GM(AB+AC+CB)=9√3∵BC=6, S△ABC=12BC•AH⊙AH=3√3.6.(1)解:如图1 连接OD AD⊙AB是⊙O的直径CD⊥AB⊙AB垂直平分CD⊙M是OA的中点⊙OM=12OA=12OD⊙cos∠DOM=OMOD =12⊙∠DOM=60°即∠AOD=60°故答案为:60°(2)解:⊙CD⊥AB AB是⊙O的直径⊙CM=MD⊙M是OA的中点⊙AM=MO又⊙∠AMC=∠DMO⊙△AMC≌△OMD⊙∠ACM=∠ODM⊙CA∥OD⊙DE⊥CA⊙∠E=90°⊙∠ODE=180°−∠E=90°⊙DE⊥OD⊙DE与⊙O相切(3)如图2 连接CF CN⊙OA⊥CD于M⊙M是CD中点⊙NC=ND⊙∠CDF=45°⊙∠NCD=∠NDC=45°⊙∠CND=90°⊙∠CNF=90°由(1)可知∠AOD=60°∠AOD=30°⊙∠ACD=12在Rt△CDE中∠E=90°∠ECD=30°DE=6=12⊙CD=DEsin30°在Rt△CND中∠CND=90°∠CDN=45°CD=12⊙CN=CD•sin45°=6√2⊙∠AOD=60°,OA=OD⊙△OAD是等边三角形⊙∠OAD=60°∠CAD=2∠OAD=120°⊙∠CFD=180°−∠CAD=60°在Rt△CNF中∠CNF=90°∠CFN=60°CN=6√2 =2√6.⊙FN=CNtan60°7.(1)证明:如图1所示⊙∠ODB=∠AEC∠AEC=∠ABC⊙∠ODB=∠ABC⊙OF⊥BC⊙∠BFD=90°⊙∠ODB+∠DBF=90°⊙∠ABC+∠DBF=90°即∠OBD=90°⊙BD⊥OB⊙AB是⊙O的直径⊙BD是⊙O的切线(2)证明:连接AC如图2所示⊙OF⊥BC⊙弧BE=弧CE⊙∠CAE=∠ECB⊙∠CEA=∠HEC⊙△AEC ∽△CEH⊙CE EH =EACE⊙CE 2=EH ⋅EA(3)解:连接BE 如图3所示⊙AB 是⊙O 的直径⊙∠AEB =90°⊙⊙O 的半径为52 sin∠BAE =35 ⊙AB =5 BE =AB ⋅sin∠BAE =5×35=3 ⊙EA =√AB 2−BE 2=4⊙弧BE =弧CE⊙BE =CE =3⊙CE 2=EH ⋅EA⊙EH =94⊙在Rt △BEH 中 BH =√BE 2+EH 2=√32+(94)2=154 ⊙∠A =∠C⊙sinC =sinA⊙OF ⊥BC 垂足为F⊙在Rt △CFE 中 FE =CE ⋅sinC =3×35=95 ⊙CF =√CE 2−EF 2=√32−(95)2=125 ⊙BF =CF =125⊙OF =√BO 2−BF 2=√(52)2−(125)2=710 ⊙∠ODB =∠ABC⊙tan∠ODB =tan∠ABC⊙BFDF =OFBF⊙BF 2=OF ⋅DF⊙(125)2=710DF ⊙DF =28835.8.解:(1)连接OD 如图⊙EF 垂直平分BD⊙ED=EB⊙⊙EDB=⊙B⊙OA=OD⊙⊙A=⊙ODA⊙⊙A+⊙B=90°⊙⊙ODA+⊙EDB=90°⊙⊙ODE=90°⊙OD⊙DE⊙直线DE 是⊙O 的切线(2)作OH⊙AD 于H 如图 则AH=DH 在Rt △OAB 中 sinA=BC AB =45在Rt △OAH 中 sinA=OH OA =45⊙OH=45⊙AH=√12−(45)2=35⊙AD=2AH=65 ⊙BD=5﹣65=195⊙BF=12BD=1910在Rt⊙ABC 中 cosB=45 在Rt⊙BEF 中 cosB=BF BE =45⊙BE=54×1910=198 ⊙线段DE 的长为198.9.((1)证明:连接AD∵∠A =∠BCD ∠AED =∠CEB ∴ΔAED ∽ΔCEB∴ AECE =EDEB∴AE ·EB =CE ·ED(2)解:∵⊙O 的半径为 3 ∴OA =OB =OC =3∵OE =2BE∴OE =2 BE =1 AE =5 ∵ CEDE =95 ∴设CE =9x DE =5x∵AE ·EB =CE ·ED∴5×1=9x ·5x解得:x 1=13 x 2=−13(不 合题意舍去) ∴CE =9x =3 DE =5x =53 过点C 作CF ⊥AB 于F∵OC =CE =3∴OF =EF =12OE =1∴BF =2在RtΔOCF中∵∠CFO=90°∴CF2+OF2=OC2∴CF=2√2在RtΔCFB中∵∠CFB=90°∴tan∠OBC=CFBF =2√22=√2∵CF⊥AB于F∴∠CFB=90°∵BP是⊙O的切线AB是⊙O的直径∴∠EBP=90°∴∠CFB=∠EBP在ΔCFE和ΔPBE中{∠CFB=∠PBE EF=BE ∠FEC=∠BEP∴ΔCFE≅ΔPBE(ASA)∴EP=CE=3∴DP=EP−ED=3−53=43.10.:解:(1)证明:如图连接OE.⊙四边形ABCD是菱形∴∠CAD=∠CAB∵OA=OE∴∠CAB=∠OEA∴∠CAD=∠OEA∴OE∥AD∵EF⊥AD∴OE⊥EF又⊙OE是⊙O的半径⊙EF是⊙O的切线.(2)解:如图连接BE.⊙AB是⊙O的直径∴∠AEB=90°∵∠BAD=60°∴∠CAD=∠CAB=30°在Rt△ABE中AE=AB·cos30°=2√3在Rt△AEF中EF=AE·sin30°=√3AB=2在Rt△OEF中OE=12⊙OF=√OE2+EF2=√4+3=√7.(3)解:如图过点C作CM垂直AB交AB延长线于点M由(2)知∠BAD=60°∴∠ACB=∠CAB=30°,∠CBM=60°∴AB=BC=4,BM=2,CM=2√3∴AM=6,OM=6−2=4.⊙OC=√OM2+CM2=√42+(2√3)2=2√7⊙CG近=2√7−2CE远=2√7+2⊙线段CG的取值范围是:2√7−2≤CG≤2√7+211.(1)证明:连接OD∵D为弧AC的中点∴OD⊥AC又∵DP为⊙O的切线∴OD⊥DP∴AC∥DP(2)证明:∵DE⊥AB∴∠DEO=90°由(1)可知OD⊥AC设垂足为点M∴∠OMA=90°∴∠DEO=∠OMA AC=2AM又∵∠DOE=∠AOM OD=OA∴△ODE≌△OAM(AAS)∴DE=AM∴AC=2AM=2DE(3)解:连接OD OC CE CP∵∠ODP=∠OED=90°∠DOE=∠DOP ∴△DOE∽△POD∴ODOP =OEOD∴OD2=OE⋅OP ∵OC=OD∴OC2=OE⋅OP∴OCOE =OPOC又∵∠COE=∠POC ∴△COE∽△POC∴CECP =OEOC∵AE:EO=1:2∴OEOA =23∴OEOC =23∴CECP =23.12.解:(1)连接OD⊙CB与⊙O相切于点B⊙OB⊥BC⊙AD//OC⊙∠A=∠COB,∠ADO=∠DOC⊙OA=OD⊙∠A=∠ADO=∠COB=∠DOC⊙△DOC≌△BOC(SAS)⊙∠ODC=∠OBC=90°⊙OD⊥DC又OD为⊙O半径⊙CD为⊙O的切线(2)解:设CB=x⊙AE⊥EB⊙AE为⊙O的切线⊙CD CB为⊙O的切线⊙ED=AE=4,CD=CB=x,∠DOC=∠BCO⊙BD⊥OC过点E作EM⊥BC于M则EM=12,CM=x−4⊙(4+x)2=122+(x−4)2解得x=9⊙CB=9⊙OC=√62+92=3√13⊙AB是直径且AD⊙OC⊙⊙OFB=⊙ADB=⊙OBC=90°又⊙⊙COB=⊙BOF⊙⊙OBF⊙⊙OCB⊙OB BF =OCBC⊙BF=OB⋅BCOC =6×93√13=1813√1313.(1)证明:如图所示连接AC ⊙AB是⊙O的直径CD⊥AB⊙弧AD=弧AC⊙∠AEP=∠ADC⊙∠PAD=∠AEP⊙∠PAD=∠ADC⊙AP∥CD⊙AP⊥AB⊙AB是⊙O的直径⊙AP是⊙O的切线(2)解:如图所示连接BD⊙AF=CF⊙∠FAC=∠FCA⊙弧CE=弧AD⊙弧AD=弧AC⊙弧AD=弧AC=弧CE⊙∠ADG=∠QDG⊙AB⊥CD⊙∠AGD=∠QGD=90°又⊙OG=OG⊙△AGD≌△OGD(ASA)⊙QG=AG=4∠DQG=∠DAG=2在Rt△ADG中tan∠DAG=DGAG⊙DG=2AG=8⊙QD=√DG2+QG2=4√5连接OD过点E作EH⊥AB于H设圆O的半径为r则OG=r−4在Rt△ODG中由勾股定理得OD2=OG2+DG2⊙r2=(r−4)2+82解得r=10⊙AB=20⊙BQ=12⊙∠AEQ=∠DBQ,∠EAQ=∠BDQ⊙△AQE∽△DQB⊙QE BQ =AQDQ即QE12=84√5⊙QE=12√55⊙∠EQH=∠DQG=∠DAG⊙在Rt△EQH中tan∠EQH=EHQH=2⊙EH=2QH⊙EH2+QH2=QE2⊙4QH2+QH2=1445⊙QH=125⊙EH=245⊙S△ADE=S△ADQ+S△AEQ=12AQ⋅DG+12AQ⋅EH=12×8×8+12×8×245=70.4.