岩土弹塑性力学

合集下载

岩土类材料弹塑性力学模型及本构方程

岩土类材料弹塑性力学模型及本构方程

岩土类材料弹塑性力学模型及本构方程TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-岩土类材料的弹塑性力学模型及本构方程摘要:本文主要结合岩土类材料的特性,开展研究其在受力变形过程中的弹性及塑性变形的特点,描述简化的力学模型特征及对应的适用条件,同时在分析研究其弹塑性力学模型的基础上,探究了关于岩土类介质材料的各种本构模型,如M-C、D-P、Cam、D-C、L-D及节理材料模型等,分析对应使用条件,特点及公式,从而推广到不同的材料本构模型的研究,为弹塑性理论更好的延伸发展做一定的参考性。

关键词:岩土类材料,弹塑性力学模型,本构方程不同的固体材料,力学性质各不相同。

即便是同一种固体材料,在不同的物理环境和受力状态中,所测得的反映其力学性质的应力应变曲线也各不相同。

尽管材料力学性质复杂多变,但仍是有规律可循的,也就是说可将各种反映材料力学性质的应力应变曲线,进行分析归类并加以总结,从而提出相应的变形体力学模型。

第一章岩土类材料地质工程或采掘工程中的岩土、煤炭、土壤,结构工程中的混凝土、石料,以及工业陶瓷等,将这些材料统称为岩土材料。

岩土塑性力学与传统塑性力学的区别在于岩土类材料和金属材料具有不同的力学特性。

岩土类材料是颗粒组成的多相体,而金属材料是人工形成的晶体材料。

正是由于不同的材料特性决定了岩土类材料和金属材料的不同性质。

归纳起来,岩土材料有3点基本特性:1.摩擦特性。

2.多相特性。

3.双强度特性。

另外岩土还有其特殊的力学性质:1.岩土的压硬性,2.岩土材料的等压屈服特性与剪胀性,3.岩土材料的硬化与软化特性。

4.土体的塑性变形依赖于应力路径。

对于岩土类等固体材料往往在受力变形的过程中,产生的弹性及塑性变形具备相应的特点,物体本身的结构以及所加外力的荷载、环境和温度等因素作用,常使得固体物体在变形过程中具备如下的特点。

固体材料弹性变形具有以下特点:(1)弹性变形是可逆的。

岩土弹塑性力学

岩土弹塑性力学

. 20
q 洛德参数与受力状态
m (I1 )、q (J 2 )、 (J 3 )与 1 、 2 、
关系
2
主偏应力方程, S3J2SJ30
三角恒等式模拟,si3 n4 3sin1 4si3 n0
1 2 3
2 3
q
s s s
i i i
n n n
2
3
2
3
m m m
.
21
q 岩土本构模型建立
q 岩土塑性力学与传统塑性力学不同点
Ø球应力与偏应力之间存在交叉影响;
Ø考虑等向压缩屈服
Ø屈服准则要考虑剪切屈服与体积屈服,剪切屈服中要考虑平均 应力;
v
p Kp
q Ks
p
q
Gp Gs
Kp,Ks,Gp,Gs——弹塑性体积模量,剪缩模量,压硬模量,
弹塑性剪切模量
. 16
q 岩土塑性力学与传统塑性力学不同点
q 岩土塑性力学及其本构模型发展方向 q 岩土材料的试验结果
q 岩土材料的基本力学特点
q 岩土塑性力学与传统塑性力学不同点
q 岩土本构模型的建立
. 3
q 岩土塑性力学的提出
Ø材料受力三个阶段: 弹性 → 塑性 → 破坏
弹性力学 塑性力学 破坏力学 断裂力学等
. 4
q 岩土塑性力学的提出
Ø塑性力学与弹性力学的不同点: • 存在塑性变形 • 应力应变非线性 • 加载、卸载变形规律不同 • 受应力历史与应力路径的影响
. 9
q 岩土塑性力学及其本构模型发展方向
Ø 建立和发展适应岩土材料变形机制的、系统的、严 密的广义塑性力学体系
Ø 理论、试验及工程实践相结合,通过试验确定屈服 条件及其参数,以提供客观与符合实际的力学参数

