线段角动点问题
数学线段动点问题解题技巧

数学线段动点问题解题技巧
数学线段动点问题是数学中常见的一类问题,也是许多考试中必考的内容。
这类问题通常涉及到线段上的一个点在不同条件下的运动情况,需要通过数学方法来解决。
下面介绍一些数学线段动点问题的解题技巧。
一、确定问题类型
数学线段动点问题有很多不同的类型,如点在线段上的匀速直线运动、点在线段上的变速直线运动、点在线段上的折线运动等。
在解题之前,首先需要确定问题的类型,然后再选择相应的解题方法。
二、建立坐标系
建立坐标系是解决数学线段动点问题的关键步骤之一。
通过建立坐标系,可以将线段上的点转化为坐标系中的点,从而方便进行计算和分析。
建立坐标系时需要注意,选择合适的坐标轴方向和坐标轴单位,以便于后续计算。
三、确定参数
在解决数学线段动点问题时,需要确定一些参数,如点的初始位置、速度、加速度等。
这些参数通常可以通过题目中提供的信息来确定。
在确定参数时需要注意,要根据问题类型选择相应的参数。
四、列方程求解
通过建立坐标系和确定参数,可以将数学线段动点问题转化为一个数学模型。
然后通过列方程求解,可以得到问题的解答。
在列方程时需要注意,要根据问题类型选择相应的方程,并且要注意方程的正确性和完整性。
五、检验答案
在解决数学线段动点问题后,需要对答案进行检验。
检验答案的方法有很多种,如代入原方程检验、画图检验等。
通过检验答案可以避免计算错误和解题错误。
总之,数学线段动点问题是数学中常见的一类问题,需要掌握一定的解题技巧。
通过建立坐标系、确定参数、列方程求解和检验答案等步骤,可以有效地解决这类问题。
七年级线段动点问题解题技巧

七年级线段动点问题解题技巧七年级数学中,线段动点问题是一个经典的问题,我们需要掌握一定的技巧来解决这类问题。
一、线段、直线的基本概念在解决线段动点问题之前,我们需要掌握线段、直线的基本概念。
线段是由两个端点和这两个端点之间所有的点组成的,端点用大写字母表示,如AB。
直线是一个无限延伸的线段,可以用一条箭头表示,如AB。
二、线段动点问题的基本思路线段动点问题的基本思路是:将线段AB固定在平面上,把点C看做是在此线段上来回移动的点,根据题意得出点C的运动规律,进而解决问题。
三、线段动点问题的求解步骤1. 确定线段的起点和终点,用大写字母表示。
2. 将点C看做是在线段上来回移动的点,用小写字母表示。
3. 根据题意得出点C在线段上的运动规律,列出代数式。
4. 解题并求出答案。
四、线段动点问题的解题技巧1. 判断直角三角形在解决线段动点问题中,经常会涉及到判断直角三角形的情况。
如果我们能够判断出直角三角形,那么就能够应用毕达哥拉斯定理来解决问题。
2. 利用相似三角形在解决线段动点问题中,我们可以根据相似三角形的性质解决问题。
相似三角形的特点是对应角度相等,对应边的长度成比例。
3. 利用比例关系在解决线段动点问题中,我们可以利用线段上的任意一点到两个端点的距离成比例的关系来解决问题。
4. 利用重心性质在解决线段动点问题中,我们可以利用重心的性质来解决问题。
重心是三角形三条中线的交点,它具有重要的几何性质。
五、线段动点问题的注意事项1. 注意画图在解决线段动点问题中,我们需要注意画图,把线段图形画出来,并标出点的位置,以便更好地了解问题。
2. 注意运动规律在解决线段动点问题中,我们需要注意点在线段上的运动规律,根据题意列出代数式,进而解决问题。
3. 注意复杂问题在解决线段动点问题中,有些问题可能会比较复杂,需要耐心仔细地分析和推导,多思考多练习,掌握解题技巧。
(完整版)初一动点问题答案

线段与角的动点问题1.如图,射线OM上有三点A、B、C,满足OA=20cm,AB=60cm,BC=10cm(如图所示),点P从点O出发,沿OM方向以1cm/秒的速度匀速运动,点Q从点C出发在线段CO上向点O匀速运动(点Q运动到点O时停止运动),两点同时出发.(1)当P运动到线段AB上且P A=2PB时,点Q运动到的位置恰好是线段OC的三等分点,求点Q的运动速度;(2)若点Q运动速度为3cm/秒,经过多长时间P、Q两点相距70cm?【解答】解:(1)P在线段AB上,由P A=2PB及AB=60,可求得P A=40,OP=60,故点P运动时间为60秒.若CQ=OC时,CQ=30,点Q的运动速度为30÷60=(cm/s);若OQ=OC,CQ=60,点Q的运动速度为60÷60=1(cm/s).(2)设运动时间为t秒,则t+3t=90±70,解得t=5或40,∵点Q运动到O点时停止运动,∴点Q最多运动30秒,当点Q运动30秒到点O时PQ=OP=30cm,之后点P继续运动40秒,则PQ=OP=70cm,此时t=70秒,故经过5秒或70秒两点相距70cm.2.如图,直线l上依次有三个点O,A,B,OA=40cm,OB=160cm.(1)若点P从点O出发,沿OA方向以4cm/s的速度匀速运动,点Q从点B出发,沿BO 方向匀速运动,两点同时出发①若点Q运动速度为1cm/s,则经过t秒后P,Q两点之间的距离为|160﹣5t|cm(用含t的式子表示)②若点Q运动到恰好是线段AB的中点位置时,点P恰好满足P A=2PB,求点Q的运动速度.(2)若两点P,Q分别在线段OA,AB上,分别取OQ和BP的中点M,N,求的值.【解答】解:(1)①依题意得,PQ=|160﹣5t|;故答案是:|160﹣5t|;②如图1所示:4t﹣40=2(160﹣4t),解得t=30,则点Q的运动速度为:=2(cm/s);如图2所示:4t﹣40=2(4t﹣160),解得t=7,则点Q的运动速度为:=(cm/s);综上所述,点Q的运动速度为2cm/s或cm/s;(2)如图3,两点P,Q分别在线段OA,AB上,分别取OQ和BP的中点M,N,求的值.OP=xBQ=y,则MN=(160﹣x)﹣(160﹣y)+x=(x+y),所以,==2.3.如图,射线OM上有三点A、B、C,满足OA=60cm,AB=60cm,BC=10cm(如图所示),点P从点O出发,沿OM方向以1cm/秒的速度匀速运动.(1)当点P运动到AB的中点时,所用的时间为90秒.(2)若另有一动点Q同时从点C出发在线段CO上向点O匀速运动,速度为3cm/秒,求经过多长时间P、Q两点相距30cm?【解答】解:(1)当点P运动到AB的中点时,点P运动的路径为60cm+30cm=90cm,所以点P运动的时间==90(秒);故答案为90;(2)当点P和点Q在相遇前,t+30+3t=60+60+10,解得t=25(秒),当点P和点Q在相遇后,t+3t﹣30=60+60+10,解得t=40(秒),答:经过25秒或40秒时,P、Q两点相距30cm.4.如图,在数轴上点A表示的数是﹣3,点B在点A的右侧,且到点A的距离是18;点C 在点A与点B之间,且到点B的距离是到点A距离的2倍.