(3)解:由(2)得DQ=4√5.14.(1)证明:连接OF.⊙OA=OF⊙⊙OAF=⊙OF A⊙EF̂=FB̂,⊙⊙CAF=⊙F AB⊙⊙CAF=⊙AFO⊙OF∥AC⊙AC⊙CD⊙OF⊙CD⊙OF是半径⊙CD是⊙O的切线.(2)⊙AB是直径⊙⊙AFB=90°⊙OF⊙CD⊙⊙OFD=⊙AFB=90°⊙⊙AFO=⊙DFB⊙⊙OAF=⊙OF A⊙⊙DFB=⊙OAF⊙GD平分⊙ADF⊙⊙ADG=⊙FDG⊙⊙FGH=⊙OAF+⊙ADG⊙FHG=⊙DFB+⊙FDG⊙⊙FGH=⊙FHG=45°⊙sin⊙FHG=sin45°=√22(3)解:过点H作HM⊙DF于点M HN⊙AD于点N.⊙HD平分⊙ADF⊙HM=HNS△DHF⊙S△DHB= FH⊙HB=DF ⊙DB⊙⊙FGH是等腰直角三角形GH=4√2⊙FH=FG=4⊙DF DB =42=2设DB=k DF=2k⊙⊙FDB=⊙ADF⊙DFB=⊙DAF ⊙⊙DFB⊙⊙DAF⊙DF2=DB•DA⊙AD=4k⊙GD平分⊙ADF⊙FG AG =DFAD=12⊙AG=8⊙⊙AFB=90° AF=12 FB=6∴AB=√AF2+BF2=√122+622=6√5⊙⊙O的直径为6√515.(1)证明:⊙AB=CD⊙弧AB=弧CD⊙弧AB−弧BC=弧CD−弧BC即弧AC=弧BD⊙AC=BD(2)解:四边形OFEG是正方形.理由如下:⊙AB⊥CD OF⊥CD OG⊥AB⊙∠AED=∠OGE=∠OFE=90°⊙四边形OFEG是矩形.如图连接OA OD.⊙OF⊥CD OG⊥AB⊙CF=DF AG=BG.⊙CD=AB⊙AG=DF.⊙OG=√OA2−AG2OF=√OD2−DF2OA=OD⊙OG=OF⊙四边形OFEG是正方形(3)解:⊙CE=1 DE=3⊙CD=4⊙CF=DF=2⊙EF=CF-CE=2-1=1.⊙四边形OFEG是正方形⊙OF=EF=1.在Rt△OED中OD=√OF2+DF2=√5⊙⊙O的半径为√5.16.:解:【解决问题】如图连接BO并延长交⊙O于点D连接DC则∠A=∠D 在△DBC中⊙BD为⊙O的直径BC=a⊙BD=2R,∠BCD=90°⊙sinD=BCBD =a2R⊙sinA=a2R故答案为:sinD=a2R sinA=a2R【结论应用】解:设△ABC外接圆的半径为R ⊙∠B=60°,AC=4⊙sinB=AC2R⊙√3 2=42R解得:R=43√3⊙△ABC外接圆的面积为π×(43√3)2=163π.故答案为:163π17.(1)证明:连接OC⊙PA PC是⊙O的切线切点分别为A C ⊙PA=PC∠PAO=∠PCO=90°在RtΔPAO和RtΔPCO中{PA=PCPO=PO⊙RtΔPAO≌RtΔPCO(HL)⊙∠POA=∠POC⊙CD//AB⊙∠CDO=∠DOA⊙∠CDO=∠COD⊙CD=OC=r(2)解:设OP交CD于E连接OC过O作OH⊥CD于点H由(1)可知RtΔPAO≌RtΔPCO⊙∠POA=∠POC⊙CD//AB⊙∠CEO=∠EOA⊙∠CEO=∠COE⊙CE=CO=8⊙CD=CE+ED=10⊙OH⊥CD⊙CH=DH=5⊙EH=DH−DE=3在RtΔCHO中⊙OH=√OC2−CH2=√82−52=√39在RtΔOHE中⊙tan∠POA=tan∠HEO=OHEH =√393⊙tan∠POA=√393.18.解:(1)如图过点O作OM⊥AB且OM的反向延长线交CD于点N.由题意可知四边形BCNM为矩形⊙MN=AD=3⊙O为圆心即O为DE中点⊙N为DC中点即线段ON为△DEC中位线又⊙CE=BC−BE=3−1=2⊙ON=12CE=1⊙OM=MN -ON=3-1=2.在Rt △DEC 中 DE =√CD 2+CE 2=√(2√3)2+22=4. ⊙OD=DE=OM=2.即AB 为⊙O 的切线.(2)设⊙O 与AD 交于点G 连接CG EG DF FG ⊙DE 为直径⊙∠EGD =∠EFD =90°.⊙∠GEC =90°⊙CG 为直径.⊙∠CFG =∠CDG =90°⊙E 为BC 中点⊙G 为AD 中点在Rt △AFD 中 FG 为中线⊙AG=DG=FG在Rt △CFG 和Rt △CDG 中 {FG =DG CG =CG⊙△CFG ≅△CDG(HL).⊙CF=CD .(3)如图 取AD 中点H 连接CH FH FD .由(2)可知FH =12AD =32 在Rt △CDH 中 CH =√CD 2+HD 2=√(2√3)2+(32)2=√572 ⊙CF ≥CH −FH =√572−32. ⊙当F 点在CH 上时CF 长有最小值 最小值为√572−32.19.解:(1)⊙AC 为⊙O 的直径⊙⊙ADC =90°⊙⊙DAC +⊙DCA =90°.⊙弧AD =弧AD⊙⊙ABD =⊙DCA .⊙⊙F AD =⊙ABD⊙⊙F AD =⊙DCA⊙⊙F AD +⊙DAC =90°⊙CA ⊙AF⊙AF 为⊙O 的切线.(2)连接OD .⊙弧AD =弧AD⊙⊙ABD=1⊙AOD.2⊙弧DC=弧DC⊙DOC.⊙⊙DBC=12⊙BD平分⊙ABC⊙⊙ABD=⊙DBC⊙⊙DOA=⊙DOC⊙DA=DC.(3)连接OD交CF于M作EP⊙AD于P.⊙AC为⊙O的直径⊙⊙ADC=90°.⊙DA=DC⊙DO⊙AC⊙⊙F AC=⊙DOC=90° AD=DC=√(2√2)2+(2√2)2=4 ⊙⊙DAC=⊙DCA=45° AF⊙OM.⊙AO=OCAF.⊙OM=12⊙⊙ODE+⊙DEO=90° ⊙OCM+⊙DEO=90°⊙⊙ODE=⊙OCM.⊙⊙DOE=⊙COM OD=OC⊙⊙ODE⊙⊙OCM⊙OE=OM.设OM=m⊙OE =m AE =2√2−m AP =PE =2−√22m⊙DP =2+√22m . ⊙⊙AED +⊙AEN =135° ⊙AED +⊙ADE =135°⊙⊙AEN =⊙ADE .⊙⊙EAN =⊙DPE⊙⊙EAN ⊙⊙DPE⊙AE DP =AN PE ⊙2√2−m 2+√22m =m2−√22m⊙m =2√23⊙AN =2√23 AE =4√23由勾股定理得:NE =2√103.20.解:(1)连接OD⊙AB 是⊙O 的直径 l 1⊥l 2 CD =6⊙CM =DM =12CD =3在Rt △DOM 中 OM =4⊙OD=√OM2+CM2=5即⊙O的半径长为5(2)⊙AB是⊙O的直径l1⊥l2⊙弧BC=弧BD⊙∠BAD=∠BAC=12∠CAD=20°⊙∠BOD=2∠BAD=40°⊙∠AOD=180°−∠BOD=140°⊙劣弧弧AD的长为140×π×5180=35π9(3)存在常数k=2理由如下:如图在CG上截取CH=DE连接AH AE⊙AB垂直平分CD⊙AC=AD又⊙⊙ACH=⊙ADE⊙⊙ACH⊙⊙ADE(SAS)⊙AH=AE⊙ AG⊙HE⊙HG=EG⊙CE-DE=2EG⊙k=2(4)⊙DG⊙AB⊙⊙CFM⊙⊙CGD⊙FM DG =CFCG=CMCD=12⊙CF=FG DG=2FM⊙⊙CMF=⊙AGF⊙CFM=⊙AFG ⊙⊙CFM⊙⊙AFG⊙CF AF =FMFG⊙FM×AF=CF×FG=CF2设FM=x则AF=9-x⊙x(9−x)=32+x2解得:x=32或3⊙DG=3或6(5)如图取AC的中点P当PG⊙AD时⊙ADG的面积最大在Rt△AMC中⊙CMA=90° CM=3 AM=OA+OM=5+4=9⊙AD=AC=√CM2+AM2=√32+92=3√10在Rt△AGC中⊙CGA=90° 点P为AC的中点⊙PG=12AC=3√102过点C作CN⊙AD于点N在Rt⊙CDN和Rt⊙ADM中⊙⊙CND=⊙AMD=90° ⊙CDN=⊙ADM ⊙Rt⊙CDN~Rt⊙ADM⊙CN AM =CDAD⊙CN=AM⋅CDAD =9×63√10=9√105设PG交AD于点K ⊙PK⊙AD CN⊙AD ⊙PK⊙CN⊙⊙APK⊙⊙CAN⊙PK CN =APAC=12⊙PK=12CN=9√1010⊙GK=PG−PK=3√102−9√1010=3√105⊙⊙ADG面积的最大值为12AD⋅GK=12×3√10×3√105=9.。