岩土弹塑性力学教学课件(共13章)第3章_应变状态

岩土弹塑性力学教学课件(共13章)第3章_应变状态

§3.1 应变状态11
• 三个刚性转动分量及6个应变分量合在一起,才全 面反映了物体变形
xyz x y z xy yz zx
B
B’’ 刚性转动
B’’’
B’
变形
A 刚性平动 A`
§3.1 应变状态12
• 工程应变: ln l0
l0
变形后长度 原始长度
不适用于大变形
• 自然应变/对数应变:
在塑性变形较大时,用-曲线不能真正代表加载和变形的状态。
x y z
• ——弹性体一点的体积改变量
• 引入体积应变有助于简化公式。
• 大于零表示体积膨胀,小于零体积压缩。
• 注意:土力学中塑性体应变符号约定相反。
§3.2 主应变与应变主方向8
应变Lode参数: 为表征偏量应变张量的形式,引入应变Lode参数:
22 3 1 3
1
(1.66)
如果两种应变状态με 相等,表明它们所对应的应变莫尔圆 相似,也即偏应变张量的形式相同。
Vz y
;
zx
Vz x
Vx z
;
§3.3 应变率张量 2
小变形情况下,应变速率分量与应变分量间存在如下关系:
x
Vx x
du x dt
d dt
u x
x
u x
y
Vy y
dv y dt
d v
dt
y
y
v y
z
Vz z
z
dw dt
d w dt z
z
w z
线应变速率
j
Vj,i )
(1.56)
§3.3 主应变与应变主方向 4
由于时间度量的绝对值对塑性规律没有影响,因

岩土塑性力学简介(3)

岩土塑性力学简介(3)

•σ1、σ2、σ3为三个塑性势函数:
6
岩土塑性力学简介
3 塑性位势理论(续)
d ijp d1 1 2 d2 d3 q 3 ij ij ij
d1 d1p , d2 d 2p , d3 d 3p
di求法:等向强化模型的三个主应变屈服面
v ij p v q ij p q
1
2

ij

p
3

p v p q p
v
ij
q
ij

ij

p v p q p
v
ij
q
ij

ij
不完全等向硬化
等向硬化
硬化模量为:A=1
8
岩土塑性力学简介
3 塑性位势理论(续) •屈服面与塑性势面的关系:
(1)塑性势面确定塑性应变增量的方向,屈服面确定 塑性应变增量的大小; (2)屈服面必须与塑性势面相应,如塑性势面为q, 则相应的塑性应变与硬化参量为qp ,屈服面为q方向 上的剪切屈服面fq(ij ,qp),即qp的等值线; (3)三个分量屈服面各自独立,体积屈服面只与塑性 体变有关,而与塑性剪变无关; (4)由dq、d引起的体变是真正的剪胀 ; (5)屈服面与塑性势面相同,是相应的一种特殊情况。
2

12
Q d qp d q
1 Q d p d q
d与只有在势面为圆形时相等
1
岩土塑性力学简介
3 塑性位势理论(续) •举例:米赛斯,屈瑞斯卡,统一剪切破坏条件 3.3 传统塑性位势理论剖析
•岩土界的四点共识:
(1)不遵守关联流动法则; (2)不具有塑性应变增量方向与应力唯一性假设; (3)岩土材料应考虑应力主轴旋转; (4)莫尔-库仑类剪切模型产生过大剪胀;剑桥模 型不能很好反映剪胀与剪切变形;

岩土塑性力学简介(3)

岩土塑性力学简介(3)

p p p d1 dv , d2 d q , d3 d
f v f v ( ij , vp ) 等向硬化模型时 p f q f q ( ij , q ) f f ( ij , p )
vp f v ij f v ( p, q, ) qp f q ij f q ( p, q, ) p f ij f ( p, q, )
(1)塑性应变增量方向与应力增量的方向有关,因 而无法用一个塑性势函数确定塑性应变总量的方向,
5
岩土塑性力学简介
3 塑性位势理论(续)
但可确定三个分量的方向,即以三个分量作势面; (2)采用三个线性无关的分量塑性势函数; (3)dk不要求都大于等于零; (4)塑性势面可任取,一般取p、q、 ,也可取 σ1、σ2、σ3 ;屈服面不可任取,必须与塑性势面相应, 特殊情况相同; (5)三个屈服面各自独立,体积屈服面只与塑性体 变有关,而与塑性剪变无关; (6)广义塑性力学不能采用正交流动法则。
n H ( p ) F ( p, q, ) p 2 1 p k
子午平面上不封闭,π平面上封闭
(2)体积屈服面类型 ①压缩型:右图(a)②压缩剪胀型: 右图(b)③软化型
4.4 硬化定律的一般形式
硬化定律是给定应力增量条件下会引起多大塑性应变的一
条准则,也是从某屈服面如何进入后继屈服面的一条准则, 目的为求d(A或h)
13
岩土塑性力学简介
4 加载条件与硬化定律(续)
d hd h 1 d ij d ij ij A ij
硬化定律以引用何种硬化参量而命名 A的一般公式:混合硬化模型 ( ij ij , H ) 0