(1)点B表示的数是15;点C表示的数是3;(2)若点P从点A出发,沿数轴以每秒4个单位长度的速度向右匀速运动;同时,点Q从点B出发,沿数轴以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒,在运动过程中,当t为何值时,点P与点Q之间的距离为6?(3)在(2)的条件下,若点P与点C之间的距离表示为PC,点Q与点B之间的距离表示为QB,在运动过程中,是否存在某一时刻使得PC+QB=4?若存在,请求出此时点P 表示的数;若不存在,请说明理由.【解答】解:(1)点B表示的数是﹣3+18=15;点C表示的数是﹣3+18×=3.故答案为:15,3;(2)点P与点Q相遇前,4t+2t=18﹣6,解得t=2;点P与点Q相遇后,4t+2t=18+6,解得t=4;(3)假设存在,当点P在点C左侧时,PC=6﹣4t,QB=2t,∵PC+QB=4,∴6﹣4t+2t=4,解得t=1.此时点P表示的数是1;当点P在点C右侧时,PC=4t﹣6,QB=2t,∵PC+QB=4,∴4t﹣6+2t=4,解得t=.此时点P表示的数是.综上所述,在运动过程中存在PC+QB=4,此时点P表示的数为1或.5.将一副三角板放在同一平面内,使直角顶点重合于点O.(1)如图①,若∠AOB=155°,求∠AOD、∠BOC、∠DOC的度数.(2)如图①,你发现∠AOD与∠BOC的大小有何关系?∠AOB与∠DOC有何关系?直接写出你发现的结论.(3)如图②,当△AOC与△BOD没有重合部分时,(2)中你发现的结论是否还仍然成立,请说明理由.【解答】解:(1)∠AOD=∠BOC=155°﹣90°=65°,∠DOC=∠BOD﹣∠BOC=90°﹣65°=25°;(2)∠AOD=∠BOC,∠AOB+∠DOC=180°;(3)∠AOB+∠COD+∠AOC+∠BOD=360°,∵∠AOC=∠BOD=90°,∴∠AOB+∠DOC=180°.6.以直线AB上点O为端点作射线OC,使∠BOC=60°,将直角△DOE的直角顶点放在点O处.(1)如图1,若直角△DOE的边OD放在射线OB上,则∠COE=30°;(2)如图2,将直角△DOE绕点O按逆时针方向转动,使得OE平分∠AOC,说明OD所在射线是∠BOC的平分线;(3)如图3,将直角△DOE绕点O按逆时针方向转动,使得∠COD=∠AOE.求∠BOD 的度数.【解答】解:(1)∵∠BOE=∠COE+∠COB=90°,又∵∠COB=60°,∴∠COE=30°,故答案为:30°;(2)∵OE平分∠AOC,∴∠COE=∠AOE=COA,∵∠EOD=90°,∴∠AOE+∠DOB=90°,∠COE+∠COD=90°,∴∠COD=∠DOB,∴OD所在射线是∠BOC的平分线;(3)设∠COD=x°,则∠AOE=5x°,∵∠DOE=90°,∠BOC=60°,∴6x=30或5x+90﹣x=120∴x=5或7.5,即∠COD=5°或7.5°∴∠BOD=65°或52.5°.7.如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=130°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC,问:此时直线ON是否平分∠AOC?请直接写出结论:直线ON平分(平分或不平分)∠AOC.(2)将图1中的三角板绕点O以每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为13或49.(直接写出结果)(3)将图1中的三角板绕点O顺时针旋转,请探究:当ON始终在∠AOC的内部时(如图3),∠AOM与∠NOC的差是否发生变化?若不变,请求出这个差值;若变化,请举例说明.【解答】解:(1)平分,理由:延长NO到D,∵∠MON=90°∴∠MOD=90°∴∠MOB+∠NOB=90°,∠MOC+∠COD=90°,∵∠MOB=∠MOC,∴∠NOB=∠COD,∵∠NOB=∠AOD,∴∠COD=∠AOD,∴直线NO平分∠AOC;(2)分两种情况:①如图2,∵∠BOC=130°∴∠AOC=50°,当直线ON恰好平分锐角∠AOC时,∠AOD=∠COD=25°,∴∠BON=25°,∠BOM=65°,即逆时针旋转的角度为65°,由题意得,5t=65°解得t=13(s);②如图3,当NO平分∠AOC时,∠NOA=25°,∴∠AOM=65°,即逆时针旋转的角度为:180°+65°=245°,由题意得,5t=245°,解得t=49(s),综上所述,t=13s或49s时,直线ON恰好平分锐角∠AOC;(3)∠AOM﹣∠NOC=40°,理由:∵∠AOM=90°﹣∠AON∠NOC=50°﹣∠AON,∴∠AOM﹣∠NOC=(90°﹣∠AON)﹣(50°﹣∠AON)=40°.9.已知∠AOC=40°,∠BOD=30°,∠AOC和∠BOD均可绕点O进行旋转,点M,O,N在同一条直线上,OP是∠COD的平分线.(1)如图1,当点A与点M重合,点B与点N重合,且射线OC和射线OD在直线MN的同侧时,求∠BOP的余角的度数;(2)在(1)的基础上,若∠BOD从ON处开始绕点O逆时针方向旋转,转速为5°/s,同时∠AOC从OM处开始绕点O逆时针方向旋转,转速为3°/s,如图2所示,当旋转6s 时,求∠DOP的度数.【解答】解:(1)∵∠AOC=40°,∠BOD=30°,∴∠COD=180°﹣40°﹣30°=110°,∵OP是∠COD的平分线,∴∠DOP=∠COD=55°,∴∠BOP=85°,∴∠BOP的余角的度数为5°;(2)∠DOP的度数为49°,旋转6s时,∠MOA=3×6°=18°,∠NOB=5×6°=30°,∴∠COM=22°,∠DON=60°,∴∠COD=180°﹣∠COM﹣∠DON=98°,∵OP是∠COD的平分线,∴∠DOP=∠COD=49°.10.如图1,点O为直线AB上一点,过点O作射线OC,将一直角三角形的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC,问:直线ON是否平分∠AOC?请说明理由;(2)若∠BOC=120°.将图1中的三角板绕点O按每秒6°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为10或40(直接写出结果);(3)在(2)的条件下,将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,请探究:∠AOM与∠NOC之间的数量关系,并说明理由.【解答】解:(1)直线ON平分∠AOC.理由如下:设ON的反向延长线为OD,∵OM平分∠BOC,∴∠MOC=∠MOB,又∵OM⊥ON,∴∠MOD=∠MON=90°,∴∠COD=∠BON,又∵∠AOD=∠BON,∴∠COD=∠AOD,∴OD平分∠AOC,即直线ON平分∠AOC.