2020年九年级数学中考《圆》综合专题复习试题(含答案)

2020年九年级数学中考《圆》综合专题复习试题(含答案)
1 ∴∠AOH=2∠AOC=60°.
1 ∵AH=2AC= 3,
AH ∴OA=sin60°=2. ∴⊙O 半径的长为 2. (2)证明:在 BM 上截取 BE=BC,连接 CE, ∵∠ABC=120°,BM 平分∠ABC, ∴∠MBA=∠MBC=60°. ∵BE=BC, ∴△EBC 是等边三角形.
∴CE=CB=BE,∠BCE=60°. ∴∠BCD+∠DCE=60°. ∵∠ACM=∠ABM=60°,∴∠ECM+∠DCE=60°. ∴∠ECM=∠BCD. ∵∠CAM=∠CBM=60°,∠ACM=∠ABM=60°. ∴△ACM 是等边三角形.∴AC=CM. ∴△ACB≌△MCE(SAS).∴AB=ME. ∵ME+EB=BM, ∴AB+BC=BM.
基础题组
1.(2019·保定一模)已知⊙O 的半径 OA 长为 2,若 OB= 3,则可以得到的正确图形可
能是(A)
2.(2019·广州)平面内,⊙O 的半径为 1,点 P 到 O 的距离为 2,过点 P 可作⊙O 的切线条
数为(C)
A.0 条
B.1 条
C.2 条
D.无数条
3.如图,在 Rt△ABC 中,∠C=90°,AC=3,BC=4,以点 A 为圆心作圆.如果⊙A 与线
则∠D=27°.
基础题组
1.(2019·柳州)如图,A,B,C,D 是⊙O 上的点,则图中与∠A 相等的角是(D)
A.∠B
B.∠C
C.∠DEB
D.∠D
A︵B
A︵B
2.(2019·吉林)如图,在⊙O 中, 所对的圆周角∠ACB=50°.若 P 为 上一点,
∠AOP=55°,则∠POB 的度数为(B)
A.30°
3 切,连接 OC,则 tan∠OCB= 5 .

圆测试题及答案

圆测试题及答案

圆测试题及答案
一、选择题
1. 下列哪个选项不是圆的基本性质?
A. 圆周上任意两点之间的线段称为弦。

B. 圆的直径是圆的最长弦。

C. 圆心到圆上任意一点的距离都相等。

D. 圆的面积与半径的平方成正比。

2. 圆的周长公式是什么?
A. C = πr
B. C = 2πr
C. C = 4πr
D. C = πr²
3. 已知圆的半径为3,求圆的周长。

A. 18π
B. 6π
C. 9π
D. 3π
二、填空题
4. 圆的面积公式为 \( A = \pi r^2 \),其中 \( r \) 表示圆的________。

5. 如果圆的周长为12π,那么圆的半径是________。

三、计算题
6. 已知圆的半径为5厘米,求圆的周长和面积。

四、解答题
7. 如果一个圆的直径是14厘米,求圆的周长和面积,并用适当的单位表示结果。

答案:
一、选择题
1. D
2. B
3. A
二、填空题
4. 半径
5. 3
三、计算题
6. 圆的周长为 \( 2\pi \times 5 = 10\pi \) 厘米,圆的面积为\( \pi \times 5^2 = 25\pi \) 平方厘米。

四、解答题
7. 圆的周长为 \( 2\pi \times 7 = 14\pi \) 厘米,圆的面积为\( \pi \times (7)^2 = 49\pi \) 平方厘米。

人教中考数学压轴题专题复习——圆的综合的综合及详细答案

人教中考数学压轴题专题复习——圆的综合的综合及详细答案

一、圆的综合真题与模拟题分类汇编(难题易错题)1.如图,⊙M交x轴于B、C两点,交y轴于A,点M的纵坐标为2.B(﹣33,O),C(3,O).(1)求⊙M的半径;(2)若CE⊥AB于H,交y轴于F,求证:EH=FH.(3)在(2)的条件下求AF的长.【答案】(1)4;(2)见解析;(3)4.【解析】【分析】(1)过M作MT⊥BC于T连BM,由垂径定理可求出BT的长,再由勾股定理即可求出BM的长;(2)连接AE,由圆周角定理可得出∠AEC=∠ABC,再由AAS定理得出△AEH≌△AFH,进而可得出结论;(3)先由(1)中△BMT的边长确定出∠BMT的度数,再由直角三角形的性质可求出CG 的长,由平行四边形的判定定理判断出四边形AFCG为平行四边形,进而可求出答案.【详解】(1)如图(一),过M作MT⊥BC于T连BM,∵BC是⊙O的一条弦,MT是垂直于BC的直径,∴BT=TC=123∴124;(2)如图(二),连接AE,则∠AEC=∠ABC,∵CE⊥AB,∴∠HBC+∠BCH=90°在△COF中,∵∠OFC+∠OCF=90°,∴∠HBC=∠OFC=∠AFH,在△AEH和△AFH中,∵AFH AEHAHF AHE AH AH∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AEH≌△AFH(AAS),∴EH=FH;(3)由(1)易知,∠BMT=∠BAC=60°,作直径BG,连CG,则∠BGC=∠BAC=60°,∵⊙O的半径为4,∴CG=4,连AG,∵∠BCG=90°,∴CG⊥x轴,∴CG∥AF,∵∠BAG=90°,∴AG⊥AB,∵CE⊥AB,∴AG∥CE,∴四边形AFCG为平行四边形,∴AF=CG=4.【点睛】本题考查的是垂径定理、圆周角定理、直角三角形的性质及平行四边形的判定与性质,根据题意作出辅助线是解答此题的关键.2.如图所示,以Rt△ABC的直角边AB为直径作圆O,与斜边交于点D,E为BC边上的中点,连接DE.(1)求证:DE是⊙O的切线;(2)连接OE,AE,当∠CAB为何值时,四边形AOED是平行四边形?并在此条件下求sin∠CAE的值.【答案】(1)见解析;(2)1010. 【解析】 分析:(1)要证DE 是⊙O 的切线,必须证ED ⊥OD ,即∠EDB+∠ODB=90°(2)要证AOED 是平行四边形,则DE ∥AB ,D 为AC 中点,又BD ⊥AC ,所以△ABC 为等腰直角三角形,所以∠CAB=45°,再由正弦的概念求解即可.详解:(1)证明:连接O 、D 与B 、D 两点,∵△BDC 是Rt △,且E 为BC 中点,∴∠EDB=∠EBD .(2分)又∵OD=OB 且∠EBD+∠DBO=90°,∴∠EDB+∠ODB=90°.∴DE 是⊙O 的切线.(2)解:∵∠EDO=∠B=90°,若要四边形AOED 是平行四边形,则DE ∥AB ,D 为AC 中点,又∵BD ⊥AC ,∴△ABC 为等腰直角三角形.∴∠C AB=45°.过E 作EH ⊥AC 于H ,设BC=2k ,则EH=22k ,AE=5k , ∴sin ∠CAE=1010EH AE .点睛:本题考查的是切线的判定,要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可.3.函数是描述客观世界运动变化的重要模型,理解函数的本质是重要的任务。

