数学物理方法参考书目
数学物理方法

数学物理方法Mathematical Methods in Physics课程编号:22189906 总学时:72学分:4课程性质:专业必修课课程内容:数学是物理学的表述语言。
复变函数论和数学物理方程是学习理论物理课程的重要的数学基础。
该课程包括复变函数论和数学物理方程两部分。
复变函数论部分介绍复变函数的微积分,级数展开,留数及其应用以及积分变换等内容。
数学物理方程部分包括物理学中常用的几种数学物理方程的导入、解数学物理方程的分离变量法、作为勒让德方程的解的勒让德多项式和作为贝塞尔方程的解的贝塞尔函数及其性质以及格林函数的基本知识。
该课程有着逻辑推理抽象严谨的特点,同时与物理以及工程又有着紧密的联系,是理工科学生必备的数学基础知识。
我们将把抽象的数学知识和在物理学中的应用结合起来,使学生不但能学习数学本身,同时还能提高学生运用所学数学知识解决实际问题的能力。
先修课程:高等数学参考书目:《数学物理方法》(陆全康、赵蕙芬编),第二版高等教育出版社《数学物理方法》(吴崇试)第二版,北京大学出版社力学和热学 (1)与(2)Mechanics and Thermal Physics (1) and (2)课程编号:22189936、22189937 总学时:28、72 学分:2、4课程性质:专业必修课课程内容:本课程由力学和热学两大部分组成。
力学和热学都是大学物理的基础部分,是物理学各门课程的重要基础课程。
力学的主要内容包括三方面:在牛顿力学方面,主要学习牛顿定律、动量定理和动量守恒定律、动能原理及机械能守恒定律;在刚体定轴转动方面,主要学习转动定律和角动量守恒;在振动和波方面,主要学习简谐振动和平面简谐波。
热学的主要内容包括分子物理学和热力学,主要学习温度,热力学第一定律、第二定律,热机效率及熵增加;气体分子运动论的基本方法,气体压强公式,分子平均动能,气体分子的麦克斯韦速率分布律,能量均分定理。
先修课程:高等数学A(1)参考书目:《力学》,漆安慎、杜婵英,高等教育出版社,1997年;《热学教程》(第二版),黄淑清、聂宜如、申先甲编,高等教育出版社,1994年电磁学Electromagnetism课程编号:22189903 总学时:72 学分:4课程性质:专业必修课课程内容:本课程主要包括真空中的静电场,静电场中的导体和电介质,恒定电流,恒定磁场,磁介质,电磁感应,电磁场和电磁波,及电磁学与当代高新技术等内容。
《数学物理方法》教学大纲

《数学物理方法》教学大纲课程名称:数学物理方法英文名称:Methods of Mathematics and Physics课程编号:09120004学时数及学分:64 学时 4学分教材名称及作者:《数学物理方法》(第三版)梁昆淼编出版社、出版时间:高等教育出版社,1995年本大纲主笔人:彭建设一、课程的目的、要求和任务本课程是物理系各专业的基础理论课,通过本课程的学习,使学生掌握处理物理问题的一些基本数学方法,为进一步学习后继课程提供必要的数学基础。
要求学生熟悉复变函数(特别是解析函数)的一些基本概念,掌握泰勒级数及洛朗级数的展开方法,利用留数定理来计算回路积分和三类实变函数的定积分;掌握傅立叶变换和拉普拉斯变换的概念及性质,并能运用拉普拉斯变换方法求解积分、微分方程。
了解三种类型的数学物理方程的导出过程,能熟练写出定解问题;掌握用行波法求解一维无界及半无界波动方程,利用分离变量法求解各类齐次及非齐次方程;了解特殊函数的常微分方程,掌握用级数解法求解二阶常微分方程,了解施图姆-刘维尔本征值问题及性质;掌握勒让德多项式、贝塞尔函数及性质,并能利用勒让德多项式求解三维轴对称拉普拉斯方程。
二、大纲的基本内容及学时分配第一部分:复变函数论(一)复变函数(5学时)复数与复数运算,复变函数,导数,解析函数重点:解析函数(二)复变函数的积分(4学时)复变函数的积分,柯西定理,不定积分,柯西公式重点:柯西定理(三)幂级数展开(7学时)复数项级数,幂级数,泰勒级数展开,解析延拓,洛朗级数展开,孤立奇点的分类重点:泰勒级数展开和洛朗级数展开(四)留数定理(5学时)留数定理,应用留数定理计算实变函数定积分重点:应用留数定理计算实变函数定积分(五)傅里叶变换(6学时)傅里叶级数,傅里叶积分与傅里叶变换,δ函数难点:δ函数(六)拉普拉斯变换(5学时)拉普拉斯变换,拉普拉斯变换的反演,应用例重点:拉普拉斯变换的应用第二部分:数学物理方程(七)数学物理定解问题(7学时)数学物理方程的导出,定解条件,达朗贝尔公式重点:写出定解问题(八)分离变数法(12学时)齐次方程的分离变数法,非齐次振动方程和输运方程,非齐次边界条件的处理,泊松方程难点:非齐次方程及非齐次边界条件的处理(九)二阶常微分方程的级数解法本征值问题(7学时)特殊函数常微分方程,常点邻域上的级数解法,正则奇点邻域上的级数解法,施图姆-刘维尔本征值问题难点:施图姆-刘维尔本征值问题(十)球函数(4学时)轴对称球函数重点:利用勒让德多项式求解球坐标系下的拉普拉斯方程(十一)柱函数(2学时)三类柱函数,贝塞尔方程(简介)三、与其它课程的关系先修课程:《高等数学》、《大学物理》四、考核方式1.期末闭卷笔试占总成绩的80%2.平时成绩(作业、课堂讨论和小论文等)占20%五、参考书目《数学物理方法》梁昆淼编高等教育出版社出版 1995(第三版)。
(整理)数学物理方法