(2)∵∠BOC=120°∴∠AOC=60°,∴∠BON=∠COD=30°,即旋转60°时ON平分∠AOC,由题意得,6t=60°或240°,∴t=10或40;(3)∵∠MON=90°,∠AOC=60°,∴∠AOM=90°﹣∠AON、∠NOC=60°﹣∠AON,∴∠AOM﹣∠NOC=(90°﹣∠AON)﹣(60°﹣∠AON)=30°.即∠AOM=∠NOC+30°.11.如图1,点O为直线AB上一点,过点O作射线OC,使∠AOC:∠BOC=2:1,将一直角三角板的直角顶点放在点O处,一边ON在射线OA上,另一边OM在直线AB的下方.(1)将图1中的三角板绕点O按顺时针方向旋转至图2的位置,使得OM落在射线OA上,此时ON旋转的角度为90°;(2)继续将图2中的三角板绕点O按顺时针方向旋转至图3的位置,使得OM在∠BOC 的内部,则∠BON﹣∠COM=30°;(3)在上述直角三角板从图1旋转到图3的位置的过程中,若三角板绕点O按每秒钟15°的速度旋转,当OM恰为∠BOC的平分线时,此时,三角板绕点O的运动时间为(24n+16)秒,简要说明理由.【解答】解:(1)如图2,依题意知,旋转角是∠MON,且∠MON=90°.故填:90;(2)如图3,∠AOC:∠BOC=2:1,∴∠AOC=120°,∠BOC=60°,∵∠BON=90°﹣∠BOM,∠COM=60°﹣∠BOM,∴∠BON﹣∠COM=90°﹣∠BOM﹣60°+∠BOM=30°,故填:30;(3)16秒.理由如下:如图4.∵点O为直线AB上一点,∠AOC:∠BOC=2:1,∴∠AOC=120°,∠BOC=60°.∵OM恰为∠BOC的平分线,∴∠COM′=30°.∴∠AOM+∠AOC+∠COM′=240°.∵三角板绕点O按每秒钟15°的速度旋转,∴三角板绕点O的运动最短时间为=16(秒).∴三角板绕点O的运动时间为(24n+16)(n是整数)秒.故填:(24n+16).第9页。
动点问题线段初一例题

动点问题线段初一例题1. 引言嘿,大家好!今天我们来聊聊一个在初中数学中超常见的主题——动点问题。
别担心,不会让你觉得无聊得像看干巴巴的教科书。
我们要用轻松幽默的方式,给你讲解这个看似复杂但其实挺简单的概念。
记住,动点问题就像你在操场上追逐朋友一样,充满了动感和乐趣!2. 动点的定义2.1 什么是动点?首先,什么是动点呢?简单来说,动点就是在某条线段上移动的小点。
就像你在水上漂浮的橡皮鸭子,慢慢地在水面上游动,不断改变位置。
它的位置是随着时间变化的,真是个灵活的小家伙,对吧?2.2 线段的概念再来聊聊线段。
线段就是两点之间的直线,比如说你在操场上画的那条线,起点是你,终点是你的好朋友。
动点在这条线段上游走,就像你们在操场上跑来跑去,乐此不疲。
这个过程其实充满了变化,让我们来看看动点在不同情况下会发生什么!3. 动点问题的例题解析3.1 例题设置好啦,既然聊到动点了,那我们来设定一个具体的例子。
假设有一条线段AB,A点在0,B点在10。
然后,有一个小动点P,它从A点出发,以每秒2单位的速度向B 点移动。
那么问题来了,经过多少时间P才能到达B点呢?3.2 解决问题这其实不难,动点P的速度是每秒2单位,线段AB的长度是10单位。
想要到达B点,我们只需要用总距离除以速度,听起来是不是很简单?所以我们来算一下:10 ÷ 2 = 5秒!哇,这个动点真是飞得快,五秒钟就到达了终点,跟闪电似的。
不过,动点问题不止于此哦!假如我们让这个动点在A点和B点之间来回跑呢?它的速度不变,还是每秒2单位,但我们加点戏剧性。
假设P到达B点后,不停地来回折返,像个小猴子一样,乐此不疲。
我们可以算算它在10秒内来回跑了多少次。
4. 小结与反思4.1 总结动点问题所以,动点问题其实是对变化和时间的一种探索,像是在玩一种有趣的游戏。
我们用简单的计算和思维,轻松地解决了动点的移动问题。
动点就像我们的生活,总在不断变化,偶尔让人摸不着头脑,但只要我们认真思考,总能找到解决的方法。
初中数学动点问题及练习题附参考答案

初中数学动点问题及练习题附参考答案所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静.数学思想:分类思想函数思想方程思想数形结合思想转化思想注重对几何图形运动变化能力的考查。
从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。
选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。
在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。
二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点.专题一:建立动点问题的函数解析式函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析.一、应用勾股定理建立函数解析式。
七年级角运动、线段上动点问题

1.如图,已知∠AOB =90°,射线OC 绕点O 从OA 位置开始,以每秒4°的速度按顺时针方向旋转;同时,射线OD 绕点O 从OB 位置开始,以每秒1°的速度按逆时针方向旋转.当OC 与OA 成180°角时,OC 与OD 同时停止旋转.(1)当OC 旋转10秒时,∠COD =________°;(2)当OC 与OD 的夹角是30°时,求旋转的时间;(3)当OB 平分∠COD 时,求旋转的时间.2.如图,已知∠AOB =20°,∠AOE =100°,OB 平分∠AOC ,OD 平分∠AOE.(1)求∠COD 的度数;(2)若以O 为观察中心,OA 为正东方向,则射线OD 的方向角是____________;(3)若∠AOE 的两边OA ,OE 分别以每秒5°、每秒3°的速度,同时绕点O 逆时针方向旋转,当OA 回到原处时,OA ,OE 停止运动,则经过几秒,∠AOE =42°?3.如图①,射线OC,OD在∠AOB的内部,且∠AOB=150°,∠COD=30°,射线OM,ON分别平分∠AOD,∠BOC.(1)求∠MON的度数;(2)如图③,若∠AOC=15°,将∠COD绕点O以每秒x°的速度逆时针旋转10秒,此时∠AOM=711∠BON,如图②所示,求x的值.4.O为直线AB上一点,过点O作射线OC,使∠BOC=65°,将一块三角尺的直角顶点放在点O处.(1)如图①,将三角尺MON的一边ON与射线OB重合时,则∠MOC=________;(2)如图②,将三角尺MON绕点O逆时针旋转一定角度,此时OC是∠MOB的平分线,求∠BON和∠CON的度数;(3)将三角尺MON绕点O逆时针旋转至图③的位置时,∠NOC=∠AOM,求∠NOB的度数.线段上的动点问题一般有两种类型:(1)动点无速度型,主要利用两点间的距离、线段的和差关系、线段中点的性质,结合方程求解;(2)动点有速度型,主要利用路程=时间×速度,结合线段有关的知识,通过方程来求解.类型一动点无速度型1.