中考数学专题复习《圆与四边形的综合(圆的综合问题)》测试卷(附带答案)

中考数学专题复习《圆与四边形的综合(圆的综合问题)》测试卷(附带答案)

中考数学专题复习《圆与四边形的综合(圆的综合问题)》测试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________ 1.如图AB是O的直径点C是BD的中点过点C的切线与AD的延长线交于E连接CD AC.(1)求证:CE AE⊥(2)若CD AB∥1DE=求O的面积.2.如图ABC内接O点A为BC的中点D为BC边上一点DAC ACE∠=∠AE是O的切线112AF BD AB===连接CF.(1)求证:CE CF=(2)当点A 到弦BC 的距离为1时 求AE 的值.3.如图1 已知AB 是O 的直径 弦CD AB ⊥于点E 点P 是线段DC 延长线上的一点 连结PA 交O 于点F 连接DF 交AB 于点G 连接AD 和CF .(1)求证:PFC AFD ∠=∠.(2)若91AE BE ==, 且CF CD = 求DF 的长.(3)如图2 连接OF OD , 若四边形FODC 为平行四边形 求PFC DFA S S △△的值(直接写出答案).4.如图 在平面直角坐标系中 AB OC ∥(0,A ()4,0C - 且2AB =.以BC为直径作1O 交OC 于点D 过点D 作直线DE 交线段OA 于点E 且30EDO ∠=︒.(1)求证:DE 是1O 的切线(2)若线段BC 上存在一点P 使以点P 为圆心 PC 为半径的P 与y 轴相切 求点P 的坐标.5.如图 以ABC 的边AB 为直径作O 交AC 于D 且OD BC ∥ O 交BC 于点E .(1)求证:CD DE =(2)若12AB = 4=AD 求CE 的长度.6.如图 四边形ABCD 是O 的内接四边形 点F 是CD 延长线上的一点 且AD 平分BDF ∠ AE CD ⊥于点E .(1)求证:AB AC =.(2)若9BD = 1DE = 求CD 的长.7.已知:A B C 三点不在同一直线上.(1)若点A B C 均在半径为R 的O 上(i )如图① 当45A ∠=︒ 1R =时 求BOC ∠的度数和BC 的长(ii )如图① 当A ∠为锐角时 求证:sin 2BC A R= (2)若定长线段BC 的两个端点分别在MAN ∠的两边AM AN (B C 均与A 不重合)滑动 如图① 当60MAN ∠=︒ 2BC =时 分别作BP AM ⊥ CP AN ⊥ 交点为P 试探索在整个滑动过程中 P A 两点间的距离是否保持不变?请说明理由.8.已知矩形ABCD 3AB = 3AD = 点O 是AD 的中点 以AD 为直径作圆 点A '是圆上的点.(1)如图1 连接A B ' 若A B '是圆O 的切线①求证:AB A B '=①设A O '与BC 交于点F 求OF 的长.(2)若动点G 从点B 向C 运动 连接OG 作四边形AOGB 关于直线GO 对称图形四边形A OGB '' 如图2.求点G 在运动过程中线段A B ''扫过的面积.9.定义:有一个角是其对角一半的圆的内接四边形叫做圆美四边形其中这个角叫做美角.∠的度数(1)如图1 若四边形ABCD是圆美四边形.求美角BAD(2)在(1)的条件下若O的半径为4.①求BD的长①连接CA若CA平分BCD∠如图2 请判断BC CD AC之间有怎样的数量关系并说明理由.10.如图点E为正方形ABCD的边BC上的一点O是ABE的外接圆与AD交于点F ∠=∠.G是CD上一点且DGF AEB(1)求证:FG是O的切线(2)若4AB=1DG=求O半径的长.11.如图在菱形ABCD中点P在对角线AC上且PA PD=O是PAD的外接圆.(1)求证:AB是O的切线(2)若18tan2AC BAC=∠=,求O的直径.(请用两种方法作答)12.已知 AB 为O 的直径 弦CD 与AB 交于点E 点A 为弧CD 的中点.(1)如图1 求证:AB CD ⊥(2)如图2 点F 为弧BC 上一点 连接BF BD 2FBA DBA ∠=∠ 过点C 作CG AB ∥交BF 于点G 求证:12CG AB =.(3)如图3 在(2)的条件下 连接DF 交OE 于点L 连接LG 若4FG = tan GLB =∠ 求线段LF 的长.13.已知O 为ABC 的外接圆 O 的半径为6.(1)如图AB是O的直径点C是AB的中点.①尺规作图:作ACB∠的角平分线CD交O于点D连接BD(保留作图痕迹不写作法):①求BD的长度.(2)如图AB是O的非直径弦点C在AB上运动60ACD BCD∠=∠=︒点C在运动的过程中四边形ADBC的面积是否存在最大值若存在请求出这个最大值若不存在请说明理由.14.如图以AB为直径的O与AH相切于点A点C在AB左侧圆弧上弦CD AB⊥交O于点D连接AC AD点A关于CD的对称点为E直线CE交O于点F交AH 于点G.(1)求证:CAG AGC∠=∠(2)当点E在AB上连接AF交CD于点P若25EFCE=求DPCP的值(3)当点E在射线AB上2AB=四边形ACOF中有一组对边平行时求AE的长.15.圆内接四边形若有一组邻边相等 则称之为等邻边圆内接四边形.(1)如图1 四边形ABCD 为等邻边圆内接四边形 AD CD = 60ADC ∠=︒ 则ABD ∠=________(2)如图2 四边形ABCD 内接于O AB 为O 的直径 10AB = 6AC = 若四边形ABCD 为等邻边圆内接四边形 求CD 的长(3)如图3 四边形ABCD 为等邻边圆内接四边形 BC CD = AB 为O 的直径 且48AB =.设BC x = 四边形ABCD 的周长为y 试确定y 与x 的函数关系式 并求出y 的最大值.参考答案:1.(1)证明:连接OC①OC CE ⊥①90OCE ∠=︒①点C 是BD 的中点①CD BC =①DAC CAB ∠=∠①OA OC =①CAB OCA ∠=∠①OCA DAC ∠=∠①OC AD ∥①180AEC OCE ∠+∠=︒①90AEC ∠=︒①CE AE ⊥.(2)解:连接OD①CD AB ∥ OC AE ∥①四边形AOCD 是平行四边形①OA OC =①平行四边形AOCD 是菱形①AD CD OA ==①AD OA OD ==①ADO △是等边三角形①60OAD ∠=︒①CD AB ∥①60CDE OAD ∠=∠=︒①30DCE ∠=︒①2212CD DE ==⨯=①2OA CD ==①O 的面积为:224ππ⨯=.2.