关于岩土塑性力学的几点认识

关于岩土塑性力学的几点认识

关于岩土塑性力学的几点认识多数工程岩土都处于弹塑性状态因而岩土塑性在岩土工程的设计中至关重要。

早在1773年Coulobm就提出了土体破坏条件,其后推广为Mohr-Coulobm条件。

1857年研究了半无限体的极限平衡,提出了滑移面概念。

1903年Kotter建立了滑移线方法。

Fellenius(1929)提出了极限平衡法。

以后Terzaghi Sokolovskii又将其发展形成了较完善的岩土滑移线场方法与极限平衡法。

1975年W.F.Chen在极限分析法的基础上又发展了土的极限分析法,尤其是上限法。

国内学者沈珠江也在上述领域作过不少工作。

不过上述方法都是在采用正交流动法则的基础上进行的。

1957年,Drucker等人首先指出了平均应力与体应变会导致岩土材料的体积屈服,需在莫尔-库仑锥形空间屈服面上再加上一簇帽子屈服面,此后剑桥大学Roscoe等人提出了剑桥粘土的弹塑性本构模型开创了岩土实用计算模型。

自上世纪60年代至今,岩土本构模型始终处于百家争鸣、百花齐放的阶段没有统一的理论、屈服条件与计算方法。

上世纪70年代就发现采用一个塑性势面和屈服面很难使计算结果与实际吻合;采用正交流动法既不符合岩土实际情况还会产生过大的体胀。

由此双屈服面与多重屈服面模型非正交流动法则在岩土本构模型中应运而生。

但由于没有从塑性理论上搞清问题,澄清认识,导致年来的这种混乱状态延续至今。

岩土塑性与本构模型的发展,主要是围绕着两个方面:一是对经典塑性理论的修正与静力本构模型的完善:二是针对不同岩土不同工况发展了许多新型的本构模型。

国内学者作了大量的工作,新发展的广义塑性力学既适应岩土类摩擦材料,也适应金属,可以作为岩土塑性力学的理论基础。

新型模型中动力模型、复杂路径模型等正在逐渐走向实用。

软化损伤模型、非饱和土模型、结构性土模型、细观模型也在不断地发展与完善。

1. 岩土塑性基本理论的一些进展岩土塑性计算不同于弹性力学与传统塑性力学,主要在于理论不统一,屈服条件取决于建模者经验而不是完全由试验确定,由此导致计算结果不惟一。

岩土弹塑性力学研究生课程教学课件U10

岩土弹塑性力学研究生课程教学课件U10

塑性应变增量偏张量和 应力偏张量相似且同轴
{ { 本构方程数学表达
d ii
1 2
E
d ii
deij deiej deipj
deiej
1 2G
dsij
deipj dSij
回忆:张量分解 球张量和偏张量分解
ij m ij sij
m
1 3
(
x
y
z)
yxx
xy y
xz yz
m
m
xy y m
xz yz
zx zy z 0 0 m zx
zy z m
ij m ij eij
m
1 3
( x
y
z)
ii x y z
yxx
xy y
xz yz
m
0
0 m
0 0
x yx
m
xy y m
xz yz
zx zy z 0 0 m zx
硕士研究生课程
岩土弹塑性力学
第十章 经典塑性理论
同济大学地下建筑与工程系
10.1 塑性全量理论 10.2 塑性增量理论 10.3 塑性位势理论
回忆:张量分解 球张量和偏张量分解
ij m ij sij
m
1 3
(
x
y
z)
yxx
xy y
xz yz
m
0
0 m
0 0
x yx
与Mises屈服条件相关连的流动法则
屈服条件
f
J2
2 s
0
Drucker公设确定方向
d
p ij
d f ij
d
J
2
ij
dsij
引入弹性应变