如图所示,A,B,C是一条公路边的三个村庄,A,B间的距离为100 km,A,C间的距离为40 km,现要在A,B之间设一个车站P,设P,C间的距离为x km.(1)用含x的式子表示车站到三个村庄的距离之和;(2)若车站到三个村庄的距离之和为105 km,则车站应设在何处?(3)若要使车站到三个村庄的距离之和最小,则车站应设在何处?2.已知数轴上A,B两点对应的数分别为a和b,且a,b满足等式(a+9)2+|7-b|=0,P 为数轴上一动点,对应的数为x.(1)求线段AB的长.(2)数轴上是否存在点P,使PA=3PB?若存在,求出x的值;若不存在,请说明理由.(3)在(2)的条件下,若M,N分别是线段AB,PB的中点,试求线段MN的长.类型二动点有速度型3.如图,P是线段AB上任意一点,AB=12 cm,C,D两点分别从点P,B开始,同时向点A运动,且点C的运动速度为2 cm/s,点D的运动速度为3 cm/s,运动的时间为t s.(1)若AP=8 cm.①求运动1 s后,CD的长;②当点D在线段PB上运动时,试说明AC=2CD.(2)如果t=2,CD=1 cm,试探索AP的长.4.如图,B是线段AD上一动点,沿A→D以2 cm/s的速度运动,C是线段BD的中点,AD=10 cm,设点B运动的时间为t s.(1)当t=2时,①AB=________ cm;②求线段CD的长.(2)在运动过程中,若AB的中点为E,则EC的长是否变化?若不变,求出EC的长;若发生变化,请说明理由.。
(完整版)初一动点问题答案

.线段与角的动点问题1. 如图,射线OM 上有三点A、B、C,满足OA=20cm,AB=60cm,BC=10cm(如图所示),点P 从点O 出发,沿OM 方向以1cm/秒的速度匀速运动,点Q 从点 C 出发在线段CO 上向点O 匀速运动(点Q 运动到点O 时停止运动),两点同时出发.(1)当P 运动到线段AB 上且PA=2PB 时,点Q 运动到的位置恰好是线段OC 的三等分点,求点Q 的运动速度;(2)若点Q 运动速度为3cm/秒,经过多长时间P、Q 两点相距70cm?【解答】解:(1)P 在线段AB 上,由PA=2PB 及AB=60,可求得PA=40,OP=60,故点P 运动时间为60 秒.若CQ=OC 时,CQ=30,点Q 的运动速度为30÷60=(cm/s);若OQ=OC,CQ =60,点Q 的运动速度为60÷60=1(cm/s).(2)设运动时间为t 秒,则t+3t=90±70,解得t=5 或40,∵点Q 运动到O 点时停止运动,∴点Q 最多运动30 秒,当点Q 运动30 秒到点O 时PQ=OP=30cm,之后点P 继续运动40 秒,则PQ=OP=70cm,此时t=70 秒,故经过 5 秒或70 秒两点相距70cm.2. 如图,直线l 上依次有三个点O,A,B,OA=40cm,OB=160cm.(1)若点P 从点O 出发,沿OA 方向以4cm/s 的速度匀速运动,点Q 从点 B 出发,沿BO 方向匀速运动,两点同时出发①若点Q 运动速度为1cm/ s,则经过t 秒后P,Q 两点之间的距离为|160﹣5t| cm(用含t 的式子表示)②若点Q 运动到恰好是线段AB 的中点位置时,点P 恰好满足PA=2PB,求点Q 的运动速度.(2)若两点P,Q 分别在线段OA,AB 上,分别取OQ 和BP 的中点M ,N,求的值.【解答】解:(1)① 依题意得,PQ=|160﹣5t|;故答案是:|160﹣5t|;②如图1 所示:4t﹣40=2(160﹣4t),解得t=30,则点Q 的运动速度为:=2(cm/s);如图 2 所示:4t﹣40=2(4t﹣160),解得t=7,则点Q 的运动速度为:=(cm/ s);综上所述,点Q 的运动速度为2cm/s 或cm/ s;(2)如图3,两点P,Q 分别在线段OA,AB 上,分别取OQ 和BP 的中点M ,N,求的值.OP=xBQ=y,则MN =(160﹣x)﹣(160﹣y)+x=(x+y),所以,==2.3.如图,射线OM 上有三点A、B、C,满足OA=60cm,AB=60cm,BC=10cm(如图所示),点P 从点O 出发,沿OM 方向以1cm/秒的速度匀速运动.(1)当点P 运动到AB 的中点时,所用的时间为90 秒.(2)若另有一动点Q 同时从点 C 出发在线段CO 上向点O 匀速运动,速度为3cm/秒,求经过多长时间P、Q 两点相距30cm?【解答】解:(1)当点P 运动到AB 的中点时,点P 运动的路径为60cm+30cm=90cm,所以点P 运动的时间==90(秒);故答案为90;(2)当点P 和点Q 在相遇前,t+30+3 t=60+60+10 ,解得t=25(秒),当点P 和点Q 在相遇后,t+3t﹣30=60+60+10 ,解得t=40(秒),答:经过25 秒或40 秒时,P、Q 两点相距30cm.4. 如图,在数轴上点 A 表示的数是﹣3,点B 在点A 的右侧,且到点 A 的距离是18;点 C在点 A 与点 B 之间,且到点 B 的距离是到点 A 距离的 2 倍.(1)点 B 表示的数是15 ;点 C 表示的数是 3 ;(2)若点P 从点 A 出发,沿数轴以每秒 4 个单位长度的速度向右匀速运动;同时,点Q 从点B 出发,沿数轴以每秒 2 个单位长度的速度向左匀速运动.设运动时间为t 秒,在运动过程中,当t 为何值时,点P 与点Q 之间的距离为6?(3)在(2)的条件下,若点P 与点 C 之间的距离表示为PC,点Q 与点 B 之间的距离表示为QB,在运动过程中,是否存在某一时刻使得PC+QB=4?若存在,请求出此时点P 表示的数;若不存在,请说明理由.【解答】解:(1)点 B 表示的数是﹣3+18=15;点 C 表示的数是﹣3+18×=3.故答案为:15,3;(2)点P 与点Q 相遇前,4t+2t=18﹣6,解得t=2;点P 与点Q 相遇后,4t+2t=18+6,解得t=4;(3)假设存在,当点P 在点C 左侧时,PC=6﹣4t,QB=2t,∵PC +QB=4,∴ 6﹣4t+2t=4,解得t=1.此时点P 表示的数是1;当点P 在点C 右侧时,PC=4t﹣6,QB=2t,∵PC +QB=4,∴4t﹣6+2t=4,解得t=.此时点P 表示的数是.综上所述,在运动过程中存在PC +QB=4,此时点P 表示的数为 1 或.5. 将一副三角板放在同一平面内,使直角顶点重合于点O.(1)如图① ,若∠ AOB=155°,求∠ AOD、∠ BOC、∠ DOC 的度数.(2)如图①,你发现∠AOD 与∠BOC 的大小有何关系?∠AOB 与∠DOC 有何关系?直接写出你发现的结论.(3)如图② ,当△ AOC 与△ BOD 没有重合部分时,(2)中你发现的结论是否还仍然成立,请说明理由.【解答】解:(1)∠AOD =∠BOC =155°﹣90°=65°,∠DOC =∠BOD ﹣∠BOC=90°﹣65°=25°;(2)∠AOD =∠BOC,∠AOB +∠DOC =180°;(3)∠AOB+∠COD +∠AOC+∠BOD=360°,∵∠AOC=∠BOD =90°,∴∠AOB+∠DOC =180°.6. 