《数学物理方法》课程考试大纲一、课程说明:本课程是物理学专业的一门重要基础课程,它是继高等数学后的一门数学基础课程。
本课程的教学目的是:(1) 掌握复变函数、数学物理方程、特殊函数的基本概念、基本原理、基本解题计算方法;(2) 掌握把物理问题归结成数学问题的方法,以及对数学结果做出物理解释。
为今后学习电动力学、量子力学和统计物理等理论物理课程打下必要的数学基础。
本课程的重点是解析函数、留数定理、傅里叶变换、数学物理方程、分离变数法、傅里叶级数法、本征值问题等。
本课程的难点是把物理问题归结成数学问题,以及各种数学物理方程的求解。
二、参考教材:必读书:《数学物理方法》,梁昆淼编,高等教育出版社,1998年6月第3版。
参考书:《数学物理方法》,汪德新编,科学出版社,2006年8月第3版;《数学物理方法》,赵蕙芬、陆全康编,高等教育出版社,2003年8月第2版。
三、考试要点:第一章复变函数(一)考核知识点1、复数及复数的运算2、复变函数及其导数3、解析函数的定义、柯西-黎曼条件(二)考核要求1、掌握复数三种形式的转换。
2、掌握复变函数的导数和解析等基本概念,并掌握判断导数是否存在和函数是否解析的方法。
u 。
3、了解解析函数与调和函数的关系,并能从已知调和函数u或v,求解析函数iv第二章复变函数的积分(一)考核知识点1、复变函数积分的运算2、柯西定理(二)考核要求1、理解单通区域和复通区域的柯西定理,并能用它们来计算复变函数的积分。
2、掌握应用原函数法计算积分。
3、掌握柯西公式计算积分。
第三章幂级数展开(一)考核知识点1、幂级数的收敛半径2、解析函数的泰勒展开3、解析函数的洛朗展开(二)考核要求1、理解幂级数收敛圆的性质。
2、掌握把解析函数展开成泰勒级数的方法。
3、掌握把环域中的解析函数展开成洛朗级数的方法。
4、理解孤立奇点的分类及其类型判断。
第四章留数定理(一)考核知识点1、留数的计算2、留数定理3、利用留数定理计算实变函数定积分(二)考核要求1、掌握留数定理和留数计算方法。
数学物理方法外国教材译本

数学物理方法外国教材译本
以下是一些常见的数学物理方法外国教材的译本:
1. "Mathematical Methods in the Physical Sciences" by Mary L. Boas (《物理科学中的数学方法》)
2. "Mathematical Methods for Physicists" by George B. Arfken and Hans J. Weber (《物理学家的数学方法》)
3. "Mathematical Physics" by Robert G. Brown (《数学物理学》)
4. "Advanced Mathematical Methods for Scientists and Engineers" by Carl M. Bender and Steven A. Orszag (《科学家和工程师的
高级数学方法》)
5. "Mathematical Methods for Physics and Engineering" by Ken Riley, Michael Hobson, and Stephen Bence (《物理学和工程学
的数学方法》)
这些译本提供了对数学物理方法的详细解释和应用示例,适合学习者从初级到高级的阶段使用。
这些教材通常包含了大量的数学理论和技巧,以及与物理相结合的具体应用。
《数学物理方法A》教学大纲