《岩土弹塑性力学》课件

《岩土弹塑性力学》课件

02
数值模拟的精度和稳 定性
数值模拟的精度和稳定性是评价数值 模拟技术的重要指标,需要不断改进 数值方法和模型参数,提高模拟结果 的可靠性和精度。
03
数值模拟的可视化和 后处理
可视化技术和后处理技术是数值模拟 的重要组成部分,能够直观地展示模 拟结果和进行结果分析,需要不断改 进和完善相关技术。
THANKS
感谢您的观看
弹塑性力学的未来发展
随着科技的不断进步和应用领域的拓展,弹塑性力学将进 一步发展并应用于更广泛的领域,如新能源、环保、生物 医学等。
Part
02
岩土材料的弹塑性性质
岩土材料的弹性性质
弹性模量
表示岩土材料在弹性范围内抵抗变形的能力,是 材料刚度的度量。
泊松比
描述材料横向变形的量,表示材料在单向受拉或 受压时,横向变形的收缩量与纵向变形的关系。
各向同性假设
假设材料在各个方向上具 有相同的物理和力学性质 ,即材料性质不随方向变 化而变化。
弹塑性力学的历史与发展
弹塑性力学的起源
弹塑性力学起源于20世纪初,随着材料科学和工程技术的 不断发展,人们对材料在复杂应力状态下的行为有了更深 入的认识。
弹塑性力学的发展
弹塑性力学经过多年的发展,已经形成了较为完善的理论 体系和研究方法,为解决工程实际问题提供了重要的理论 支持。
《岩土弹塑性力学》 PPT课件
• 弹塑性力学基础 • 岩土材料的弹塑性性质 • 岩土弹塑性本构模型 • 岩土弹塑性力学的应用 • 岩土弹塑性力学的挑战与展望
目录
Part
01
弹塑性力学基础
弹塑性力学定义
弹塑性力学
是一门研究材料在弹性变形和塑性变形共同作用下的力学行为的学科。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
岩土塑性力学原理 ——广义塑性力学
郑颖人 院士
中国人民解放军后勤工程学院
2020年10月31日
1
主要内容
概论 应力-应变及其基本方程 屈服条件与破坏条件 塑性位势理论 加载条件与硬化规律 广义塑性力学中的弹塑性本构关系 广义塑性力学中的加卸载准则 包含主应力轴旋转的广义塑性力学 岩土弹塑性模型
13
岩土材料的试验结果
对应体
硬化型:变曲线
应力应 双曲线
变曲线:
对应体
软化型: 变曲线
驼峰曲线
压缩型: 压缩剪胀型:先缩后胀 压缩剪胀型:先缩后胀
相应地,可 把岩土材料 分为3类
压缩型:如松砂、正常固结土 硬化剪胀型:如中密砂、弱超固结土 软化剪胀型:如岩石、密砂与超固结土
14
岩土材料的基本力学特点
岩土系颗粒体堆积或胶结而成的多相体,算多相 体的摩擦型材料。 基本力学特性:
➢压硬性 ➢等压屈服特性 ➢剪胀性 ➢应变软化特性 ➢与应力路径相关性
15
岩土塑性力学与传统塑性力学不同点
➢球应力与偏应力之间存在交叉影响;
➢考虑等向压缩屈服
➢屈服准则要考虑剪切屈服与体积屈服,剪切屈服中要考虑平 均应力;
初始加载:
卸载与再加载:
e e0 ln p
e ek k ln p
11
岩土材料的试验结果
➢土的三轴剪切试验结果:
(1)常规三轴
土有剪胀(缩)性; 土有应变软化现象;
12
岩土材料的试验结果
(2)真三轴:
土受应力路径的影响
b 2 3 1 3
b=0常理试验; 随b增大,曲线变陡,出现软化, 峰值提前,材料变脆。
广义塑性理论为岩土本构模型提供了理论 基础,由试验确定屈服条件进一步增强了 岩土本构的客观性,从而把岩土本构模型 提高到新的高度
22
第2章 应力-应变及其基本方程
一点的应力状态 应力张量分解及其不变量 应力空间与平面上的应力分量 应力路径 应变张量分解 应变空间与应变平面 应力和应变的基本方程
➢塑性力学与弹性力学的不同点: • 存在塑性变形 • 应力应变非线性 • 加载、卸载变形规律不同 • 受应力历史与应力路径的影响
5
6
岩土塑性力学的提出
➢力学要解决的问题:
• 已知应力矢量(方向与大小)
• 求应变矢量 (方向与大小)
• 弹性力学:
E
(单轴情况 )
• 与弹性力学理论及材料宏观试验参数有关
➢ 建立复杂加荷条件下、各向异性情况下、动力加荷 以及非饱和土情况下的各类实用模型
➢ 引入损伤力学、不连续介质力学、智能算法等新理 论,宏细观结合,开创土的新一代结构性本构模型
➢ 岩土材料的稳定性、应变软化、损伤、应变局部化
(应力集中)与剪切带等问题
10
岩土材料的试验结果
➢ 土的单向或三向固结压缩试验:土有塑性体变
23
一点的应力状态
xx
z
z
zx zy
xz yz
xy
yx
y y
x xy xz
S ij yx
y
yz
zx zy z
24
一点的应力状态
➢ 应力张量不变量
主应力方程:
3 N
I1
2 N
I2
N
I30
I1 x y z
I
2
x
y
y
z
z x
2 xy
2 yz
2 zx
17
势面 屈服面
18
洛德参数与受力状态
19
洛德参数与受力状态
2
2 1
3 3
1
tg 1
3
纯拉时, 2 30, 1 s , 1, 30 ; 纯剪时, 2 0, 1 , 3 , 0 , 0 ; 纯压时, 1 2 0, 3 s , 1, 30 ;
20
洛德参数与受力状态
m (I1) 、q(J2 )、 (J3)与1、 2、 2关系
主偏应力方程, S3J2SJ30
三角恒等式模拟,sin
3
3 4
sin
1 4
sin3
0
1 2 3
2 3
q
sin
sin
sin
2
3
2
3
m m m
21
岩土本构模型建立
理论、实验(屈服面、参数)
要求符合力学与热力学理论,反映岩土实 际变形状况、简便
I
3
x
y
z
2
xy
yz zx
x
2 yz
2
y zx
2
z xy
II121(12
3 2
2
3
3
1
)
I31 2 3
应力张量第一 不变量 I1 ,是平均应力p的三倍。
25
应力张量分解及其不变量
应力张量
球应力张量 偏应力张量
应力球张量不变量:I1 、I 2 、 I3 f ( m)
d 1 F A ij
d ij ;
A F H
H
p ij
F ij
传统塑性力学
应用于岩土材料 并进一步发展
岩土塑性力学
8
塑性力学发展历史
1864年Tresca准则出现,建立起经典塑性力学;
19世纪40年代末,提出Drucker塑性公论,经典塑性 力学完善;
1773年Coulomb提出的土质破坏条件,其后推广为 莫尔—库仑准则;
• 塑性力学:
d p d Q hd Q 1 d Q
A
A F H F
H
p ij
ij
Q—塑性势函数、F—屈服函数;H—硬化函数。
7
岩土塑性力学的提出
➢传统塑性力学:基于金属材料的变形机制
①传统塑性位势理论: (给出应变增量的方向)
d
p ij
d
Q ij
d
F ij
②屈服条件与硬化规律: (给出应变增量的大小)
2