以直线AB 上点O 为端点作射线OC,使∠BOC =60°,将直角△DOE 的直角顶点放在点O 处.(1)如图1,若直角△DOE 的边OD 放在射线OB 上,则∠COE =30°;(2)如图2,将直角△DOE 绕点O 按逆时针方向转动,使得OE 平分∠AOC,说明OD 所在射线是∠BOC 的平分线;(3)如图3,将直角△DOE 绕点O 按逆时针方向转动,使得∠COD =∠AOE.求∠BOD 的度数.【解答】解:(1)∵∠ BOE=∠COE +∠COB =90°,又∵∠ COB=60°,∴∠COE =30°,故答案为:30°;(2)∵ OE 平分∠ AOC,∴∠C OE =∠AOE=COA ,∵∠EOD=90°,∴∠AOE+∠DOB =90°,∠ COE+∠COD =90°,∴∠COD =∠DOB ,∴OD 所在射线是∠BOC 的平分线;(3)设∠ COD =x°,则∠ AOE=5x°,∵∠DOE =90°,∠ BOC=60°,∴6x=30 或5x+90﹣x=120∴x=5或7.5,即∠ COD =5°或7.5°∴∠ BOD=65°或52.5°.7. 如图1,点O 为直线AB 上一点,过点O 作射线OC,使∠BOC =130°,将一直角三角板的直角顶点放在点O 处,一边OM 在射线OB 上,另一边ON 在直线AB 的下方.(1)将图 1 中的三角板绕点O 逆时针旋转至图2,使一边OM 在∠BOC 的内部,且恰好平分∠BOC,问:此时直线ON 是否平分∠AOC?请直接写出结论:直线ON 平分(平分或不平分)∠AOC.(2)将图1 中的三角板绕点O 以每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第t 秒时,直线ON 恰好平分锐角∠AOC,则t 的值为13 或49 .(直接写出结果)(3)将图 1 中的三角板绕点O 顺时针旋转,请探究:当ON 始终在∠ AOC 的内部时(如图3),∠AOM 与∠ NOC 的差是否发生变化?若不变,请求出这个差值;若变化,请举例说明.【解答】解:(1)平分,理由:延长NO 到 D ,∵∠MON =90°∴∠ MOD =90°∴∠MOB +∠NOB=90°,∠MOC +∠COD =90°,∵∠MOB =∠MOC ,∴∠NOB =∠COD ,∵∠NOB =∠AOD ,∴∠COD =∠AOD ,∴直线NO 平分∠ AOC;(2)分两种情况:① 如图2,∵∠ BOC =130°∴∠AOC=50°,当直线ON 恰好平分锐角∠AOC 时,∠AOD=∠COD =25°,∴∠BON=25°,∠BOM=65°,即逆时针旋转的角度为65°,由题意得,5t=65°解得t=13(s);② 如图3,当NO 平分∠ AOC 时,∠ NOA =25°,∴∠AOM=65°,即逆时针旋转的角度为:180°+65 °=245°,由题意得,5t=245°,解得t=49(s),综上所述,t=13s 或49s 时,直线ON 恰好平分锐角∠AOC ;(3)∠AOM ﹣∠NOC =40°,理由:∵∠ AOM=90°﹣∠AON∠NOC =50°﹣∠AON ,∴∠AOM﹣∠NOC=(90°﹣∠ AON )﹣(50°﹣∠ AON)=40°.9. 已知∠ AOC =40°,∠ BOD =30°,∠ AOC 和∠ BOD 均可绕点O 进行旋转,点M,O,N 在同一条直线上,OP 是∠ COD 的平分线.(1)如图1,当点 A 与点M 重合,点 B 与点N 重合,且射线OC 和射线OD 在直线MN 的同侧时,求∠ BOP 的余角的度数;(2)在(1)的基础上,若∠ BOD 从ON 处开始绕点O 逆时针方向旋转,转速为5°/s,同时∠ AOC 从OM 处开始绕点O 逆时针方向旋转,转速为3°/s,如图 2 所示,当旋转6s 时,求∠ DOP 的度数.【解答】解:(1)∵∠ AOC=40°,∠ BOD =30°,∴∠COD =180°﹣40°﹣30°=110°,∵OP 是∠ COD 的平分线,∴∠DOP =∠COD =55°,∴∠BOP=85°,∴∠ BOP 的余角的度数为5°;(2)∠DOP 的度数为49°,旋转6s 时,∠MOA =3×6°=18°,∠NOB =5×6°=30°,∴∠COM =22°,∠ DON =60°,∴∠COD =180°﹣∠COM ﹣∠DON =98°,∵OP 是∠ COD 的平分线,∴∠DOP =∠COD =49°.10. 如图1,点O 为直线AB 上一点,过点O 作射线OC,将一直角三角形的直角顶点放在点O 处,一边OM 在射线OB 上,另一边ON 在直线AB 的下方.(1)将图 1 中的三角板绕点O 逆时针旋转至图2,使一边OM 在∠BOC 的内部,且恰好平分∠BOC,问:直线ON 是否平分∠AOC?请说明理由;(2)若∠BOC=120°.将图 1 中的三角板绕点O 按每秒6°的速度沿逆时针方向旋转一周,在旋转的过程中,第t 秒时,直线ON 恰好平分锐角∠AOC,则t 的值为10 或40 (直接写出结果);(3)在(2)的条件下,将图 1 中的三角板绕点O 顺时针旋转至图3,使ON 在∠AOC 的内部,请探究:∠AOM 与∠NOC 之间的数量关系,并说明理由.【解答】解:(1)直线ON 平分∠ AOC .理由如下:设ON 的反向延长线为OD ,∵OM 平分∠ BOC,∴∠ MOC =∠MOB ,又∵ OM⊥ON,∴∠MOD =∠ MON=90°,∴∠ COD =∠ BON,又∵∠ AOD=∠BON,∴∠COD =∠AOD ,∴OD 平分∠ AOC,即直线ON 平分∠ AOC.(2)∵∠BOC =120°∴∠AOC=60°,∴∠BON=∠COD =30°,即旋转60°时ON 平分∠ AOC,由题意得,6t=60°或240°,∴t=10 或40;(3)∵∠MON =90°,∠ AOC=60°,∴∠ AOM =90°﹣∠ AON、∠NOC =60°﹣∠AON,∴∠ AOM ﹣∠NOC =(90°﹣∠ AON )﹣(60°﹣∠AON )=30°.即∠ AOM =∠NOC+30°.11. 如图1,点O 为直线AB 上一点,过点O 作射线OC,使∠AOC:∠BOC=2:1,将一直角三角板的直角顶点放在点O 处,一边ON 在射线OA 上,另一边OM 在直线AB 的下方.(1)将图1 中的三角板绕点O 按顺时针方向旋转至图 2 的位置,使得OM 落在射线OA 上,此时ON 旋转的角度为90 °;(2)继续将图 2 中的三角板绕点O 按顺时针方向旋转至图 3 的位置,使得OM 在∠BOC 的内部,则∠BON﹣∠COM =30 °;(3)在上述直角三角板从图 1 旋转到图 3 的位置的过程中,若三角板绕点O 按每秒钟15°的速度旋转,当OM 恰为∠BOC 的平分线时,此时,三角板绕点O 的运动时间为(24n+16)秒,简要说明理由.【解答】解:(1)如图2,依题意知,旋转角是∠MON ,且∠MON =90°.故填:90;(2)如图3,∠ AOC:∠ BOC=2:1,∴∠AOC=120°,∠BOC =60°,∵∠BON=90°﹣∠ BOM,∠COM =60°﹣∠ BOM,∴∠ BON﹣∠COM =90°﹣∠BOM ﹣60°+∠BOM =30°,故填:30;(3)16 秒.理由如下:如图4.∵点O 为直线AB 上一点,∠ AOC:∠ BOC=2:1,∴∠AOC=120°,∠BOC =60°.∵OM 恰为∠ BOC 的平分线,∴∠COM ′=30°.∴∠AOM+∠AOC+∠COM ′=240°.∵三角板绕点O 按每秒钟15°的速度旋转,∴三角板绕点O 的运动最短时间为=16(秒).∴三角板绕点O 的运动时间为(24n+16 )(n 是整数)秒.故填:(24n+16 ).第9页。