《数学物理方法A》教学大纲(Methods of Mathematical Physics )一.课程编号: 040422二.课程类型:必修.学时/学分: 48学时/3学分适用专业: 通信与信息类强化班先修课程: 高等数学, 线性代数, 普通物理三.课程的性质与任务:数学物理方法是我校通信与信息类强化班的一门必修课程。
通过本课程的学习, 使学生初步掌握复变函数和数学物理方程的基本理论与方法, 培养学生的理论思维能力和分析问题、解决问题的能力。
为学生学习有关后继课程以及进一步扩大数学知识面奠定必要的数学基础。
四、教学的主要内容及学时分配(一)教学的主要内容复变函数部分:1.复数与复变函数复数及其代数运算, 复数的几何表示, 复数的乘幂与方根, 复平面上的点集, 复变函数的概念, 复变函数的极限和连续性2.解析函数解析函数的概念, 函数解析的充要条件, 初等函数3.复变函数的积分复变函数积分的概念、存在条件、性质与计算方法, Cauchy基本定理及其推广-复合闭路定理, Cauchy积分公式、解析函数的高阶导数, 解析函数与调和函数的关系4.级.复数项级数、幂级数,Taylor级数,Laurent级.5.留数孤立奇点及其分类、函数的零点与极点的关系, 留数的定义、留数定理、留数的计算规则, 留数在定积分计算上的应用数学物理方程部分:1.典型方程和定解条件1)三类典型方程(波动方程、热传导方程和位势方程)及其定解问题的提出;2)偏微分方程的一些基本知识与定值问题的适定性概念。
2.分离变量法(驻波法)1)分离变量法的基本步骤;2)非齐次方程齐次边界条件的固有函数法;3)非齐次边界条件的处理;4)施特姆-刘维尔方程的固有值问题简介。
3.达郎贝尔法(行波法)1)一维波动方程初值问题的达郎贝尔公式;2)非齐次波动方程的齐次化原理。
4.积分变换法1)傅立叶积分变换的概念及基本性质;2)应用傅立叶变换法解微分方程定值问题;3)拉普拉斯变换的概念和基本性质;4)拉普拉斯变换法在解微分方程中的应用。
课程编号003201课程中文名称数学物理方法48学时3学分-理学院

课程编号003201课程中⽂名称数学物理⽅法48学时3学分-理学院课程编号:003201课程中⽂名称:数学物理⽅法48学时/ 3学分英⽂译名:Mathematics method in physics适⽤领域:⼯程技术及⾃然科学各领域开课单位:理学院任课教师:罗跃⽣,于涛教学⽬的:使学⽣掌握解决实际问题的这⼀有⼒的⼿段,并提⾼利⽤数学物理⽅法解决科学技术领域出现的问题的能⼒。
预备知识或先修课程要求:⾼等数学、常微分⽅程、线性代数、复变函数。
教学主要内容及对学⽣的要求:复变函数及应⽤,积分变换,求解偏微分⽅程的分离变数法及特殊函数⽅法,格临函数法等。
要求学⽣掌握复变函数的微分、解析、级数、积分等理论,并学会利⽤复变函数理论来研究函数的性质,分析微分⽅程的解。
求解较复杂的实积分等问题的⽅法,掌握拉普拉斯变换,傅⾥叶变换的概念、性质及应⽤⽅法。
学会利⽤分离变数法及特殊函数求解偏偏微分⽅程的⽅法,学会利⽤格临函数法、积分变换法等⽅法求解偏微分⽅程的技巧。
内容摘要:数学物理⽅法是解决物理学、⼒学、⼯程技术等领域中问题的有⼒数学⼿段,利⽤数学物理⽅法可以更科学、更准确地描述⾃然界和科学技术领域中出现的很多现象,并能更精确地计算出相应的结果。
主要内容包括:复数的基本概念、解析函数、初等函数、复数积分、级数、单值函数的孤⽴奇点、残数理论及其在积分上的应⽤、含参数的积分、拉普拉斯变换及傅⾥叶变换、线性常微分⽅程的级数解法和积分解法、偏微分⽅程的导出及定解问题导数的实际例⼦、分离变数法、特殊函数、格临函数等。
考核⽅式:开卷,笔试。
课程主要教材:数学物理⽅法.郭敦仁.⼈民教育出版社,1983主要参考书⽬:[1]数学物理⽅法.管平,计国君,黄骏.⾼等教育出版社,2003[2]数学物理⽅法.胡嗣柱,倪光炯.⾼等教育出版社,2002[3]数学物理⽅法.陆全康,赵慧芬.⾼等教育出版社,2002[4]数学物理⽅法.刘连寿,王正清.⾼等教育出版社,2002课程编号003202课程中⽂名称数值计算32学时/ 2学分英⽂译名:Numerical Computation适⽤领域:⾃然科学各领域开课单位:理学院数学系任课教师:沈艳教学⽬的:通过本课程的学习使学⽣了解数值计算是随着计算机产⽣发展⽽建⽴的⼀个重要数学分⽀,它是⼀门研究适合于在计算机上使⽤、实际可⾏、理论可靠、求取复杂的数学问题的数值解的⽅法、过程和理论。
数学物理方法第1章复变函数-2016解答