(1)证明:如图 连接OA 交BC 于点M①点A 为BC 的中点①,OA BC AB AC ⊥=①AE 与O 相切①AE OA ⊥①,AE BC EAC ACB ABD∠=∠=∠∥又①BD AF =①()SAS ABD CAF ≌①AD CF =①DAC ACE ∠=∠①CE AD ∥①四边形ADCE 为平行四边形①AD CE =①CE CF =(2)解:如图①112AF BD AB ===①2AB AC ==①BM CM =①点A 到弦BC 的距离为1 即1AM =在Rt ABM 中 222A A M B M B -= ①22213BM -①|31DM BM BD =-=313231CD DM MC ∴=+==由(1)可知四边形ADCE 为平行四边形 ①231AE CD ==.3.(1)解:①弦CD AB ⊥于点E ①12CB DB CB DB CD ===, ①AB 是O 的直径①AB AB AB CB AB DB =-=-,即AC AD AFD ADC =∠=∠,①四边形ADCE 是O 的内接四边形①180AFC ADC ∠+∠=︒180PFC AFC ∠+∠=︒PFC ADC ∴∠=∠①PFC AFD ∠=∠(2)解:如图:连接OE OC OC ,,与FD 相交于一点H①91AE BE ==, ①1911052AB AE BE OC AB =+=+===, ①弦CD AB ⊥于点E①2CD CE =在Rt OCE 中 ()22222OC OE CE OB BE CE =+=-+即()222551CE =-+解得3CE =①236CD =⨯=①CF CD =①62H CF CD OC FD DF F =⊥==,,设5OH x HC x ==-,在Rt OFH △中 222FH OF OH =-在Rt CFH △中 222FH CF CH =-即2222OF OH CF CH -=-①()2225365x x -=-- 解得75x =①482225DF FH ==== (3)解:如图 连接BF①四边形FODC 为平行四边形 且易知OF OD =①四边形FODC 为菱形①四边形ADCE 是O 的内接四边形①180180FAD FCD FCD PCE ∠+∠=︒∠+∠=︒, ①FAD PCE ∠=∠①由(1)知PFC AFD ∠=∠①PFC DFA ∽ ①FC PF PC FA DF DA== ①AB 是O 的直径①90AFB ∠=︒①四边形FODC 为菱形①FC OF OF CD =,①CD AB ⊥①OF AB ⊥①45AF BF FAB FBA =∠=∠=︒,①()()222222222AF BF AF AB OF CF +==== ①22FC FA ①212PFC DFA S FC S FA ⎛⎫== ⎪⎝⎭ 4.(1)证明:连接1O D BD 如图①(0,3A ()4,0C -23OA ∴= 4OC =. ①以BC 为直径作1O 交OC 于点D90BDC ∴∠=︒.,AB OC OC OA ⊥∥AB OA ∴⊥①四边形ABDO 为矩形2,OD AB BD OA ∴====2CD OC OD ∴=-=4BC ∴112O C O D ∴==1O CD ∴为等边三角形1160O CD O DC ∴∠=∠=︒30EDO ∠=︒1118090O DE O DC EDO ∴∠=︒-∠-∠=︒1O D DE ∴⊥1O D 为1O 的半径DE ∴是1O 的切线(2)解:①线段BC 上存在一点P 使以点P 为圆心 PC 为半径的P 与y 轴相切①点P 到y 轴的距离等于PC .过点P 作PF y ⊥轴于点F PH x ⊥轴于点H 如图则PF PC =.由(1)知:60BCD ∠=︒12CH PC ∴= PH =.PF y ⊥轴 PH x ⊥轴 OA OC ⊥①四边形PHOF 为矩形OH PF PC ∴==142OC CH OH PC PC ∴=+=+= 83PC 83PF OH ∴== 84333PH == ①点P 的坐标为8433⎛- ⎝⎭.5.(1)证明:①四边形ABED 内接于O 180DEB A ∴∠+∠=︒又180DEB DEC ∠+∠=︒DEC A ∴∠=∠OD BC ∥C ADO ∴∠=∠①OA OD =①CAO ADO ∠=∠①C DEC ∠=∠①CD DE =(2)解:如图所示 连接AE①AB 为直径①90AEB ∠=︒90CAE C ∴∠+∠=︒ 90AED DEC ∠+∠=︒ 由(1)CD DE = C DEC ∠=∠CAE AED ∴∠=∠①AD DE =①AD DC =①28AC AD ==由(1)可得BAC ADO ∠=∠ C ADO ∠=∠ 则C BAC ∠=∠①12AB BC ==设CE x = 则12BE x =-2222AC CE AB BE -=-()222281212x x ∴-=-- 解得:83x = ①83CE =.6.(1)证明:①AD 平分BDF ∠∴ADF ADB ∠=∠ ①四边形ABCD 是O 的内接四边形∴180ABC ADC ∠+∠=︒180ADC ADF ∠+∠=︒ABC ADF ADB ∴∠=∠=∠ACB ADB ∠=∠ACB ABC ∴∠=∠AB AC ∴=.(2)解:过点A 作AG BD ⊥于点G90AGD ∴∠=︒①AD 平分BDF ∠∴ADF ADB ∠=∠AE CD ⊥90AED ∴∠=︒在AGD △和AED △中90AGD AED ADF ADBAD AD∠=∠=︒⎧⎪∠=∠⎨⎪=⎩()AAS AGD AED ∴≌1GD DE ∴== AG AE =在Rt AEC △和Rt AGB △中AE AGAB AC =⎧⎨=⎩()Rt Rt HL AEC AGB ∴≌CE BG ∴=又9BD = 1DE =918BG BD GD ∴=-=-=8∴=CE817CD CE ED =-=-=7CD ∴=.7.(1)(i )证明:①A B C 均在O 上 ①224590BOC A ∠=∠=⨯︒=︒①1OB OC ==在Rt BOC 中 根据勾股定理 ①2BC =(ii )证法一:如图① 连接EB 作直径CE 则E A ∠=∠ 2CE R =①90EBC ∠=︒ ①sin sin 2BCA E R ==证法二:如图①.连接OB OC 作OH BC ⊥于点H 则12A BOC BOH ∠=∠=∠ 12BH BC = ①12sin sin 2BC BH BC A BOH OB R R=∠===.(2)如图① 连接AP 取AP 的中点K 连接BK CK 在Rt APC △中 12CK AP AK PK === 同理得:BK AK PK ==①CK BK AK PK ===①点A B P C 都在K 上①由(1)(ii )可知sin 60BC AP ︒=①2sin 60AP ==︒ 故在整个滑动过程中 P A 两点间的距离不变.8.(1)①①矩形ABCDAD = 点O 是AD 的中点①90AO DO A ==∠=︒①BA 是圆O 的切线①A B '是圆O 的切线。

备考2020年中考数学复习专题 《圆》综合练习题(含答案)

备考2020年中考数学复习专题 《圆》综合练习题(含答案)