初一动点动角问题解决策略

初一动点动角问题解决策略【问题】对应动点动角问题,很多同学都是很惧怕的,搞不清楚,那我们今天来解决下这个问题。
那么大家认真阅读,并动手实践,初一的动点问题就可以解决了。
那么,如何解决?【解决思路】一、初一数轴动点问题练习题要掌握数轴上的动点问题,我们首先要明确两块问题:(1)数轴上两点之间的距离;(2)线段的和差关系;接下来,我们详细的来说明一下。
(1)数轴上两点之间的距离: ①如果是两个定点之间的距离:这个大家比较熟悉,比如下图,1和7之间的距离是6,就可以表示为61-7=,用数轴上右边的数减去左边的数(即大-小=大小之间的距离)。
②如果是一个定点和一个动点之间的距离:如下图所示,P 和B 之间的距离是动点P 运动的路程,用P 的路程=速度⨯时间,得出BP 的长度,一般而言,速度告诉我们的,这里举例速度为2,时间为t ,BP=2t ,进而得到AP 的长度=AB - BP ,即AP=6-2t 。
③如果是两个动点之间的距离:如下图所示,BP AQ AB PQ --=,AQ 的长度和上面②中所提到的BP 的长度得到的方法一致,这样我们就可以得到PQ 的长度,这里就不详细的表述了。
再把有关动点的长度表示出来后,接下来我们再看下面。
(2)线段的和差关系:7 17 1 P AB 7 1 P A B Q数轴是数形结合的产物,分析数轴上点的运动要结合图形进行分析,点在数轴上运动形成的路径可看作数轴上线段的和差关系。
比如AQ 的长度就可以表示为,AQ=AB -BQ ,BP 的长度可以表示为,BP=AB -AP ,然后再由参数t 表示出AQ , BP 。
下面结合这样一个滨江区的一道期末考试题,第23题为例,跟大家一起分享一下成果。
【例 1】(滨江区期末考试第23题) 已知在数轴上有A ,B 两点,点A 表示的数为8,点B 在A 点的左边,且AB=12.若有一动点P 从数轴上点A 出发,以每秒3个单位长度的速度沿数轴向左匀速运动,动点Q 从点B 出发,以每秒2个单位长度的速度沿着数轴向右匀速运动,设运动时间为t 秒.(1)写出数轴上点B ,P 所表示的数(可以用含t 的代数式表示);(2)若点P ,Q 分别从A ,B 两点同时出发,问点P 运动多少秒与Q 相距2个单位长度?(3)若M 为AQ 的中点,N 为BP 的中点.当点P 在线段AB 上运动过程中,探索线段MN 与线段PQ 的数量关系.分 析:(1)由数轴上两点之间的距离: “点A 表示的数为8,点B 在A 点的左边,且AB=12”,由此得到B 点所表示的数是 -4;P 所表示的数则是由距离反推点所表示的数,具体的是,P 的路程为速度3*时间t ,即为3t ,A 是8,所以P 所表示的数8-3t ;(2)PQ 的长度=2,首先思考可能的情况要考虑清楚,认真审题后会发现PQ 相遇前后都会出现PQ=2的情况,一是相遇前,如下图,再根据线段的和差关系 ,BQ AP AB PQ --=;二是相遇后,如下图所示,同样根据线段的和差关系 ,AB BQ AP PQ -+=;(3)先根据题目的要求,“探索线段MN 与线段PQ 的数量关系”,那么这块我们首先要注意在第二问时已经“提供了梯子”,也就是PQ 的表示,那么接下来就是MN 的表示,看起来复杂,实际上还是线段的和差关系 你可以找出BN BM MN -=或AM AN MN -=,这样接下来就可以用t 表示出线段MN ,t MN 25=,t PQ 512-=,这样我们就能得到MN PQ 212-=; 当相遇后,方法同样如此,结论为2MN ﹣PQ=12 ;练习:如图,已知线段AB=a ,点C 在直线AB 上,AC=3AB .(1)用尺规作图画出点C;(2)若点P在线段BC上,且BP:PC=2:3,D为线段PC的中点,求BD的长(用含a 的代数式表示);(3)在(2)的条件下,若AD=3cm,求a的值.2、如图,已知线段AB的长为a,延长线段AB至点C,使BC=.(1)求线段AC的长(用含a的代数式表示);(2)取线段AC的中点D,若DB=3,求a的值.【分析】解:(1)∵AB=a,BC=AB,∴BC=a,∵AC=AB+BC,∴AC=a+a=a.(2)∵AD=DC=AC,AC=a,∴DC=a,∵DB=3,BC=a,∵DB=DC﹣BC,∴3=a ﹣a ,∴a=12.3、如图,数轴上线段AB=2(单位长度),CD=4(单位长度),点A 在数轴上表示的数是-10,点C 在数轴上表示的数是16.若线段AB 以6个单位长度/秒的速度向右匀速运动,同时线段CD 以2个单位长度/秒的速度向左匀速运动.(1)问运动多少时BC=8(单位长度)?(2)当运动到BC=8(单位长度)时,点B 在数轴上表示的数是_____________;(3)P 是线段AB 上一点,当B 点运动到线段CD 上时,是否存在关系式3=-PCAP BD ,若存在,求线段PD 的长;若不存在,请说明理由.二、初一动角问题的解决思路要掌握动角问题,实际上要简单些,没有点的在数轴上的表示,那我们注意以下两点即可:(1)角旋转后的度数=角的旋转速度× 时间t,得到的;(2)注意位置所产生的多解问题;(3)角度的和差关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级线段动点问题1、如图1,直线AB 上有一点P ,点M 、N 分别为线段PA 、PB 的中点AB=14.(1)若点P 在线段AB 上,且AP=8,则线段MN 的长度为 ;(2)若点P 在直线AB 上运动,试说明线段MN 的长度与点P 在直线AB 上的位置无关; (3)如图2,若点C 为线段AB 的中点,点P 在线段AB 的延长线上,下列结论:①PCPB PA -的值不变;②PCPB PA +的值不变, 请选择一个正确的结论并求其值.2、已知直线l 上有一点O ,点A 、B 同时从O 出发,在直线l 上分别向左、向右作匀速运动,且A 、B 的速度比为1:2,设运动时间为t s . (1)当t =2s 时,AB =12cm .