【解】 设方根为 w k ,根据上面公式有
wk
1 e n
i 2kπ n
k 0,1,2,…,n 1
当 n=2 时,其根为 1. 对应于单位圆与实轴
的两交点.
22
当 n 3 时,各根分别位于单位圆 z 1的内接正多边
形的顶点处,其中一个顶点对应着主根: w0 1 , (k 0 ) .
面上的一个矢量, 为矢量长度,
为幅角 。记
z ei
z=x+iy=2k 幅角主值:0 Arg z 2 , Arg z ,
(z 0, ; k 0,1,2,...)
注:arg :argument (幅角、宗量,自变量)
数学物理方程(方法)
共60学时,3学分.
(以课堂讲授为主,加强课前和课后练习)
考试时间:暂定11月30日下午 考核方式:30%作业+70%期末考试
主要参考书目:
1. 梁昆淼 《数学物理方法》(第四版)高等教育出版社. 2. 吴崇试,《数学物理方法》,北京大学出版社 3. 冉扬强,《数学物理方法》, 科学出版社。 4. 王友年等《数学物理方法》,大连理工大学出版社
等式,对于 x 0 ,其辐角不满足要求.
24
1.2 复变函数 (一) 复变函数的定义
在复平面上一点集 E 中每一点z ,都有一个或几个 复数w与之对应,称w为 z 的函数,E 为定义域,记 w =f(z),z E 。z有时称为宗量(argument) 或自变量。 实函数: y=f(x)= ± x^(1/2), x>=0 多值
17
N
A’
A
S
球的南极与复数平面的原 点相切,平面上任意点 A 与球的北极由一条直线相 连,直线与球相交于 A’ 。 由此,每一有限的复数 投 影到球上一点 。这个投影 叫测地投影,这个球叫复 数球。
数学物理方法课程教学大纲

《数学物理方法》课程教学大纲(供物理专业试用)课程编码:140612090学时:64学分:4开课学期:第五学期课程类型:专业必修课先修课程:《力学》、《热学》、《电磁学》、《光学》、《高等数学》教学手段:(板演)一、课程性质、任务1.《数学物理方法》是物理教育专业本科的一门重要的基础课,它是前期课程《高等数学》的延伸,为后继开设的《电动力学》、《量子力学》和《电子技术》等课程提供必需的数学理论知识和计算工具。
本课程在本科物理教育专业中占有重要的地位,本专业学生必须掌握它们的基本内容,否则对后继课的学习将会带来很大困难。
在物理教育专业的所有课程中,本课程是相对难学的一门课,学生应以认真的态度来学好本课程。
2.本课程的主要内容包括复变函数、傅立叶级数、数学物理方程、特殊函数等。
理论力学中常用的变分法,量子力学中用到的群论以及现代物理中用到的非线性微分方程理论等,虽然也属于《数学物理方法》的内容,但在本大纲中不作要求。
可以在后续的选修课中加以介绍。
3.《数学物理方法》既是一门数学课程,又是一门物理课程。
注重逻辑推理和具有一定的系统性和严谨性。
但是,它与其它的数学课有所不同。
本课程内容有很深广的物理背景,实用性很强。
因此,在这门课的教学过程中,不能单纯地追求理论上的完美、严谨,而忽视其应用。
学生在学习时,不必过分地追求一些定理的严格证明、复杂公式的精确推导,更不能死记硬背,而应重视其应用技巧和处理方法。
4.本课程的内容是几代数学家与物理学家进行长期创造性研究的成果,几乎处处都闪耀创新精神的光芒。
教师应当提示学生注意在概念建立、定理提出的过程中所用的创新思维方法,在课堂教学中应尽可能地体现历史上的创造过程,提高学生的创造性思维能力。
二、课程基本内容及课时分配第一篇复数函数论第一章复变函数(10)教学内容:§1.1.复数与复数运算。
复平面,复数的表示式,共轭复数,无穷远点,复数的四则运算,复数的幂和根式运算,复数的极限运算。