备考2020年中考数学复习专题《圆》综合练习题一.选择题1.如图,一个小圆沿着一个五边形的边滚动,如果五边形的各边长都和小圆的周长相等,那么当小圆滚动到原来位置时,小圆自身滚动的圈数是()A.4 B.5 C.6 D.102.如图,在⊙O中,弦AB长6cm,圆心O到AB的距离是3cm,⊙O的半径是()A.3cm B.C.4cm D.3.如图为球形灯笼的截面图,过圆心的CD垂直弦AB于D,AB=2dm,CD=4dm,则⊙O半径为()A.2dm B.dm C.dm D.dm4.下列判断中不正确的是()A.半圆是弧,但弧不一定是半圆B.平分弦的直径垂直于弦C.在平面内,到圆心的距离等于半径的点都在圆上D.在同圆或等圆中,相等的圆心角所对的弦相等5.如图,点A、B、C在⊙O上,D是的中点,若∠ACD=20°,则∠AOB的度数为()A.60°B.70°C.80°D.90°6.在菱形ABCD中,记∠ABC=∠α(0°<∠α<90°),菱形的面积记作S,菱形的周长记作C,若AD=2,则()A.C与∠α的大小有关B.当∠α=45°时,S=C.A,B,C,D四个点可以在同一个圆上D.S随∠α的增大而增大7.如图在一次游园活动中有个投篮游戏,活动开始时四个人A、B、C、D在距篮筐P都是5米处站好,篮球放在AC和BD的交点O处,已知取篮球时A要走6米,B要走3米,C要走2米,则D要走()A.2米B.3米C.4米D.5米8.⊙O半径为5,圆心O的坐标为(0,0),点P的坐标为(3,4),则点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.点P在⊙O上或外9.给定下列条件可以确定一个圆的是()A.已知圆心B.已知半径C.已知直径D.不在同一直线上三点10.如图,△ABC是⊙O的内接三角形,半径OE⊥AB,垂足为点F,连结弦AE,已知OE =1,则下面的结论:①AE2+BC2=4 ②sin∠ACB=③cos∠B=,其中正确的是()A.①②B.①③C.②③D.②11.若半径为5m的圆,其圆心到直线的距离是5m,则直线和圆的位置关系为()A.相离B.相交C.相切D.无法确定12.如图,圆上有A、B、C三点,直线l与圆相切于点A,CD平分∠ACB,且与l交于点D,若=80°,=60°,则∠ADC的度数为()A.80°B.85°C.90°D.95°二.填空题13.如图,在正方形纸片ABCD中,EF∥AD,M,N是线段EF的六等分点,若把该正方形纸片卷成一个圆柱,使点A与点D重合,此时,底面圆的半径为2cm,则此时M、N两点间的距离是cm.14.如图,⊙O的半径OA垂直于弦BC,垂足是D,OA=5,AD:OD=1:4,则BC的长为.15.在我国古代数学著作《九章算术》中记载了这样一个问题:“今有圆材,埋在墙壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”问题题意为:如图,有一圆柱形木材埋在墙壁中,不知其直径大小.用锯去锯这木材,锯口深1寸(即CD=1寸),锯道长1尺(即AB=1尺),问这圆形木材直径是多少?(注:1尺=10寸)由此,可求出这圆形木材直径为为寸.16.′如图,在平面直角坐标系xOy中,扇形OAB的圆心角∠AOB=60°,点A在x轴正半轴上且OA=2,带你C为弧AB的中点,D为半径OA上一点,点A关于直线CD的对称点为E,若点E落在扇形OAB内(不含边界),则点E的横坐标x取值范围为.17.如图,以等边△ABC的一边AB为直径的半圆O交AC于点D,交BC于点E,若AB =4,则阴影部分的面积是.18.在一个圆内接四边形ABCD中,已知∠A=100°,则∠C的度数为.三.解答题19.如图AB=3cm,用图形表示:到点A的距离小于2cm,且到点B的距离不小于2cm 的所有点的集合(用阴影表示,注意边界上的点是否在集合中,如果在,用实线表示,如果不在,则用虚线表示).20.如图,⊙O直径AB和弦CD相交于点E,AE=2,EB=6,∠DEB=30°,求弦CD长.21.一条排水管的截面如图所示,已知排水管的半径OA=10m,水面宽AB=12m,某天下雨后,水管水面上升了2m,求此时排水管水面的宽CD.22.如图,已知⊙O的弦AB,E,F是弧AB上两点,=,OE、OF分别交于AB于C、D两点,求证:AC=BD.23.如图,CD为⊙O的弦,P为⊙O上一点,OP∥CD,∠PCD=15°(1)求∠POC的度数;(2)若=,AB⊥CD,点A在CD的上方,直接写出∠BPA的度数.24.如图,四边形ABCD内接于⊙O,∠ABC=135°,AC=4,求⊙O的半径长.25.已知圆O,弦AB、CD相交于点M.(1)求证:AM•MB=CM•MD;(2)若M为CD中点,且圆O的半径为3,OM=2,求AM•MB的值.参考答案一.选择题1.解:因为五边形的各边长都和小圆的周长相等,所以小圆在每一边上滚动正好一周,在五条边上共滚动了5周.由于每次小圆从五边形的一边滚动到另一边时,都会翻转72°,所以小圆在五个角处共滚动一周.因此,总共是滚动了6周.故选:C.2.解:如图所示,由题意知OC=3,且OC⊥AB,∵AB=6,∴AC=AB=3,则OA===3,故选:B.3.解:∵过圆心的CD垂直弦AB于D,AB=2dm,CD=4dm,∴BD=AD=1dm,在Rt△ODB中,OD2+DB2=OB2,即(4﹣r)2+12=r2,解得:r=dm,故选:C.4.解:A、半圆是弧,但弧不一定是半圆,正确;B、平分弦的直径垂直于弦,不正确.需要添加条件:此弦非直径;C、在平面内,到圆心的距离等于半径的点都在圆上,正确;D、在同圆或等圆中,相等的圆心角所对的弦相等,正确,故选:B.5.解:连接OD,∴∠AOD=2∠ACD,∵D是的中点,∴∠AOB=2∠AOD=4∠ACD=80°,故选:C.6.【解答】解:A、错误.菱形的周长=8,与∠α的大小无关;B、错误,∠α=45°时,菱形的面积=2•2•sin45°=2;C、错误,A,B,C,D四个点不在同一个圆上;D、正确.∵0°<α<90°,S=菱形的面积=2•2•sinα,∴菱形的面积S随α的增大而增大.故选:D.7.解:根据题意得:A、B、C、D在以P为圆心,半径是5米的圆上.∴OA•OC=OB•OD,即6×2=3×OD.解得OD=4.故选:C.8.解:∵点P的坐标为(3,4),∴由勾股定理得,点P到圆心O的距离==5,∴点P在⊙O上,故选B.9.解:A、不能确定.因为半径不确定,故不符合题意;B、不能确定.因为圆心的位置不确定,故不符合题意;C、不能确定,因为圆心的位置不确定,故不符合题意;D.不在同一直线上三点可以确定一个圆.故符合题意;故选:D.10.解:连接AO,延长AO交⊙O于M,连接BM、CM、EM.∵AM是直径,∴∠AEM=90°,∴AE2+EM2=AM2,∴AE2+EM2=4,显然无法判定BC=EM,故①错误,∵∠ACB=∠AMB,∴sin∠ACB=sin∠AMB==,故②正确,∵∠ABC=∠AMC,∴cos∠ABC=cos∠AMC==,显然无法判断CM=AE,故③错误,故选:D.11.解:根据圆心到直线的距离等于圆的半径,则直线和圆相切.故选:C.12.解:设圆心为O,连接OA、OC,∵=80°,=60°,∴∠AOC=140°,∠ACB=40°,∵OA=OC,∴∠OAC=20°,∵直线l与圆相切于点A,∴OA⊥l,∴∠OAD=90°,∴∠CAD=70°,∵CD平分∠ACB,∴∠ACD=∠ACB=20°,∴∠ADC=180°﹣∠CAD﹣∠ACD=90°,故选:C.二.填空题(共6小题)13.解:根据题意得:EF=BC,MN=EF,把该正方形纸片卷成一个圆柱,使点A与点D重合,则线段BC形成一半径为2cm的圆,线段BC是圆的周长,BC=EF=2π×2=4π,∴的长=EF==,∴n=120°,即∠MON=120°,∵OM=ON,∴∠M=30°,过O作OG⊥MN于G,∵OM=2,∴OG=1,MG=,∴MN=2MG=2,故答案为:2.14.解:连接OB,∵OA=5,AD:OD=1:4,∴AD=1,OD=4,OB=5,在Rt△ODB中,由勾股定理得:OB2=OD2+BD2,52=42+BD2,解得:BD=3,∵OD⊥BC,OD过O,∴BC=2BD=6,故答案为:6.15.解:延长CD,交⊙O于点E,连接OA,由题意知CE过点O,且OC⊥AB,则AD=BD=AB=5(寸),设圆形木材半径为r,则OD=r﹣1,OA=r,∵OA2=OD2+AD2,∴r2=(r﹣1)2+52,解得r=13,所以⊙O的直径为26寸,故答案为:26.16.解:当点E落在半径OA上时,连接OC,如下图1所示,∵∠ADC=90°,∠AOB=60°,点C为弧AB的中点,点A(2,0),∴∠COD=30°,OA=OC=2,∴CD=OC•sin30°=2×=1,∴OD=O C•cos30°=2×=,∴AD=OA﹣OD=2﹣,∵DE=DA,∴OE=OD﹣OE=﹣(2﹣)=2﹣2,即点E的坐标为(2﹣2,0);当点E落在半径OB上时,连接OC,CD,如图2所示,由已知可得,CE=CA=CB,由上面的计算可知,OE=2﹣2,∴点E的横坐标为:(2﹣2)×cos60°=﹣1,点E的纵坐标为:(2﹣2)×sin60°=3﹣,∴E(﹣1,3﹣),∴满足条件的点E的横坐标x取值范围为﹣1<x<2﹣2.故答案为﹣1<x<2﹣2.17.解:如图,连接OD,OE,DE.∵△ABC是等边三角形,∴∠A=∠B=60°,∵OA=OD=OB=OE=2,∴△AOD,∠EOB都是等边三角形,∴∠AOD=∠EOB=60°,∴∠DOE=60°,△DOE是等边三角形,∴∠DOE=∠EOB,∴弓形DE与弓形BE的面积相等,∵CD=DE=CE=2,∴△CDE是等边三角形,∴S阴=S△CDE=×22=,故答案为.18.解:∵四边形ABCD是⊙O的内接四边形,∴∠C+∠A=180°,∴∠C=180°﹣100°=80°.故答案为:80°三.解答题(共7小题)19.解:到点A的距离小于2cm,且到点B的距离不小于2cm的所有点的集合如图所示:20.解:过O作OF⊥CD,交CD于点F,连接OD,∴F为CD的中点,即CF=DF,∵AE=2,EB=6,∴AB=AE+EB=2+6=8,∴OA=4,∴OE=OA﹣AE=4﹣2=2,在Rt△OEF中,∠DEB=30°,∴OF=OE=1,在Rt△ODF中,OF=1,OD=4,根据勾股定理得:DF==,则CD=2DF=2.21.解:如图:作OE⊥AB于E,交CD于F,∵AB=12m,OE⊥AB,OA=1m,∴OE=8m.∵水管水面上升了2m,∴OF=8﹣2=6m,∴CF==8m,∴CD=16m.22.证明:连接OA、OB,∵OA=OB,∴∠A=∠B,∵=,∴∠AOC=∠BOD,在△AOC和△BOD中,,∴△AOC≌△BOD,∴AC=BD.23.解:(1)∵OP∥CD,∴∠OPC=∠PCD=15°,∵OP=OC,∴∠OPC=∠OCP=15°,∴∠OCD=30°.(2)①如图1中,当AB在点O的左侧时,连接PA,PB,OD,OA,OB.∵OC=OD,∴∠OCD=∠ODC=30°,∴∠COD=120°,∵=,∴∠AOB=∠COD=120°,∴∠APB=∠AOB=60°.②如图2中,当AB在点O的右侧时,同法可得∠ACB=60°,∵∠APB+∠ACB=180°,∴∠APB=120°,综上所述,∠APB=60°或120°.24.解:∵四边形ABCD内接于⊙O,∠ABC=135°,∴∠D=180°﹣∠ABC=45°,∴∠AOC=2∠D=90°,∵OA=OC,且AC=4,∴OA=OC=AC=2,即⊙O的半径长为2.25.解:(1)连接AD、BC.∵∠A=∠C,∠D=∠B,∴△ADM∽△CBM∴即AM•MB=CM•MD.(2)连接OM、OC.∵M为CD中点,∴OM⊥CD在Rt△OMC中,∵OC=3,OM=2 ∴CD=CM===由(1)知AM•MB=CM•MD.∴AM•MB=•=5.。