此时,① 在直线l 上画出A 、B 两点运动2秒时的位置,并回答点A 运动的速度是________cm /s ;点B 运动的速度是________cm /s . ② 若点P 为直线l 上一点,且P A -PB=OP ,求OPAB的值;(2)在(1)的条件下,若A 、B 同时按原速向左....运动,再经过几秒,OA=2OB .3、已知数轴上A 、B 两点对应数分别为-2和4,P 为数轴上一点,对应数为x . (1)若P 为线段AB 的三等分点,求P 点对应的数(2)数轴上是否存在点P ,使P 点到A 点、B 点距离和为10?若存在,求出x 的值;若不存在,请说明理由(3)若点A 、点B 和点P (P 点在原点)同时向左运动,它们的速度分别为1、2、1个单位长度/分,则第几分钟时,P 为AB 的中点.4、如图所示,在数轴上A 点表示数a ,B 点表示数b ,且a 、b 满足2690a b ++-=(1) 点A 表示的数为 , 点B 表示的数为 ;(2) 若点A 与点C 之间的距离表示为AC ,点B 与点C 之间的距离表示为BC ,请在点A .、点.B .之间的数轴上......找一点C ,使BC=2AC ,则C 点表示的数为 ; (3) 在(2)的条件下,若一动点P 从点A 出发,以3个单位长度/秒速度由A 向B 运动;同一时刻,另一动点Q 从点C 出发,以1个单位长度/秒速度由C 向B 运动,终点都为B 点.当一点到达终点时,这点就停止运动,而另一点则继续运动,直至两点都到达终点时才结束整个运动过程.设点Q 运动时间为t 秒.① 用含t 的代数式表示:点P 到点A 的距离PA= ,点Q 到点B 的距离QB= ; ② 当t 为何值时,点P 与点Q 之间的距离为1个单位长度.5、已知数轴上有A 、B 、C 三点,分别表示有理数-26,-10,10,动点P 从A 出发,以每秒1个单位的速度向终点C 移动,设点P 移动时间为t 秒.(1)用含t 的代数式表示P 到点A 和点C 的距离:PA=______,PC=______.(2)当点P 运动到B 点时,点Q 从A 出发,以每秒3个单位的速度向C 点运动,Q 点到达C点后,再立即以同样的速度返回点A ,在点Q 开始运动后,P,Q 两点之间的距离能否为 2个单位长度?如果能,请求出t 的值和此时P 表示的数;如果不能,写明理由。
6、如图1,在长方形ABCD 中,12AB =厘米,6BC =厘米.点P 沿AB 边从点A 开始向点B 以2厘米/秒的速度移动;点Q 沿DA 边从点D 开始向点A 以1厘米/秒的速度移动.如果P 、Q 同时出发,用t (秒)表示移动的时间, 那么:⑴ DQ = 厘米, AP = 厘米(用含t 的代数式表示) ⑵ 如图1,当t = 秒时,线段AQ 与线段AP 相等?⑶ 如图2,P 、Q 到达B 、A 后继续运动,P 点到达C 点后都停止运动。
当t 为何值时,线段AQ 的长等于线段CP 的长的一半。
练习1、已知数轴上两点A、B对应的数分别为-1、3,点P是数轴上一动点,P所对应的数为x(1)若点P到点A,点B的距离相等,则点P对应的数为;⑵数轴上是否存在点P,使点P到点A、点B的距离之和为6?若存在,请求出x的值。
若不存在,请说明理由?(3)当x为何值时,点P到A的距离等于点P到B的距离的2倍(4)当x=2时,点A以1个单位每秒的速度向左运动,同时B以2个单位每秒的速度向右运动,问多长时间后P到点A,点B的距离相等(5)当点P以每分钟5个单位长度的速度从O点向右运动时,点A以每分钟3个单位长度的速度向右运动,点B以每分钟2个单位长度的速度向右运动,问几分钟时点P到点A,点B的距离相等。
2、如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数??,点P表示的数? (用含t的代数式表示);(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;(4)若点D是数轴上一点,点D表示的数是x,请你探索式子是否有最小值?如果有,直接写出最小值;如果没有,说明理由.3.已知:b 是最小的正整数,且a 、b 满足2(5)||0c a b -++=,请回答问题: (1)请直接写出a 、b 、c 的值。
a = ,b = , c = ;(2)a 、b 、c 所对应的点分别为A 、B 、C ,点P 为易动点,其对应的数为x ,点P 在0到2之间运动时(即0≤x ≤2时),请化简式子:|x+1|﹣|x ﹣1|+2|x+5|(请写出化简过程) (3)数轴上a 、b 、c 三个数所对应的点分别为A 、B 、C ,点A 、B 、C 同时开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒1个单位长度和3个单位长度的速度向右运动,假设t 秒钟过后,若点B 与点C 之间的距离表示为BC ,点A 与点B 之间的距离表示为AB ,点A 与点C 之间的距离表示为AC . ①t 秒钟过后,AC 的长度为 (用t 的关系式表示);②请问:BC -AB 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.4、如图1,已知数轴上有三点A 、B 、C ,AC=2AB ,点A 对应的数是400.(1)若AB=600,求点C 到原点的距离;?(2)在(1)的条件下,动点P 、Q 分别从C 、A 同时出发,其中P 、Q 向右运动,R 向左运动如图2,已知点Q 的速度是点R 速度2倍少5个单位长度/秒,点P 的速度是点R 的速度的3倍,经过20秒,点P 、Q 之间的距离与点Q 、R 的距离相等,求动点Q 的速度. (3)在(1)的条件下,O 表示原点,动点P 、T 、R 分别从C 、O 、A 出发,其中P 、T 向左运动,R 向右运动如图,点P 、T 、R 分别为20个单位长度/秒、4个单位长度/秒、10个单位长度/秒,在运动过程中,如果点M 为线段PT 的中点,点N 为线段OR 的中点,那么(PR+OT )/MN 的值是否发生变化?若不变,求其值;若变化,说明理由。