第1章 概 论
岩土塑性力学的提出 岩土塑性力学及其本构模型发展方向 岩土材料的试验结果 岩土材料的基本力学特点 岩土塑性力学与传统塑性力学不同点 岩土本构模型的建立
3
岩土塑性力学的提出
➢材料受力三个阶段: 弹性 → 塑性 → 破坏
弹性力学 塑性力学 破坏力学 断裂力学等
4
岩土塑性力学的提出
1957年Drucker提出考虑岩土体积屈服的帽子屈服面;
1958年Roscoe等人提出临界状态土力学,1963年提出 剑桥模型。岩土塑性力学建立。
9
岩土塑性力学及其本构模型发展方向
➢ 建立和发展适应岩土材料变形机制的、系统的、严 密的广义塑性力学体系
➢ 理论、试验及工程实践相结合,通过试验确定屈服 条件及其参数,以提供客观与符合实际的力学参数
v
p Kp
q Ks
p
q
Gp Gs
Kp,Ks,Gp,Gs——弹塑性体积模量,剪缩模量,压硬模量,
弹塑性剪切模量
16
岩土塑性力学与传统塑性力学不同点
➢考虑摩擦强度; ➢考虑体积屈服; ➢考虑应变软化; ➢不存在塑性应变增量方向与应力唯一性; ➢不服从正交流动法则; ➢应考虑应力主轴旋转产生的塑性变形。
相关文档
最新文档