初中数学《圆》综合能力测试

初中数学《圆》综合能力测试

第24章圆综合能力测试一、填空题(每题3分,共30分)1.如图,已知AB是⊙O的弦,P是AB上一点,若AB=10cm,PB=4cm,OP=5cm,则⊙O的半径等于______cm.(第1题)(第2题)(第3题)2.如图,AB是⊙O的直径,若AB=4cm,∠D=30°,则∠B=______,AC=______cm.3.(易错题)如图,已知∠AOB=30°,C是射线OB上的一点,且OC=4,若以C为圆心,r为半径的圆与射线OA有两个不同的交点,则r的取值范围是________.4.如果半径分别为2和3的两个圆外切,那么这两个圆的圆心距是______.5.如图,宽为2cm的刻度尺在圆上移动,当刻度尺的一边与圆相切时,另一边与圆两个交点处的读数恰好为“2”和“8”(单位:cm)则该圆的半径为______cm.(第5题)(第6题)(第7题)6.如图,⊙A的圆心坐标为(0,4),若⊙A的半径为3,则直线y=x与⊙A•的位置关系是_________.7.如图,△ABC内接于圆O,要使过点A的直线EF与⊙O相切于点A,则图中的角应满足的条件是_________.(只填一个即可)8.圆锥底面圆的半径为5cm,母线长为8cm,则它的侧面积为_______.(•用含 的式子表示)9.已知圆锥的底面半径为40cm,母线长为90cm.•则它的侧面展开图的圆心角为_______.10.矩形ABCD中,AB=5,BC=12,如果分别以A,C 为圆心的两圆相切,点D在⊙C内,点B在⊙C外,那么⊙A的半径r的取值范围为_________.二、选择题(每题3分,共30分)11.如图,在⊙O中,P是弦AB的中点,CD是过点P的直径,则下列结论中不正确的是()A.AB⊥CD B.∠AOB=4∠ACDC.»»D.PO=PDAD BD(第11题)(第16题)(第17题)12.下列命题中,真命题是()A.圆周角等于圆心角的一半 B.等弧所对的圆周角相等C.垂直于半径的直线是圆的切线 D.过弦的中点的直线必经过圆心13.(易错题)半径分别为5和8的两个圆的圆心距为d,若3<d≤13,•则这两个圆的位置关系一定是()A.相交 B.相切 C.内切或相交 D.外切或相交14.过⊙O内一点M的最长弦长为10cm,最短弦长为8cm,那么OM约长为()A.3cm B.6cm C.41cm D.9cm15.半径相等的圆的内接正三角形、正方形、正六边形的边长之比为()A.1:2:3 B.3:2:1 C.3:2:1 D.1:2:316.如图,已知⊙O的直径AB与弦AC的夹角为35°,过C点的切线PC与AB•的延长线交于点P,则∠P等于()A.15° B.20° C.25° D.30°17.如图所示,在直角坐标系中,A点坐标为(-3,-2),⊙A的半径为1,P为x•轴上一动点,PQ切⊙A于点Q,则当PQ最小时,P点的坐标为()A.(-4,0) B.(-2,0)C.(-4,0)或(-2,0) D.(-3,0)圆周,C点是»BE上的任18.如图,»BE是半径为6的⊙D的14意一点,△ABD•是等边三角形,则四边形ABCD的周长P的取值范围是()A.12<P≤18 B.18<P≤24C.18<P≤D.12<P≤19.一个滑轮起重装置如图所示,滑轮半径是10cm,当重物上升10cm时,•滑轮的一条半径OA绕轴心O,绕逆时针方向旋转的角度约为(•假设绳索与滑轮之间没有滑动, 取3.14,结果精确到1°)()A.115°B.160°C.57°D.29°(第18题)(第19题)(第20题)20.如图所示,在同心圆中,两圆半径分别是2和1,∠AOB=120°,•则阴影部分面积为()A.4πB.2πC.4π3 D.π三、解答题(共60分)21.(8分)如图,CE是⊙O的直径,弦AB⊥CE于D,若CD=2,AB=6,求⊙O•半径的长.22.(8分)如图,AB是⊙O的直径,BC切⊙O于B,AC交⊙O于P,E是BC•边上的中点,连结PE,PE与⊙O相切吗?若相切,请加以证明;若不相切,请说明理由.23.(12分)在同一平面内,已知点O到直线L的距离为5,以点O为圆心,r•为半径画圆,探究、归纳:(1)当r=_______时,⊙O上有且只有一个点到直线L的距离等于3;(2)当r=_______时,⊙O上有且只有三个点到直线L的距离等于3;(3)随着r的变化,⊙O上到直线L的距离等于3的点的个数有哪些变化?并求出相对应的r的值或取值范围(不必写出计算过程).24.(12分)如图,石景山游乐园的观览车半径为25m,已知观览车绕圆心O顺时针做匀速运动,旋转一周用12分钟.某人从观览车的最低处(地面A处)乘车,问经过4分钟后,此人距地面CD的高度是多少米?(观览车距最低处地面高度不计)25.(8分)如图,两个半圆中,长为4的弦,AB与直径CD•平行且与小半圆相切,那么图中阴影部分的面积等于多少?26.(12分)如图,AB是半圆的直径,点M是半径OA的中点,点P在线段AM•上运动(不与点M重合),点Q在半圆O上运动,且总保持PQ=PO,过点Q作⊙O的切线交BA•的延长线于点C.(1)当∠QPA=60°时,请你对△QCP的形状做出猜想,并给予证明;(2)当QP⊥AB时,△QCP的形状是________三角形;(3)由(1)、(2)得出的结论,请进一步猜想当点P 在线段AM上运动到任何位置时,△QCP一定是_______三角形.答案:1.7 2.30° 2 3.2<x≤4 4.5 5.1346.相交 7.∠BCA=∠BAE等 8.40 cm29.160° 10.1<r<8或18<r<2511.D 12.B 13.D 14.A 15.B 16.B 17.D18.C 19.C 20.B21.连接OA.∵CE是直径,AB⊥CE,∴AD=12AB=3.∵CD=2,∴OD=OC-CD=OA-2.•由勾股定理,得OA2-OD2=AD2,∴OA2-(OA-2)2=9,解得OA=134,∴⊙O的半径等于134.22.相切理由:证OP⊥PE即可.23.(1)2 (2)8(3)当0<r<2时,有0个点;当r=2时,有1个点;当2<r<8时,有2•个点;当r=8时,有3个点;当8<r时,有4个点.24.连接OA,由题意得OA⊥CD.设旋转4分钟后,此人到达B处,•连结OB,•则∠AOB=360°×412=120°,过B、O分别作BE⊥CD于E,OF⊥BE于F,•∴∠BFO=•90•°,•∴四边形OFEA为矩形.∴FE=OA=25,∠BOF=120°-90°=30°.在Rt△BFO中,OB=25,∴BF=12OB=252,•∴BE=BF+FE=252+25=37.5,∴人距地面37.5m.25.将小半圆向右平移,使两圆的圆心重合,则阴影部分面积等于半环形面积.∴作OE⊥AB于E,连结OA.∴AE=1AB=2.2∴S阴=1π·OA2-12π·OE2=12π(OA2-OE2)2=1π·AE2=12·π·22=2π.226.(1)△QCP是等边三角形.理由:连结OQ,则CQ⊥OQ,∵PQ=PO,∠QPC=60°,∴∠POQ=∠PQO=30°,∴∠C=90°-30°=60°,∴∠C=∠CQP=∠QCP=60°,∴△QCP是等边三角形.(2)等腰直角(3)等腰。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图 3