5如图1,已知数轴上有三点A 、B 、C ,AB=21AC ,点C 对应的数是200. (1)若BC=300,求点A 对应的数;(2)如图2,在(1)的条件下,动点P 、Q 分别从A 、C 两点同时出发向左运动,同时动点R 从A 点出发向右运动,点P 、Q 、R 的速度分别为10单位长度每秒、5单位长度每秒、2单位长度每秒,点M 为线段PR 的中点,点N 为线段RQ 的中点,多少秒时恰好满足MR=4RN (不考虑点R 与点Q 相遇之后的情形);(3)如图3,在(1)的条件下,若点E 、D 对应的数分别为-800、0,动点P 、Q 分别从E 、D 两点同时出发向左运动,点P 、Q 的速度分别为10单位长度每秒、5单位长度每秒,点M 为线段PQ 的中点,点Q 在从是点D 运动到点A 的过程中,23QC-AM 的值是否发生变化?若不变,求其值;若不变,请说明理由.七年级角度动态问题1、如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°.将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC,问:直线ON是否平分∠AOC?请说明理由;(2)将图1中的三角板绕点O按每秒6°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为多少???(直接写出结果);(3)将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,请探究:在旋转过程中,①∠AO M﹣∠NO C②∠AO M+∠NO C哪个值是不变的,哪一个值是变化的?若不变,请求出这个定值,若变化,请求出值的变化范围。
2、如图,两个形状、大小完全相同的含有30゜、60゜的三角板如图放置,PA、PB与直线MN重合,且三角板PAC,三角板PBD均可以绕点P逆时针旋转.(1)试说明:∠DPC=90゜;(2)如图,若三角板PAC的边PA从PN处开始绕点P逆时针旋转一定角度,PF平分∠APD,PE平分∠CPD,求∠EPF;(3)如图,若三角板PAC的边PA从PN处开始绕点P逆时针旋转,转速为3゜/秒,同时三角板PBD的边PB从PM处开始绕点P逆时针旋转,转速为2゜/秒,在两个三角板旋转过程中(PC转到与PM重合时,两三角板都停止转动),以下两个结论为定值;②∠BPN+∠CPD为定值,请选出正确的结论,并说明理由.练习1、如图,将一副直角三角尺的直角顶点C 叠放在一起. (1)若∠DCE=35°,∠ACB=______;若∠ACB=140°,则∠DCE=______; (2)猜想∠ACB 与∠DCE 的大小有何特殊关系,并说明理由; (3)若保持三角尺BCE (其中∠B=45°)不动,三角尺ACD 的CD 边与CB 边重合,然后将三角尺ACD (其中∠D=30°)绕点C 按逆时针方向任意转动一个角度∠BCD . 设∠BCD=α(0°<α<90°)①∠ACB 能否是∠DCE 的4倍?若能求出α的值;若不能说明理由. ②当这两块三角尺各有一条边互相垂直时直接写出α的所有可能值.2:已知点O 是直线AB 上的一点,∠COE=90°,OF 是∠AOE 的平分线.?(1)当点C ,E ,F 在直线AB 的同侧(如图1所示)时.试说明∠BOE=2∠COF ;? (2)当点C 与点E ,F 在直线AB 的两旁(如图2所示)时,(1)中的结论是否仍然成立?请给出你的结论并说明理由;? (3)将图2中的射线OF 绕点O 顺时针旋转m °(0<m <180),得到射线OD .设∠AOC=n °,若∠BOD=,则∠DOE 的度数是 (用含n 的式子表示).3、如图1,长方形纸片ABCD ,点E 是AB 上一动点,M 是BC 上一点,N 是AD 上一点,将△EAN 沿EN 翻折得到△EA′N ,将△EBM 沿EM 翻折得到△EB′M . (1)如图2,若∠A′EB′=80°,EN 以2°/秒的速度顺时针旋转,若EM 以4°/秒的速度逆时针旋转,t 秒后,EA′与EB′重合,求t 的值.(2)若继续旋转,如图3,使EB′平分∠A′EN ,探究∠A′EN 与∠B′EM 的数量关系.图 1ABCEFABECF O4. 如图1,已知∠AOB=80°,∠COD=40°,OM平分∠BOD,ON平分∠AOC.(1)将图1中∠COD绕O点旋转,使射线OC与射线OA重合(∠AOC=0°,ON与OA 重合,如图2),其他条件不变,请写出∠MON的度数.(2)如图2∠COD绕O点逆时针旋转a度,其他条件不变,①当40°<a<100°,请完成图三,并求∠MON的度数;②当140°<a<180°,请完成图四,并求∠MON的度数.5、已知∠AOB是一个直角,作射线OC,再作∠AOC的平分线OD和∠BOC的平分线OE. (1)如图①,当∠BOC=70°时,求∠DOE的度数;(2)在图①中,当射线OC在∠AOB内绕O点旋转时,∠DOE的大小是否发生变化?若变化,说明理由;若不变,求∠DOE的度数;(3)当射线OC绕O点旋转到∠AOB外部,且OB、OC都在直线OA的右侧时,请在图②中画出图形,∠DOE的大小是否发生变化?说明理由.6.已知点O是直线AB上的一点,∠COE=90°,OF是∠AOE的平分线.(1)当点C、E、F在直线AB的同侧(如图1所示)①若∠COF=25°,求∠BOE的度数.②若∠COF=α°,则∠BOE=°.BO AB OA(2)当点C 与点E 、F 在直线AB 的两旁(如图2所示)时,(1)中第②式的结论是否仍然成立?请给出你的结论并说明理由.如图,在一7、.副三角板中,∠AOB=90°,∠COD=45°,将顶点O 重合在一起,三角板ODC绕着点O 顺时针旋转.(1)如图①,当OC 与OB 边重合时,∠AOD 的度数是 ; (2)当三角板ODC 转到恰好使OB 平分∠COD 时(如图②),∠AOC 的度数是 ;(3)三角板ODC 转到边OC 、OD 都在∠AOB 的内部,作∠AOC 的平分线OM ,作∠BOD 的平分线ON ,如图③,那么,当三角板ODC 转动时,∠MON 的度数会变化吗?若不变,求这个角的度数;若有变化,请说明理由.8.如图,一副三角板中各有一个顶点在直线MN 的点O 处重合,三角板AOB 的边OA 靠在直线MN 上,三角板COD 绕着顶点O 任意旋转,两块三角板都在直线MN 的上方,作∠BOD 的平分线OP ,且∠AOB=45°,∠COD=60°. (1)当点C 在射线ON 上时(如图1),∠BOP 的度数是 ; (2)现将三角板COD 绕着顶点O 旋转一个角度x °(即∠CON= x °),请就下列两种情形,分别求出∠BOP 的度数(用含x 的式子表示). ①当∠CON 为锐角时(如图2);②当∠CON 为钝角时(如图3).O A B CDO A B C D A C B MOD N (图①) (图②)(图③)9、已知OC 是∠AOB 内部的一条射线,M 、N 分别为OA 、OC 上的点,线段OM 、ON 分别以30°/s 、10°/s 的速度绕点O 逆时针旋转. (1)如图①,若∠AOB=140°,当OM 、ON 逆时针旋转2s 时,分别到OM′、ON′处,求∠BON′+∠COM′的值;(2)如图②,若OM 、ON 分别在∠AOC 、∠COB 内部旋转时,总有∠COM=3∠BON ,求AOB BOC∠∠的值.(3)若∠AOC=80°,0M ,0N 在旋转的过程中,当∠MON=20°,t=__________.(4)知识迁移,如图③,C 是线段AB 上的一点,点M 从点A 出发在线段AC 上向C 点运动,点N 从点C 出发在线段CB 上向B 点运动,点M 、N 的速度比是2:1,在运动过程中始终有CM=2BN ,求AC BC的值.。