图6
《圆》综合复习测试题
一、选择题(本题有10小题,每小题3分,共30分)
1.图1是北京奥运会自行车比赛项目标志,则图中两轮所在圆的位置关系是( ) (A )内含
(B )相交
(C )相切
(D )外离
2.如图2,点A 、B 、C 都在⊙O 上,且点C 在弦AB 所对的优弧上,若72AOB ∠=︒,则A C B ∠ 的度数是( ) (A )18°
(B )30°
(C )36°
(D )72°
3.已知1O 和2O 的半径分别为3cm 和2cm ,圆心距124O O =cm ,则两圆的位置关系是( ) (A )相切
(B )内含 (C )外离
(D )相交
4.如图3,已知CD 是⊙O 的直径,过点D 的弦DE 平行于半径OA ,若∠D 的度数是50o
,则∠C 的度数是( )
(A )50o
(B )40o
(C )30o
(D )25o
5.边长为2的等边三角形的外接圆的半径是( ) (A)
3 3 (B) 3 (C)2 3 (D)2 3 3
6.一个圆锥的侧面展开图形是半径为8cm ,圆心角为120°的扇形,则此圆锥的底面半径为
( )
(A)3
8
cm
(B)
3
16cm (C)3cm (D)
3
4cm 7.如图5,P 为⊙O 外一点,PA 切⊙O 于点A ,且OP=5,PA=4,则sin∠APO 等于( )
(A)5
4
(B)5
3
(C)3
4
(D)4
3
8.如图6,AB 是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=20,CD=16, 那么线段OE 的长为( ) (A)10 (B)8 (C)6 (D)4 9.如图7,扇形纸扇完全打开后,外侧两竹条AB,AC 夹角为120
,AB 的长为30cm ,贴纸部分
BD 的长为20cm ,则贴纸部分的面积为( )
图1
O
C
B
A
图2
P
O
A · 图5
图8
(A)2
100cm π (B)
2400cm 3π (C)2800cm π (D)2800
cm 3
π
10.如图8,古尔邦节,6位朋友均匀地围坐在圆桌旁共度佳节.圆桌半径为60cm ,每人离圆桌的距离均为10cm ,现又来了两名客人,每人向后挪动了相同的距离,再左右调整位置,使8人都坐下,并且8人之间的距离与原来6人之间的距离(即在圆周上两人之间的圆弧的长)相等.设每人向后挪动的距离为x ,根据题意,可列方程( ) (A)
2π(6010)2π(6010)
68
x +++=
(B)
2π(60)2π60
86
x +⨯=
(C)2π(6010)62π(60)8x +⨯=+⨯
(D)2π(60)82π(60)6x x -⨯=+⨯
二、填空题(本题有10小题,每小题3分,共30分)
11.在直径为10cm 的圆中,弦AB 的长为8cm ,则它的弦心距为 cm . 12.如图9,奥运五环标志里,包含了圆与圆的位置关系中的外离..和 .
13.一个圆锥底面周长为4πcm ,母线长为5cm ,则这个圆锥的侧面积是 . 14.如图10,在⊙O 中,∠AOB=60°,AB=3cm ,则劣弧 AB 的长为___ _ __cm .
15.已知1O 和2O 的半径分别为3cm 和5cm ,且它们内切,则圆心距12O O 等于
________cm .
16.如图11, AB 是⊙O 的直径,点C 在⊙O 上,∠BAC=30°,点P 在线段OB 上运动.设∠ACP=x ,则x 的取值范围是 .
17. 如图12,已知PA 是⊙O 的切线,切点为A ,PA = 3,∠APO = 30°,那么OP = .
18.如图13,某花园小区一圆形管道破裂,修理工准备更换一段新管道,现在量得污水水
图7
图11
A
B O C
x
P 图9
图10
图12
图13
图15
面宽度为80cm ,水面到管道顶部距离为20cm ,则修理工应准备内直径是 cm 的管道. 19.如图14,圆锥的轴截面(过圆锥顶点和底面圆心的截面)是边长为4cm 的等边三角形ABC ,点D 是母线AC 的中点,一只蚂蚁从点B 出发沿圆锥的表面爬行到点D 处,则这只蚂蚁爬行的最短距离是 cm .
20.如图15,在平面直角坐标系中,点A 1是以原点O 为圆心,半径为2的圆与过点(0,1)且平行于x 轴的直线l 1的一个交点;点A 2是以原点O 为圆心,半径为3的圆与过点(0,2)且平行于x 轴的直线l 2A n 的坐标为 .
三、解答题(本题有6小题,共40分) 21.(本题6分)如图16,正方形网格中,⊿ABC 为格点三角形(顶点都是格点),将⊿ABC 绕点A 按逆时针方向旋转90°得到⊿AB 1C 1. (1)在正方形网格中,作出⊿AB 1C 1;
(2)设网格小正方形的边长为1,求旋转过程中 动点B 所经过的路径长.
22.(本题6分)如图17,AB 为⊙O 的直径,D 为弦BE 的中点,连接OD 并延长交⊙O 于点F ,与过B 点的切线相交于点C .若点E 为 AF 的中点,连接AE . 求证:⊿ABE ≌⊿OCB .
23.(本题6分)如图18,AB 为⊙O 的直径,CD ⊥AB 于点E ,交⊙O 于点D ,OF
⊥AC 于点F .
图14
D 图17
O
B C
F E
A
图16
(1)请写出三条与BC 有关的正确结论;
(2)当∠D=30°,BC=1时,求圆中阴影部分的面积.
24.(本题6分)已知:如图19,M 是 AB 的中点,过点M 的弦MN 交AB
为4cm ,MN =.
(1)求圆心O 到弦MN 的距离; (2)求∠ACM 的度数.
25.(本题8分) 已知:如图20,在△ABC 中,AB=AC ,以BC 为直径的半圆O 与边AB 相交于点D ,切线DE ⊥AC ,垂足为点E . 求证:(1)△ABC 是等边三角形;
(2)CE AE 3
1

26.(本题8分)如图21,在气象站台A 的正西方向240km 的B 处有一台风中心,该台风中心以每小时20km 的速度沿北偏东o
60的BD 方向移动,在距离台风中心130km 内的地方都要受到其影响.
⑴台风中心在移动过程中,与气象台A 的最短距离是多少?
⑵台风中心在移动过程中,气象台将受台风的影响,长?
B
A
图18
O 图19 A
B
C M
N
·
O
图20。

相关文档
最新文档